Chapter 3

Steady-State,
One-Dimensional Conduction
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3.1 The Plane Wall
3.1.1 Temperature Distribution

For one-dimensional, steady-state conduction in a plane wall with
no heat generation, the differential equation (2.13) reduces to

(k ) 0 (3.1) j
and the heat flux 1s a constant, T,y
independent of x. With further \ I
assumption of constant , we have \"
the general linear solution T T T —_—
T(X) = Clx + C2 (32) ?mflu;ﬂ
. anddll Lo T
The heat flux is oot
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3.1.2 Thermal Resistance

With the analogy between the diffusion of heat and electrical charge,
the thermal resistance for conduction is

Ts,l B Ts,2 L
Izr,cond — qx — H (36)

Similar for convection with Newton's law of cooling

-7, ]
Rt,conv — q — hA (39) T“”“j?
In Fig. 3.1, the total thermal resistance, R, ,, is \
1 L. 1 M
— + + Hot fluid
RtOt h111 k11 h211 (3.12) T.1 iy |___1. i T [ T

Cold fluid




3.1.3 The Composite Wall (Fig. 3.2; Fig. 3.3)

_ _AT _ 1
Ry=Xk =4l =7

(3.19)

where U is the overall heat transfer coefficient, defined by
analogy to Newton's law of cooling as

q, = UAAT
Toa o 7,
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Ficure 3.2 Equivalent thermal circuit for a series composite wall.
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Ficure 3.3 Equivalent thermal circuits for a series—parallel

composite wall.
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3.1.4 Contact Resistance

--significant temperature drop exists across an interface due to the
gaps between the contact area

m Contact resistance can be reduced by increasing the joint
pressure, reducing the roughness of the mating surfaces, applying
a metal coating, inserting the interface with soft metal foil, or

filling fluid of large thermal conductivity, etc. See Tables 3.1 and

3.2. -
[
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Ficure 3.1  Temperature drop due to thermal contact resistance.
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TaprLE 3.1  Thermal contact resistance for (a) metallic interfaces

under vacuum conditions and (b) aluminum interface (10-pm
; - ., . - . . .
surface roughness, 10" N/m”) with different interfacial fluids [ 1]

Thermal Resistance, Ry . X 10 (m* - K/W)

(@) Vacuum Interface () Interfacial Fluid
Contact pressure 100 kN/m’ 10,000 kN/m” Air 2.75
Stainless steel b-25 0.7-4.0 Helium 1.05
Copper 1-10 0.1-0.5 Hydrogen 0.720
Magnesium 1.5-3.5 0.2-0.4 Silicone oil 0.525
Aluminum 1.5-3.0 0.2-0.4 Glycerine 0.265
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Tapre 3.2 Thermal resistance of representative solid/solid interfaces
_____________________________________________________________________________________________________________________________________________|

Interface R/, X 10* (m* - K/W) Source
Silicon chip/lapped aluminum in air 0.3-0.6 [2]
(27-500 kN/m?)

Aluminum/aluminum with indium foil ~0.07 [1, 3]
filler (~ 100 kN/m?)

Stainless/stainless with indium foil ~0.04 [1. 3]
filler (~3500 kN/m?)

Aluminum/aluminum with metallic (Pb) 0.01-0.1 [4]
coating

Aluminum/aluminum with Dow Corning ~0.07 [1, 3]
340 grease (~100 kN/m?)

Stainless/stainless with Dow Corning ~(.04 [1, 3]
340 grease (~3500 kN/m?)

Silicon chip/aluminum with 0.02-mm 0.2—-0.9 [5]
EpoOXy

Brass/brass with 15-pm tin solder 0.025-0.14 [6]

EX3.1,3.2, 3.3
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3.3 Radial Systems
3.3.1 The Cylinder
For steady-state conditions with no heat generation, Eq. 2.20 1s

reduced to
dr\_
r dr (kr dr )_ 0 (3.23)

The conduction heat transfer rate ¢, (not the heat flux ¢,) is a
constant 1n the radial direction

Hot fluid

TN‘.]-’ |ri']_

g, =—ka4k =—kQmL)dL o

(3.24)

The general solution of (3.23) 1s
I'(ry=CInr+C, (3.25)

. — A t—> SAMAEANM AN,
An example 1s shown in Fig. 3.6. Ta L i)
h2mrL 2miL ho?2 T,

Ficure 3.6  Hollow cylinder with convective surface conditions.
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The temperature distribution
for a composite cylindrical
wall 1s shown 1n Fig. 3.7.
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Ficure 3.7  Temperature dizstribution for a composite eylindrical wall.
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TasLe 3.3 One-dimensional, steadv-state solutions

to the heat equation with no generation

Plane Wall Cylindrical Wall” Spherical Wall”
: d'T 1 d | dT)} __ 1 d| »dT\ _
Heat equation Py 0 rg (r a’r) =0 A dr (r n’r) =0
In (r/r;) = (rylr)
Temperature - X Tk A - T . — ﬁj"l:
distribution T 'ﬁTL 52 In(ri/rs) ! 1 — (r)/rs;)
Heat flux {-:I”j k£ kAT 3 kar
L rin(r,/r) P — (1/ry)]
AT 2oLk AT 4k AT
Heat rat kA —
cat rate (q) L In (r,/r,) (/ry) — (1/r)
Thermal L w (1/ry) = (1/ry)
resistance (R, .qnq) kA 2Lk 4k

“The critical radius of insulation is r,, = k/h for the cylinder and r,, = 2k/h for the sphere.



3.5 Conduction with Thermal Energy Generation

3.5.1 The Plane Wall

For steady-state conditions with constant £ and uniform energy

generation per unit volume, Eq. 2.16 becomes

.
‘éx{ +2-0 (3.39)

L [ 2 ’_H +L
.. | e
The general solution 1s b m
T, . | TG )
| N,
T(x)=--<Lx+Cx+C, A RIS Y
2k - . 1 11 S o
(a) i ‘ ®)
Some examples are shown 1n Fig. 3.9. e
- - - i
With heat generation the heat flux 1s AN
no longer independent of x. _PT_TPT
ﬁ'-::! E[,!] T,.h
EX 3 . 7 Ficure 3.9 Conduetion in a plane wall with uniform heat generation. (a) As
boundary conditions. () Symmetrical boundary conditions. (¢) Adiabatic surfac
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3.6 Heat Transfer from Extended Surfaces
Use of fins to enhance heat transfer from a wall: Figs. 3.12-3.14
3.6.1 A General Conduction Analysis (Fig. 3.15)

Through energy balance, we obtain

(4 4L hdA(T T,)=0

dx ¢ dx
2 dA dA,
of szu(j a’xcjg’){ (/11 a J(T I,)=0 (3.61)
Hq / 4, T: mﬂ/’—p“—-m[mb-ﬂ
J: \T:H | Slelx=L
’ Zj - ﬁ%\

T ) = . . . =1 - . . - i v . - ~ . . . » . -
Fictre 3.15  Energy balance for an extended surface. Ficure 3.17  Conduction and convection in a fin of uniform cross sectio
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3.6.2 Fins of Uniform Cross-Sectional Area
With d4 /dx = 0 and d4 /dx = P, Eq. 3.61 reduces to

2

Zzsz AP (7T Y= (3.62)

Defining an excess temperature Oas 6(x)=T(x)-T, (3.63)
d’0 _ 29 _ _ hP

=3 m0=0  where m= (3.64,65)

The general solution of (3.64) 1s
O(x)=Ce" +Ce™ (3.66)

Two boundary conditions are needed.

m One boundary condition can be specified at the base of the fin (x
=0) as

00)=T7,-T,=0,



" J
m The second condition may correspond to one of the four physical
situations shown 1n Table 3.4. The solution procedure to obtain
temperature distribution /6, and fin heat transter rate g, 1s
discussed 1n the textbook.

TasLe 3.4 Temperature distribution and heat loss for fins of uniform cross section

Tip Condition Temperature Fin Heat
Case x = L) Distribution 6/6, Transfer Rate g,
A Convection heat o : : s 1 ;
—— cosh m(L — x) + (hfmk) sinh m(L — x) u sinh mL + (h/mk) cosh mL
hé( L ) _ kde *'rd-’fL-=L cosh mL + (hfmk) sinh mL " coshmL + (h/mk) sinh mL
(3.70) (3.12)
B Adiabatic cosh m(L — x)
M tanh mL
dﬁ.n"de: =0 cosh mL
(3:19) (3.76)
C Prescribed temperature:
(L) = 0 (61/65) sinh mx + sinh m(L — x) (cosh mL — #;/6p)
: M :
sinh mL sinh mL
377 (3.78)
D Infinite fin (L — cc):
E{’L} = U {_.1—.'??_1' {3.?9_} "Ilff {3.80}
0=T-T, m" = hP/KA,

G,=00)=T, — T, M =V hPkA 6,

EX3.9
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Proper Length of a Fin

m Heat transfer ratio between a fin of finite length L and a fin of

infinite length = i ~ 3-76) = tanhmL
9, .. (3.80)
—fin length L <2.65/m

In practice, fin length 1s usually constrained by space and weight.

3.6.3 FIn Performance ml  tanhml
*F1n effectiveness & ratio of the fin heat transfer 0.1 0.100
rate to that without the fin 0.5 0462
q; 1.0 0.762
Er =177 0, (3.81) 2.0 0.964
¢ 2.5 0.987
Use of fins maglzrarely be justified unless 8fy2 265  0.990
N(kP\ oA 3.0 0.995
khA ) (5.64) 5.0 1.000

Consider an infinite fin, assuming % unaltered by the presence of fin,
— & Tas k, P/4 .1 (high k£ material; thin fins)
h | (gas medium and/or natural convection)
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m Fin resistance R, R, = % (3.83)

m Fin efficiency 7, ratio of g, and the maximum rate when the
entire fin surface were at the base temperature

qr qr

77f B inax N hAfeb (386)

For a straight fin of uniform cross section and an adiabatic tip, Egs.
3.76 and 3.86 yield

_ Mtanhml _ tanh mL

Tr=""hPLO, ~ mL (3.87)
This expression can be applied to a fin with convective tip, if a

corrected fin length L. (eg., L. = L + t/2) for a rectangular fin) is

used. The fin efficiency 1s shown 1n Fig. 3.18.

m The fin resistance can be written in terms of 7.

1
Rr= hA, 7, (3.92)

The 77,and A4, for some examples are shown in Table 3.5.
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Efficiency of straight fins (rectangular. triangular, and parabolic profiles).
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Ficure 3.19  Efficiency of annular fins of rectangular profile.
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3.6.4 Fins of Nonuniform Cross-Sectional Area

For an annular fin with uniform fin thickness,

2
T 1dl_2h(7_7,)=0

drz + r d
with m?=2h/kt, 0=T-T,,
2
Ccl; r‘? +1 Z,I‘? —m’0=0 -- modified Bessel eq. of order zero

The general solution 1s of the form
O(r)=Cl,(mr)+ CGK,(mr)

where /, and K, are modified, zero-order Bessel functions of the
first and second kinds, respectively.

o/ A A WwAAW

for the case with a given base temperature and an adiabatic tip.

<Home Work> Solve for the exm‘eqqmn of H/H mven the on D 151,

The fin efficiencies of some examples with nonuniform cross-
sectional area are shown 1n Figs. 3.18 and 3.19.
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About Modified Bessel Equation

Modified Bessel Equati0121 of order v

d’0,.1d0 _ .Y \g_

g2 o (1+r2)6’ 0 (B1)
The general solution of (1) 1s 0(r)=C/1,(r)+ C,K (r)

In(.?ﬁ) KH(X)
10 i

From www.-efunda.-com/-math

. 2
Consider CZZ—F‘?JF%ZI,—f’_ng:() (B1°)
5 o
Let » =mr, 1t becomes a ‘g + 1, db: —-0=0
dar'’t  r' dr

which is a modified Bessel equation of order zero, with the general
solution of the form @(r) = C I,(mr)+ CK,(mr) (Bla)



2
Compare er? + %% -m’6=0  having the general solution
O(r) = C1(mr)+ GK,(mr) (Bla)
. 2
with Z’ ‘29 -m’0=0 (B2)
X

which has the general solution

O(x)=Ce™ +C,e™ (B2a)

m Since the modified Bessel equation corresponds to the
cylindrical coordinate, while (2) corresponds to the
Cartesian coordinate, their solutions are similar in trend
but (1a) reflects the effect of increasing surface area 2nr
with increasing 7.
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3.6.5 Overall Surface Efficiency

--characterizes an array of fins (Fig. 3.20) and the base surface to
which they are attached

_ 4 _ _ 9
770 - Qmax B hAtHb (398)

with 4,= NA,+ A4, and q,= NnhA0,+ hA,0,, we obtain

NA,
7, =1~ ) (1-7,) (3.102)
o J5
T P |
x ki ﬁ%:—:%?
1 NS >Y
A T B ™ L
;_/L_,;_‘/ T, h %

(a) (k)

Ficure 3.20  Representative fin arrays. (a) Rectangular fins. (b) Annular fins.
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If the fins are attached to the base, rather than an integral part of the
wall, contact resistance should be included, as 1n Fig. 3.21 and

Egs. 3.104-105. .

— (NnshAp™
G ——VWAAA—
R — Hb — 1 T, a e T,
t,o(c) % Iﬁ_k -
qt nO(C)hA Tb e = qp

AN —
‘ [h(4, -NAJT™

(n, hA, "

(3.104) A T )
] ] N

NA n
_ f f (a)
770(0)_1_ y (I_C)
1

t

‘ R JINA, , (NigphA)™

(3.105) - N
where " I,

C, =1+17,h4,(R./ 4,,) 4‘—1 ‘ M

..k
[ l = tjf?

T VAVAVAVAYAYY
fi?ar_dhﬁl,}"l

{b)

EXS 3 10 3 11 Ficvre 3.21  Fin array and thermal circuit. (a) Fins that are integral with the base.
L} ’ L} -~

{M Fins that are attached to the base.



