Chapter 3

Steady-State,
 One-Dimensional Conduction

3.1 The Plane Wall

3.1.1 Temperature Distribution

For one-dimensional, steady-state conduction in a plane wall with no heat generation, the differential equation (2.13) reduces to

$$
\begin{equation*}
\frac{d}{d x}\left(k \frac{d T}{d x}\right)=0 \tag{3.1}
\end{equation*}
$$ and the heat flux is a constant, independent of x. With further assumption of constant, we have the general linear solution

$$
\begin{equation*}
T(x)=C_{1} x+C_{2} \tag{3.2}
\end{equation*}
$$

The heat flux is

$$
\begin{equation*}
q_{x}^{\prime \prime}=\frac{q_{x}}{A}=\frac{k}{L}\left(T_{s, 1}-T_{s, 2}\right) \tag{3.5}
\end{equation*}
$$

3.1.2 Thermal Resistance

With the analogy between the diffusion of heat and electrical charge, the thermal resistance for conduction is

$$
\begin{equation*}
R_{t, \text { oond }}=\frac{T_{s, 1}-T_{s, 2}}{q_{x}}=\frac{L}{k A} \tag{3.6}
\end{equation*}
$$

Similar for convection with Newton's law of cooling

$$
\begin{equation*}
R_{t, \mathrm{conv}}=\frac{T_{s}-T_{\infty}}{q}=\frac{1}{h A} \tag{3.9}
\end{equation*}
$$

In Fig. 3.1, the total thermal resistance, $R_{\text {tot }}$, is

$$
\begin{equation*}
R_{\text {tot }}=\frac{1}{h_{1} A}+\frac{L}{k A}+\frac{1}{h_{2} A} \tag{3.12}
\end{equation*}
$$

3.1.3 The Composite Wall (Fig. 3.2; Fig. 3.3)

$$
\begin{equation*}
R_{\mathrm{tot}}=\sum R_{t}=\frac{\Delta T}{q}=\frac{1}{U A} \tag{3.19}
\end{equation*}
$$

where U is the overall heat transfer coefficient, defined by analogy to Newton's law of cooling as

$$
q_{x} \equiv U A \Delta T
$$

Figure 3.2 Equivalent thermal circuit for a series composite wall.

Figure 3.3 Equivalent thermal circuits for a series-parallel composite wall.

3.1.4 Contact Resistance

--significant temperature drop exists across an interface due to the gaps between the contact area

- Contact resistance can be reduced by increasing the joint pressure, reducing the roughness of the mating surfaces, applying a metal coating, inserting the interface with soft metal foil, or filling fluid of large thermal conductivity, etc. See Tables 3.1 and 3.2.

Figure 3.4 Temperature drop due to thermal contact resistance.

Table 3.1 Thermal contact resistance for (a) metallic interfaces under vacuum conditions and (b) aluminum interface ($10-\mu \mathrm{m}$ surface roughness, $10^{5} \mathrm{~N} / \mathrm{m}^{2}$) with different interfacial fluids [1]

Thermal Resistance, $R_{t, c}^{\prime \prime} \times 10^{4}\left(\mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right)$

(a) Vacuum Interface			(b) Interfacial Fluid		
Contact pressure	$100 \mathrm{kN} / \mathrm{m}^{2}$	$10,000 \mathrm{kN} / \mathrm{m}^{2}$		Air	2.75
Stainless steel	$6-25$	$0.7-4.0$		Helium	1.05
Copper	$1-10$	$0.1-0.5$		Hydrogen	0.720
Magnesium	$1.5-3.5$	$0.2-0.4$		Silicone oil	0.525
Aluminum	$1.5-5.0$	$0.2-0.4$		Glycerine	0.265

Table 3.2 Thermal resistance of representative solid/solid interfaces

Interface	$R_{t, c}^{\prime \prime} \times 10^{4}\left(\mathrm{~m}^{2} \cdot \mathrm{~K} / \mathrm{W}\right)$	Source
Silicon chip/lapped aluminum in air ($27-500 \mathrm{kN} / \mathrm{m}^{2}$)	0.3-0.6	[2]
Aluminum/aluminum with indium foil filler ($\sim 100 \mathrm{kN} / \mathrm{m}^{2}$)	~ 0.07	$[1,3]$
Stainless/stainless with indium foil filler ($\sim 3500 \mathrm{kN} / \mathrm{m}^{2}$)	~ 0.04	$[1,3]$
Aluminum/aluminum with metallic (Pb) coating	0.01-0.1	[4]
Aluminum/aluminum with Dow Corning 340 grease ($\sim 100 \mathrm{kN} / \mathrm{m}^{2}$)	~ 0.07	$[1,3]$
Stainless/stainless with Dow Corning 340 grease ($\sim 3500 \mathrm{kN} / \mathrm{m}^{2}$)	~ 0.04	$[1,3]$
Silicon chip/aluminum with $0.02-\mathrm{mm}$ epoxy	0.2-0.9	[5]
Brass/brass with $15-\mu \mathrm{m}$ tin solder	0.025-0.14	[6]

EX 3.1, 3.2, 3.3

3.3 Radial Systems

3.3.1 The Cylinder

For steady-state conditions with no heat generation, Eq. 2.20 is reduced to

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(k r \frac{d T}{d r}\right)=0 \tag{3.23}
\end{equation*}
$$

The conduction heat transfer rate q_{r} (not the heat flux $q_{r}^{\prime \prime}$) is a constant in the radial direction

$$
\begin{equation*}
q_{r}=-k A \frac{d T}{d r}=-k(2 \pi r L) \frac{d T}{d r} \tag{3.24}
\end{equation*}
$$

The general solution of (3.23) is

$$
\begin{equation*}
T(r)=C_{1} \ln r+C_{2} \tag{3.25}
\end{equation*}
$$

An example is shown in Fig. 3.6.

Figure 3.6 Hollow cylinder with convective surface conditions.

$$
\begin{equation*}
T(r)=\frac{T_{s, 1}-T_{s, 2}}{\ln \left(r_{1} / r_{2}\right)} \ln \left(\frac{r}{r_{2}}\right)+T_{s, 2} \tag{3.26}
\end{equation*}
$$

$$
\begin{equation*}
q_{r}=\frac{2 \pi L k\left(T_{s, 1}-T_{s, 2}\right)}{\ln \left(r_{2} / r_{1}\right)} \tag{3.27}
\end{equation*}
$$

$$
\begin{equation*}
R_{t, \text { cond }}=\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi L k} \tag{3.28}
\end{equation*}
$$

The temperature distribution for a composite cylindrical wall is shown in Fig. 3.7.

EX 3.5

Table 3.3 One-dimensional, steady-state solutions
to the heat equation with no generation

	Plane Wall	Cylindrical Wall a	Spherical Wall a
Heat equation	$\frac{d^{2} T}{d x^{2}}=0$	$\frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)=0$	$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)=0$
Temperature distribution	$T_{s, 1}-\Delta T \frac{x}{L}$	$T_{s, 2}+\Delta T \frac{\ln \left(r / r_{2}\right)}{\ln \left(r_{1} / r_{2}\right)}$	$T_{s, 1}-\Delta T\left[\frac{1-\left(r_{1} / r\right)}{1-\left(r_{1} / r_{2}\right)}\right]$
Heat flux (q")	$k \frac{\Delta T}{L}$	$\frac{k \Delta T}{r \ln \left(r_{2} / r_{1}\right)}$	$\frac{k \Delta T}{r^{2}\left[\left(1 / r_{1}\right)-\left(1 / r_{2}\right)\right]}$
Heat rate (q)	$\frac{2 \pi L k \Delta T}{\ln \left(r_{2} / r_{1}\right)}$	$\frac{4 \pi k \Delta T}{\left(1 / r_{1}\right)-\left(1 / r_{2}\right)}$	
Thermal resistance $\left(R_{t, \text { cond }}\right)$	$\frac{L}{k A}$	$\frac{\ln \left(r_{2} / r_{1}\right)}{2 \pi L k}$	$\frac{\left(1 / r_{1}\right)-\left(1 / r_{2}\right)}{4 \pi k}$

${ }^{a}$ The critical radius of insulation is $r_{\mathrm{cr}}=k / h$ for the cylinder and $r_{\mathrm{cr}}=2 k / h$ for the sphere.

3.5 Conduction with Thermal Energy Generation

3.5.1 The Plane Wall

For steady-state conditions with constant k and uniform energy generation per unit volume, Eq. 2.16 becomes

$$
\begin{equation*}
\frac{d^{2} T}{d x^{2}}+\frac{\dot{q}}{k}=0 \tag{3.39}
\end{equation*}
$$

The general solution is

$$
T(x)=-\frac{\dot{q}}{2 k} x^{2}+C_{1} x+C_{2}
$$

Some examples are shown in Fig. 3.9. With heat generation the heat flux is no longer independent of x.

3.6 Heat Transfer from Extended Surfaces

Use of fins to enhance heat transfer from a wall: Figs. 3.12-3.14
3.6.1 A General Conduction Analysis (Fig. 3.15)

Through energy balance, we obtain

$$
\begin{gather*}
\quad \frac{d}{d x}\left(A_{c} \frac{d T}{d x}\right)-\frac{h}{k} \frac{d A_{s}}{d x}\left(T-T_{\infty}\right)=0 \\
\text { or } \quad \tag{3.61}\\
\frac{d^{2} T}{d x^{2}}+\left(\frac{1}{A_{c}} \frac{d A_{c}}{d x}\right) \frac{d T}{d x}-\left(\frac{1}{A_{c}} \frac{h}{k} \frac{d A_{s}}{d x}\right)\left(T-T_{\infty}\right)=0
\end{gather*}
$$

Figure 3.15 Energy balance for an extended surface.

Figure 3.17 Conduction and convection in a fin of uniform cross section.

3.6.2 Fins of Uniform Cross-Sectional Area

With $d A_{c} / d x=0$ and $d A_{s} / d x=P$, Eq. 3.61 reduces to

$$
\begin{equation*}
\frac{d^{2} T}{d x^{2}}-\frac{h P}{k A_{c}}\left(T-T_{\infty}\right)=0 \tag{3.62}
\end{equation*}
$$

Defining an excess temperature θ as $\theta(x) \equiv T(x)-T_{\infty}$

$$
\begin{equation*}
\Rightarrow \frac{d^{2} \theta}{d x^{2}}-m^{2} \theta=0 \quad \text { where } m^{2} \equiv \frac{h P}{k A_{c}} \tag{3.63}
\end{equation*}
$$

The general solution of (3.64) is

$$
\begin{equation*}
\theta(x)=C_{1} e^{m x}+C_{2} e^{-m x} \tag{3.66}
\end{equation*}
$$

Two boundary conditions are needed.

- One boundary condition can be specified at the base of the fin $(x$ $=0$) as

$$
\theta(0)=T_{b}-T_{\infty} \equiv \theta_{b}
$$

- The second condition may correspond to one of the four physical situations shown in Table 3.4. The solution procedure to obtain temperature distribution θ / θ_{b} and fin heat transfer rate q_{f} is discussed in the textbook.

Table 3.4 Temperature distribution and heat loss for fins of uniform cross section

EX 3.9

Proper Length of a Fin

- Heat transfer ratio between a fin of finite length L and a fin of infinite length $=\frac{q_{f, L}}{q_{f, L \rightarrow \infty}} \cong \frac{(3.76)}{(3.80)}=\tanh m L$
\rightarrow fin length $L<2.65 / m$
In practice, fin length is usually constrained by space and weight.

3.6.3 Fin Performance

- Fin effectiveness ε_{f} : ratio of the fin heat transfer

$m L$	$\tanh m L$
0.1	0.100

rate to that without the fin

$$
\varepsilon_{f}=\frac{q_{f}}{h A_{c, b} \theta_{b}}
$$

Use of fins may rarely be justified unless $\varepsilon_{f} \gamma 2$.

$$
\begin{equation*}
\varepsilon_{f} \approx\left(\frac{k P}{h A_{c}}\right)^{1 / 2} \tag{3.82}
\end{equation*}
$$

$0.5 \quad 0.462$
$1.0 \quad 0.762$
$2.0 \quad 0.964$

2.5	0.987
2.65	0.990
3.0	0.995
5.0	1.000

Consider an infinite fin, assuming h unaltered by the presence of fin, $\rightarrow \varepsilon_{f} \uparrow$ as $k, P / A_{c} \uparrow$ (high k material; thin fins)
$h \downarrow$ (gas medium and/or natural convection)

- Fin resistance $R_{t, f}: \quad R_{t, f}=\frac{\theta_{b}}{q_{f}}$
- Fin efficiency η_{f} : ratio of q_{f} and the maximum rate when the entire fin surface were at the base temperature

$$
\begin{equation*}
\eta_{f} \equiv \frac{q_{f}}{q_{\max }}=\frac{q_{f}}{h A_{f} \theta_{b}} \tag{3.86}
\end{equation*}
$$

For a straight fin of uniform cross section and an adiabatic tip, Eqs. 3.76 and 3.86 yield

$$
\begin{equation*}
\eta_{f}=\frac{M \tanh m L}{h P L \theta_{b}}=\frac{\tanh m L}{m L} \tag{3.87}
\end{equation*}
$$

This expression can be applied to a fin with convective tip, if a corrected fin length L_{c} (eg., $L_{c}=L+t / 2$) for a rectangular fin) is used. The fin efficiency is shown in Fig. 3.18.

- The fin resistance can be written in terms of η_{f}.

$$
\begin{equation*}
R_{t, f}=\frac{1}{h A_{f} \eta_{f}} \tag{3.92}
\end{equation*}
$$

The η_{f} and A_{f} for some examples are shown in Table 3.5.

Figure 3.18 Efficiency of straight fins (rectangular, triangular, and parabolic profiles).

Figure 3.19 Efficiency of annular fins of rectangular profile.

3.6.4 Fins of Nonuniform Cross-Sectional Area

For an annular fin with uniform fin thickness,

$$
\frac{d^{2} T}{d r^{2}}+\frac{1}{r} \frac{d T}{d r}-\frac{2 h}{k t}\left(T-T_{\infty}\right)=0
$$

with $m^{2}=2 h / k t, \quad \theta=T-T_{\infty}$,

$$
\frac{d^{2} \theta}{d r^{2}}+\frac{1}{r} \frac{d \theta}{d r}-m^{2} \theta=0 \quad-- \text { modified Bessel eq. of order zero }
$$

The general solution is of the form

$$
\theta(r)=C_{1} I_{0}(m r)+C_{2} K_{0}(m r)
$$

where I_{0} and K_{0} are modified, zero-order Bessel functions of the first and second kinds, respectively.
$<$ Home Work> Solve for the expression of θ / θ_{b}, given the on p.151, for the case with a given base temperature and an adiabatic tip.
The fin efficiencies of some examples with nonuniform crosssectional area are shown in Figs. 3.18 and 3.19.

About Modified Bessel Equation

Modified Bessel Equation of order v

$$
\begin{equation*}
\frac{d^{2} \theta}{d r^{2}}+\frac{1}{r} \frac{d \theta}{d r}-\left(1+\frac{v^{2}}{r^{2}}\right) \theta=0 \tag{B1}
\end{equation*}
$$

The general solution of (1) is $\theta(r)=C_{1} I_{v}(r)+C_{2} K_{v}(r)$

Consider $\frac{d^{2} \theta}{d r^{2}}+\frac{1}{r} \frac{d \theta}{d r}-m^{2} \theta=0$
Let $r^{\prime}=m r$, it becomes $\quad \frac{d^{2} \theta}{d r^{\prime 2}}+\frac{1}{r^{\prime}} \frac{d \theta}{d r^{\prime}}-\theta=0$
which is a modified Bessel equation of order zero, with the general solution of the form $\theta(r)=C_{1} I_{0}(m r)+C_{2} K_{0}(m r)$

Compare $\frac{d^{2} \theta}{d r^{2}}+\frac{1}{r} \frac{d \theta}{d r}-m^{2} \theta=0$, having the general solution

$$
\begin{equation*}
\theta(r)=C_{1} I_{0}(m r)+C_{2} K_{0}(m r) \tag{B1a}
\end{equation*}
$$

with $\quad \frac{d^{2} \theta}{d x^{2}}-m^{2} \theta=0$
which has the general solution

$$
\begin{equation*}
\theta(x)=C_{1} e^{m x}+C_{2} e^{-m x} \tag{B2a}
\end{equation*}
$$

- Since the modified Bessel equation corresponds to the cylindrical coordinate, while (2) corresponds to the Cartesian coordinate, their solutions are similar in trend but (1a) reflects the effect of increasing surface area $2 \pi r$ with increasing r.

3.6.5 Overall Surface Efficiency

--characterizes an array of fins (Fig. 3.20) and the base surface to which they are attached

$$
\begin{equation*}
\eta_{o}=\frac{q_{t}}{q_{\max }}=\frac{q_{t}}{h A_{t} \theta_{b}} \tag{3.98}
\end{equation*}
$$

with $A_{t}=N A_{f}+A_{b}$ and $q_{t}=N \eta_{f} h A_{f} \theta_{b}+h A_{b} \theta_{b}$, we obtain

$$
\begin{equation*}
\eta_{o}=1-\frac{N A_{f}}{A_{t}}\left(1-\eta_{f}\right) \tag{3.102}
\end{equation*}
$$

If the fins are attached to the base, rather than an integral part of the wall, contact resistance should be included, as in Fig. 3.21 and Eqs. 3.104-105.

$$
R_{t, o(c)}=\frac{\theta_{b}}{q_{t}}=\frac{1}{\eta_{o(c)} h A_{t}}
$$

(3.104)
$\eta_{o(c)}=1-\frac{N A_{f}}{A_{t}}\left(1-\frac{\eta_{f}}{C_{1}}\right)$
(3.105)
where
$C_{1}=1+\eta_{f} h A_{f}\left(R_{t, c}^{\prime \prime} / A_{c, b}\right)$

(a)

(b)

EXs 3.10, 3.11
Figure 3.21 Fin array and thermal circuit. (a) Fins that are integral with the base.
(b) Fins that are attached to the base.

