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CHAPTER 3 PERFORMANCE-DRIVEN 

CROSSTALK ELIMINATION AT 

POST-COMPILER LEVEL 

One effect of the process scaling down is that coupling capacitances have grown 

reciprocal in the square of the scaling factor. This crosstalk effect will not only 

increase the power consumption but also lengthen the propagation delay. The 

coupling capacitance between adjacent neighboring wires, such as buses, on the same 

metal layer induces a very large fraction of the total capacitance. As a result, how to 

solve the crosstalk problem on buses has become an important issue. Most of the 

previous proposed crosstalk-eliminating techniques except [17] were all performed at 

logic level. They have no knowledge on transition sequences and hence assume that 

all possible sequences will appear on the bus. Hence, the area overhead for codec 

logic to eliminate crosstalk is very high. We found that the data sequences on an 

instruction bus are known during the compile time. We are able to know the transition 

sequences on the bus before execution. This motivates us to study how to eliminate 

crosstalk effect on an instruction bus for performance improvement using compiler 

optimization algorithms. Since the elimination techniques, instruction rescheduling 

and register renaming, are performed at post-compiler level, no hardware (area) 

overhead is needed.  

The post-compiler optimization algorithms proposed in this thesis is based on 

pre-designed and low-crosstalk instruction op-codes. In this thesis, we will also 

present how to assign instruction op-codes for reducing the number of crosstalk 

sequences. A similar work [38] has been proposed for low power instruction bus 
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designs. The authors of [38] proposed using run-time profiled results to guide the 

op-code assignment for application-specific processors. A similar approach, namely, 

utilization of profiled results, is adopted in our low-crosstalk instruction op-code 

assignment. 

 

3.1. Crosstalk model and problem definition 
In this section, we first describe the crosstalk model and then give the problem 

definition of eliminating crosstalk effect on an instruction bus. 

3.1.1 Crosstalk model 

In this section, we first give some preliminaries of the definition of crosstalk 

sequences [14]. Three types of cross-coupling capacitances of two adjacent bit-lines, 

bi and bi+1, are defined in [14] as shown in Table 3.1. First, if the two bit-lines remain 

the same or swing in the same direction from time tj to tj+1, no coupling capacitance 

(0·C) is defined. Second, if one bit-line remains the same from time tj to tj+1 and the 

other swings, one coupling capacitance (1·C) is defined. Third, if the two bit-lines 

swing in different directions from time tj to tj+1, two coupling capacitances (2·C) are 

observed. 

Table 3.1: Three types of coupling capacitance of two adjacent bit-lines. 

bi at time tj tj+1  

0 0 0 1 1 0 1 1 

0 0 0·C 1·C 1·C 0·C 

0 1 1·C 0·C 2·C 1·C 

1 0 1·C 2·C 0·C 1·C 

bi+1 at time 
tj tj+1 

1 1 0·C 1·C 1·C 0·C 

  

Extending two bit-lines to three bit-lines, bi-1, bi, and bi+1, we have two more 

types of crosstalk effects for bi. When bi swings, bi-1 (bi+1) remains the same and bi+1 
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(bi-1) swings in a different direction to bi, three coupling capacitances (3·C) are 

defined. Similarly, when bi swings, bi-1 and bi+1 swing in a different direction to bi, 

4·C crosstalk is defined. Figure 3.1 shows two data sequences that result in 3·C and 

4·C crosstalk on bi. It is intuitive that when 3·C (4·C) crosstalk is incurred during the 

bus transmission, three (four) effective coupling capacitances need to be charged for 

the signal transmission. Thus, the large coupling capacitances have great effects on 

the bus transmission delay [14].  

 
Figure 3.1: Examples of (a) 3·C and (b) 4·C crosstalk sequences.  

 

3.1.2 Problem definition 

In this section, we present the problem definition. We first define how a 

processor communicates with an instruction memory. We assume that a Harvard 

architecture is adopted i.e., the instruction memory and data memory are separated. As 

shown in Figure 3.2, the processor and instruction memory communicate with each 

other by an instruction bus and an address bus.  

According to the report from NTRS [6], the processor speed will achieve 2 (or 3) 

Ghz in 0.07 um technology. That means the instruction fetch stage should be no 

longer than 0.5 (or 0.33) ns. On the other hand, the author of [7] pointed out that an 

optimized delay of system buses will take 0.67 ns in 0.07 um technology based on the 

report from NTRS. In another word, the fetch stage will be the bottle neck of a 
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processor, taking into account the delay time of instruction bus, memory access, and 

address bus in the fetch stage. For example, for some high-performance processors 

[68][69][70], the instruction fetch stage has been divided into more stages than other 

pipeline stages. For [68][69], the instruction fetch stage has been decomposed into 

two stages to adapt the access time. For Analog Devices’ BF-561 [70], the instruction 

fetch stage has been decomposed into three pipeline stages, sending address, 

accessing, and sending instruction data. Hence, the reduction of delay time of 

instruction bus, memory access, and address bus becomes very important. In this 

thesis, we will study the delay reduction of instruction bus by eliminating crosstalk. 

The data sequences on an instruction bus are known during the compile time. 

Hence, it is feasible to analyze the sequence of program codes and then utilize the bit 

information of instructions to avoid undesirable bit sequences that incur 3·C and 4·C 

crosstalk sequences. Based on this observation, our problem is defined as follows: 

Given a program (machine code), apply post-compiler optimization to generate a 4·C 

(3·C-and-4·C) crosstalk-free program. 

 
Figure 3.2: The targeted instruction memory architecture. 

 

3.2. Crosstalk elimination in compiler 

optimization 
This section presents the 3·C and 4·C crosstalk eliminating algorithms at the 

post-compiler level. Section 3.2.1 gives an overview of the crosstalk eliminating 

algorithms. Section 3.2.2 describes the algorithm to reschedule instructions. Finally, 
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Section 3.2.3 presents the algorithm to rename registers.  

 

3.2.1 An overview of the proposed algorithms 

Figure 3.3(a) shows the crosstalk eliminating flow of the proposed algorithms 

that consists of four steps. The input of the proposed flow is a binary executable 

program after all the compiler optimizations are performed. 

Step 1: We first decompose the input program into basic blocks. Then, we apply 

two optimization algorithms, rescheduling and renaming, on basic blocks one by one.  

Step 2: We reschedule the instruction order of each basic block. By analyzing the 

dependency graph of instructions in the target basic block and instructions in the 

adjacent basic blocks, we change the topological order of instructions to eliminate the 

crosstalk sequences. We model this problem as a traveling salesman problem (TSP). 

The details will be discussed in Section 3.2.2. The process priority of each basic block 

is determined by its execution frequency. The higher the execution frequency of the 

block is, the higher the priority of the block is. 

Step 3:  We rename register indexes to eliminate the crosstalk sequences. The 

details will be discussed in Section 3.2.3. 

Step 4: After applying Step 2 and Step 3, if there still exists uneliminated 

crosstalk sequences in and between basic blocks, we will insert redundant instructions 

to eliminate crosstalk sequences. From the definitions in Section 3.1.1, we can see 

that an instruction of all zero (or all one) bits adjacent to any other instruction will 

never incur 3·C and 4·C crosstalk. On the other hand, to maintain the original program 

behavior, the inserted instruction should have no effect. Fortunately, for many 

processors, NOP instructions with all zero (or all one) bits are defined. For example, 

in Alpha, the instruction with all zero bits is defined as a NOP instruction. Similarly, 
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in ARM, all one bits can be defined as a NOP instruction. Therefore, in this step, we 

insert NOP instructions to eliminate crosstalk sequences.  

Figures 3.3(b), (c), (d) and (e) show some simple examples of Step 2, Step 3 and 

Step 4 of the crosstalk eliminating algorithms. Figure 3.3(b) shows a basic block 

generated in Step 1. In Figure 3.3(b), there are four 4·C crosstalk sequences (marked 

by gray rectangles). In Figure 3.3(c), we apply the instruction rescheduling algorithm 

(Step 2) to the basic block and inter-change I4 and I5. As a result, the 4·C crosstalk 

between I3 and I4 and I5 and I6 is eliminated. In Figure 3.3(d), we further apply the 

register renaming algorithm (Step 3) to the basic block and rename R2 (0010) to R3 

(0011). The crosstalk between I2 and I3 is also eliminated. Since the crosstalk 

sequence between I1 and I2 is unable to be eliminated in using the instruction 

rescheduling and register renaming, in Figure 3.3(e), a NOP between I1 and I2 is 

inserted in Step 4 to eliminate the sequence.  

Note that instruction rescheduling and register renaming will not cause any 

timing overhead. However, the insertion of the NOP instructions increases the total 

number of dynamic and static instruction count. 
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Figure 3.3: Overview of our proposed algorithms: (a) the algorithm flow and (b-e) the 

algorithm examples. 

 
 
 

3.2.2 Instruction rescheduling 

 During the execution of a program, instructions are fetched and executed one by 

one. Under the constraint of instruction dependencies, we are able to reschedule the 

instructions. In this sub-section, we present how to reschedule the instructions in a 

basic block for eliminating crosstalk sequences. We first construct a control and data 

dependence graph (CDG) of the instructions in a basic block  
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Based on the generated CDG, a weighted and directed rescheduling graph, Grs, is 

constructed. The directed graph (Grs={Vrs, Ers, WErs}) represents the sequence 

relations of instructions. Vrs is a node set, Ers a directed edge set, and WErs weights on 

the edges. A node v in Vrs represents an instruction, an edge e from node vi to node vj 

represents that instruction vi is able to execute before vj, and the weight on the edge 

represents the crosstalk cost between two instructions. The weight on each edge from 

vi to vj is defined as the number of fields in which crosstalk exists: 

( )
( ),,                             

,_

jichangeable

jileunchangeabij

vvcrosstalk

vvcrosstalkWeightEdge

×

+×=

β

α
 

where crosstalkunchangeable(vi,vj) represents the crosstalk incurred by the unchangeable 

fields of bit-codes, such as op-code fields and immediate values fields in an 

instruction, and crosstalkchangeable(vi,vj) by changeable bit-codes, such as register 

indexes. The weight is a linear combination of the two terms. In our experiment, since 

the first term, crosstalkunchangeable(vi,vj), is unchangeable, we will set α larger than β.   

 
Figure 3.4: A rescheduling graph example: (a) the instruction set and (b) the 

rescheduling graph. 
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Figure 3.4 shows a rescheduling graph example. Since there are six instructions 

in Figure 3.4(a), there are six nodes in Grs (Figure 3.4(b)). The I1 is the last instruction 

of the predecessor and I2-6 are instruction in the target basic block. Since I1 is 

executed before I2, there is an edge from vI1 to vI2. Similarly, since there is no 

dependency between the two instructions I4 and I5, there is an edge from vI4 to vI5 and 

an edge from vI5 to vI4. As to weights on edges, let us take the edge from vI1 to vI2 as 

an example and α and β are set to 2 and 1, respectively. Because there is one 4·C 

crosstalk between I1 and I2 incurred by the unchangeable op-code field, the weight on 

the edge from vI1 to vI2 is 2 (2 × 1). Similarly, the weight on the edge from vI2 to vI3 is 

1 (1 × 1) because the 4·C crosstalk between I2 and I3 appears in the field of register 

index which is changeable.  

Once the directed graph is constructed, a TSP algorithm [39] is applied to obtain 

an instruction sequence with the least sum of edge weight of 

.__
sequence the

in  edgeeach for 
∑= ijWeightEdgeCostWeight  

 In order to consider the crosstalk sequences that are incurred between basic 

blocks, we develop a rule to select the first instruction of the traveling salesman path. 

First, for a basic block to be rescheduled, the instruction which does not incur any 

crosstalk sequence with the last instructions in its predecessor basic blocks has the 

highest priority to be the starting node of the traveling salesman path. Second, if there 

is no such instruction, the second priority will be given to the instruction whose 

crosstalk sequences with adjacent instruction is incurred from register-naming fields. 

The reason behind this heuristic is that a later step of register renaming may eliminate 

the crosstalk sequences. Finally, if none of the previous cases is met, any instruction 

which does not violate dependency relations is selected. 
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Based on the obtained sequence, a new instruction order is determined. The least 

weight path corresponds to a legal execution sequence which has the least number of 

fields with crosstalk. It means the least number of registers needs to be renamed and 

the least number of NOP needs to be inserted. Take Figure 3.4 as an example. We find 

a path seqb has less Weight_Cost than the original path seqa. As a result, new 

instruction sequence is determined as seqb (Figure 3.3(c)).  

 

3.2.3 Register renaming 

The naming of register also affects the transmission sequences on an instruction 

bus. Frequently, there are unused register indexes after register naming. It means if 

one register index incurs crosstalk sequences, we are able to rename it to a different 

one for eliminating the incurred sequences. In this section, we will introduce how to 

rename register indexes to eliminate crosstalk sequences.  

For renaming register indexes, we model the relations between register indexes 

as a weighted and undirected graph, which is called an adjacency graph, Ga. An 

adjacency graph (Ga={Va, Ea, WEa}) represents the adjacency relations of two 

symbolic registers that are adjacent in the program code where Va is a node set, Ea an 

edge set, and WEa weights on the edges. A node v in Va represents a symbolic register, 

an edge e between node vi and node vj represents that symbolic register vi and vj are 

adjacent and the weight on the edge represents the frequency of their adjacencies. 

Figure 3.5 gives an example of an adjacency graph. In Figure 3.5(a), there are seven 

symbolic registers and an immediate value, 5. Hence, there are eight nodes in the 

graph as shown in Figure 3.5(b). The edges between nodes and the weights on the 

edges are constructed by tracing the code. In Figure 3.5(a), the two dots show that S0 

and S2 are adjacent twice. Hence there is an edge between node S0 and S2 and the 

weight of the edge is set to two.  
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Figure 3.5: An adjacency graph example: (a) the instructions in a basic block and (b) 

the corresponding adjacency graph. 

 
Figure 3.6: A constraint graph example. 

After constructing an adjacency graph, an initial solution is determined and then 

a simulated annealing based algorithm is performed to further improve the initial 

solution. Before constructing an initial solution, we represent all possible register 

index candidates as a constraint graph, Gc = (Vc, Ec), where Vc is a node set and Ec an 

edge set. A node c in Vc represents a register index and an edge between node ci and cj 

represents that the two indexes have no 3·C or 4·C crosstalk with each other. Figure 

3.6 shows a constraint graph with seven index candidates where the edges represent 

that there is no 4·C crosstalk between the two indexes. For example, an edge between 

register 2 (0010) and register 10 (1010) represents that there is no 4·C crosstalk 

between the two nodes. 
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After constructing a register-adjacency graph and a candidate-constraint graph, 

we apply a clique partitioning algorithm [40] to partition the two graphs, Ga and Gc. 

Note that a clique in Ga means that the nodes (the registers) in the clique are adjacent 

to each other in the program code while a clique in Gc means the nodes (the indexes) 

in the clique are crosstalk-free with each other. We assign partitioned clusters in Gc as 

bins and perform the bin-packing algorithm [41] to pack clusters in Ga into clusters in 

Gc. After packing, we assign the correspondent codes to each instruction. As for the 

groups that are not assigned, we will assign them randomly. Note that in order to 

eliminate the crosstalk sequences between basic blocks, special attention is paid to the 

first instruction of the basic block being processed. Indexes for the registers of the 

first instruction in the target basic block are assigned first and their indexes are 

selected so that no crosstalk sequence is incurred between this instruction and the last 

instructions in the predecessor basic blocks.  

Figures 3.7(a) and (b) show the partition results in Ga and Gc, respectively. In Ga, 

four clusters, Ca,1, Ca,2, Ca,3, and Ca,4, are generated. In Gc, two clusters, Cc,1 and Cc,2, 

are generated. Then, we pack Ca,1 and Ca,2 into Cc,1 and Ca,3 and Ca,4 into Cc,2. After 

packing, indexes in Gc are assigned to Ga as shown in Figure 3.7(c). 

In the second step, we perform a simulated annealing algorithm [42] to further 

improve the crosstalk cost function. The crosstalk cost is defined as: 

∑ ×=
e

jisequence vvcrosstalkweG ),()(CostCrosstalk_ , 

where we represents the weight on each edge e and crosstalksequence(vi, vj) is the 

crosstalk sequence incurred by the two codes, vi and vj.  
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Figure 3.7: A register index renaming example: (a) the clique partition of adjacent 

graph, (b) the clique partition of constraint graph, (c) an initial assignment of register 
names and (d) the result of SA interchange. 

In each temperature step of the simulated annealing algorithm, we selectively 

change two indexes in Ga or index candidates. In Figure 3.7(d), we interchange 

indexes of S0 and S5 and indexes of S2 and S4 in Figure 3.7(c). The result shows that 

the cost is improved. 

 

3.3. Instruction op-code assignment 
As mentioned in Section 3.2.2, crosstalk sequences on an instruction bus are 

affected by instruction op-code fields. Since op-codes are fixed, crosstalk sequences 

incurred by instruction op-codes are not avoidable (except the NOP insertion).  

However, the behavior of a system design is usually statically known. Hence, it 

is feasible to analyze the application programs and utilize their characteristics to 
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design an instruction op-code in a processor design that will result in less crosstalk. In 

this section, we present our low-crosstalk instruction op-code assignment algorithm 

for minimizing crosstalk. First, we collect a set of instruction-execution sequences 

from target application programs. According to the sequences, we transform the 

sequence into a transition graph. Then, we utilize the candidate assignment algorithm 

proposed in Section 3.2.3 to assign op-code candidates to instructions. 

To assign op-code candidates to instructions, we model the instruction-execution 

sequences as a weighted graph Gins. Similar to Ga, Gins = (Vins, Eins, WEins), where Vins 

is a node set, Eins an edge set, and WEins execution frequencies on the edges. 

Figure 3.8 shows an example of constructing the weighted graph from an 

execution sequence.  
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Figure 3.8: An instruction transition graph example: (a) an execution sequence and (b) 

the corresponding transition graph. 

After generating an instruction transition graph, we apply the algorithm proposed 

in Section 3.2.3 to assign op-code candidates to each node (instruction) in the 

transition graph.  
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3.4 Experimental results 
We have conducted five sets of experiments on two benchmark sets. In the first 

experiment, we demonstrate the crosstalk reduction of low-crosstalk instruction 

op-code assignment algorithm described in Section 3.3. In the second and the third 

experiments, we examine the effectiveness of our post-compiler optimization 

algorithms. In the fourth experiment, we examine the energy consumption after 

applying our post-compiler optimization algorithms and instruction op-code 

assignment algorithm. In the fifth experiment, we examine the static instruction count, 

cache miss rate, and algorithm running time. The two benchmark sets used in our 

experiments are DSPstone and Powerstone. The DSPstone is a benchmark set for 

basic DSP cores and Powerstone contains various general purpose programs. 

SimpleScalar (targeted on Alpha) is chosen as our experimental platform. In the Alpha 

instruction set, a six-bit op-code field is designed. For some instruction groups, sub 

op-code fields are also designed. 

 

3.4.1 The op-code assignment algorithm 

 In this experiment, we first demonstrate how much the op-code affects the total 

crosstalk sequences between instructions. Figure 3.9 shows that in average 60.63% 

and 60.11% 4·C crosstalk sequences occurred in the six-bit op-code field on DSPstone 

and Powerstone, respectively. Figure 3.9 also shows a similar result when both 3·C 

and 4·C are considered (for showing the effect when the coupling capacitances larger 

than and equal to 3·C). The results show that the six-bit op-code field has a significant 

crosstalk effect on an instruction bus. 

Figures 3.10 and 3.11 show the average 4·C and 3·C-and-4·C crosstalk 

minimization results by applying the instruction op-code assignment algorithm on the 
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DSPstone and Powerstone sets, respectively. In Figures 3.10 and 3.11, the results 

show that our algorithm can eliminate almost all the 4·C and 3·C-and-4·C crosstalk 

sequences related to the six-bit op-code. In Figures 3.10(b) and 3.11(b), the results 

show that in average 65.93% and 60.19% 4·C reductions can be achieved after the 

op-code assignment. In Figures 3.10 and 3.11, the results show the 3·C-and-4·C 

crosstalk reduction that is not as good as the result of reducing 4·C crosstalk only. The 

reason is that, in considering both 3·C and 4·C crosstalk sequences, more constraints 

are considered. When we only reduce 4·C crosstalk, our algorithm needs only to avoid 

the sequence of (010 and 101) only. However, when reducing both 3·C and 4·C 

crosstalk, our algorithm needs to avoid the four more sequences, (001 and 010), (010 

and 100), (011 and 101), and (010 and 011). This experiment demonstrates that our 

op-code assignment algorithm can effectively reduce the crosstalk sequences in 

op-code fields. 

 
Figure 3.9: The crosstalk effect of the six-bit op-code field on (a) DSPstone and (b) 

Powerstone. 
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Figure 3.10: The 4·C and 3·C-and-4·C crosstalk reduction on DSPstone: (a) related to 

the six-bit op-code field and (b) related to both op-code and sub op-code field. 

 
Figure 3.11: The 4·C and 3·C-and-4·C crosstalk reduction on Powerstone: (a) related 

to the six-bit op-code field and (b) related to both op-code and sub op-code field. 
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3.4.2 The result on the number of 4·C/3·C-and-4·C 

crosstalk reduction 

In this experiment, we demonstrate the effectiveness of our post-compiler 

optimization algorithms presented in Section 3.2 based on the low-crosstalk op-codes. 

The α and β in Section 3.2.2 are set to 2 and 1, respectively.  

Figure 3.12 shows the percentages of dynamic instruction count with 4·C or 

3·C-and-4·C crosstalk sequences after applying our post-compiler optimization 

algorithms. The gray bar shows the percentage of the number of dynamic instruction 

incurring 4·C (or 3·C-and-4·C) crosstalk sequences to the total number of dynamic 

instruction in the original program. The black bar shows the results after applying our 

post-compiler optimization algorithms in Section 3.2. For eliminating 4·C crosstalk 

sequences on DSPstone, Figure 3.12(a) shows that without applying our algorithms, 

an average of 11.50% dynamic instructions incur 4·C crosstalk sequences. After 

applying our algorithms, only 0.52% (average) instructions incur 4·C crosstalk. Figure 

3.12(b) shows a similar overhead result (0.65%) on the Powerstone. The results for 

reducing both 3·C and 4·C crosstalk sequences are not as effective as reducing 4·C 

crosstalk sequences only (average 24.20% and 23.15%, respectively). It shows that it 

is much harder to reduce both 3·C and 4·C crosstalk sequences than to reduce 4·C 

crosstalk sequences only.  
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Figure 3.12: The 4·C only and 3·C-and-4·C reduction comparison on (a)DSPstone and 
(b) Powerstone. 

 

3.4.3 The comparison on the instruction-fetch time 

In high performance processor designs, pre-fetch unit [58][59] has been 

proposed to hide the long latency of memory access. The pre-fetch unit is designed to 

keep fetching instructions from the instruction memory while the program is executed. 

By improving the performance of instruction bus, we can improve the performance of 

pre-fetch unit.  

Therefore, to investigate the actual timing improvement of a pre-fetch unit, we 

estimate the total instruction fetch time with/without applying our proposed 

optimization algorithms. First, we show how 3·C and 4·C crosstalk sequences affect 

the delay of bus transmissions. A set of simulation by SPICE [60] was performed. 

Figure 3.13 shows the worst-case delay among the bus signals under 3·C and 4·C. 

Two process technologies (0.07 and 0.18 um) were tested where wiring parasitic was 
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obtained from Berkeley Predictive Technology Model [61]. Wire length is set to 20 

mm, which is obtained from [9] and [7]. The data sequences, (010 and 101) for 4·C 

crosstalk and (011 and 101), (110 and 101), (011 and 010), and (110 and 010) for 3·C 

crosstalk, are used as the test patterns. In Figure 3.13, we notice that eliminating 4·C 

crosstalk sequences on a bus can speed up more than 20% of the bus transmission. 

 

Figure 3.13: The worst-case delay of 3·C and 4·C crosstalk conditions. 

 

In the next experiment, we examine the total instruction fetch time comparison 

of the original programs and the programs after applying our proposed optimization 

algorithms.  

Since the instruction fetch time is composed of three parts [62]: (1) sending 

address (taddr), (2) memory access (taccess), and (3) sending instruction data (tinst), the 

fetch time of an instruction is estimated as below: 

instaccessaddr ttttimefetch ++=_ . 

Take 0.07 um as an example, from Figure 3.13, the transmission times on 20 mm bus 

considering 3·C and 4·C are 1960 and 2482 ps, respectively. In [63], by using the 

same 0.07 um technology, the memory has 333 ps delay. Hence, the instruction fetch 

times on a 20 mm bus considering 3·C and 4·C are 4775 and 5297 ps, respectively. 

Finally, the total fetch time of all instructions is then computed as below: 

countninstructiotimefetchtimefetchtotal ____ ×= , 



 

 37

where the instruction_count is the dynamic instruction count of a program. Similar 

experiments are performed for the bus lengths of 5, 10, 15, and 20 mm [9][7] and for 

the technology of 0.18 um. Figure 3.14 shows the average improvement of total 

instruction fetch time after applying our compiler optimization algorithms. The figure 

shows that after applying our algorithm, in the best case (20 mm bus length and 0.07 

um technology), the total instruction fetch times are improved on DSPstone and 

Powerstone up to 9.59% and 8.98%, respectively, and in the worst case (5 mm bus 

length and 0.18 um technology), 1.17% and 0.77%. 

 

Figure 3.14: The average total fetch time improvement on (a) 0.07 and (b) 0.18 um. 

3.4.4 The comparison on the transmission energy 

Although the main object of our algorithms is timing optimization, we would 

like to understand the effect on energy consumption on this bus. Figure 3.15 shows 

the average of the total switching number of capacitance on the instruction bus before 

and after applying the algorithms in Section 3.2 and Section 3.3 for all benchmarks. 

The CL and CX represent the capacitance between a wire and a ground, and the 

capacitance between two adjacent wires, respectively. We observe that our proposed 

algorithms, instruction rescheduling, register renaming, and op-code assignment, can 

reduce the switching number of CX. However our algorithms do not guarantee the 

minimization of the switching number of CL. When all the algorithms and NOP 
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instruction are applied, the reduction on switching number of CX is 15%. The 

switching number of CL is slightly increased by 2%. 

 

Figure 3.15: The average total switching number of capacitances.  

 Since this insertion of NOP will increase the power consumption of other 

pipeline stages. To understand the effect, we perform an experiment on the total 

power consumption by running the program through the whole pipeline stages. The 

power is calculated by Wattch [64] using 0.18 um technology. Table 3.2 shows the 

average power consumption before and after applying our algorithms in Section 3.2 

and Section 3.3. We can see that the power overhead is 0.44% and 0.61% on 

DSPStone and Powerstone, respectively. The power overhead is very small because 

the number of added NOP instructions is much smaller than the number of 

instructions in the original program. (Shown in Section 3.4.2).  



 

 39

Table 3.2: The power consumption comparison. 

 Original programs(W) All algorithms with NOP (W) Overhead 

DSPStone 498801 501020 0.44% 

Powerstone 13078528 13158921 0.61% 

3.4.5 The experiments on the static instruction count, 

cache miss, and running time 

To understand how our algorithms affect the static instruction count and cache 

miss, we simulate the programs with/without NOP instruction using SimpleScalar. 

The microarchitecutre configuration is shown in Table 3.3. The option to run the 

simulator is sim-outorder with the in-order instruction issue. The fetch width, decode 

width, and issue width are all set to be 1. 

Table 3.3: The microarchitecture configuration of SimpleScalar. 

Parameter Value 
Branch Predictor Bimodal predictor (talbe size: 2048) 

2-level adaptive predictor (l1size: 1, l2size: 1024, 
hist_size: 8, xor: 0, mata_table_size: 1024) 

L1 instruction cache 16KB, 1-way asc., 32B/line, LRU, 1 cycle lat. 
L1 data cache 16KB, 4-way asc., 32B/line, LRU, 1 cycle lat 
Instruction TLB 64 entries, 4-way asc., LRU, 30 cycle lat.  
Data TLB 128 entries, 4-way asc., LRU, 30 cycle lat.  
Memory 8 bytes bus width, 18 and 2 cycles for the first and 

inter chunks 

 

Table 3.4 shows the average static-instruction count overhead. The results show 

the added NOP instructions increase the program size by 8%. Although the static 

instruction overhead is not small, Table 3.5 shows that the increase in cache miss rate 

is smaller than 1%. This is because our optimization algorithms take the execution 

frequencies of basic blocks into consideration. As a result, most NOP instructions are 

inserted in less frequently executed basic blocks. 
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Table 3.4: The static instruction overhead. 

 Original programs All algorithms with NOP Overhead 

DSPStone 17487.14 18822.93 7.63% 

Powerstone 22131.40 24052.37 8.67% 

Table 3.5: The cache miss rate comparison. 

Original programs All algorithms with NOP 
 

Access times Miss times miss rate Access times Miss times miss rate 

DSPStone 6005.14 168.57 2.8071% 6049.14 182.57 3.0181% 

Powerstone 455004.85 250.11 0.0549% 457399.85 312.11 0.0682% 

 

The last experiment is to address the running time of our post-compiler 

optimization algorithms. The post-compiler algorithms are implemented using C++ 

language. The platform is Intel Celeron 1.3 Ghz with 256Mb ram. The operating 

system is RedHat Linux 7.3. Table 3.6 shows the average number of basic blocks (NB) 

and average running time of the proposed post-compiler optimization algorithms: 

instruction rescheduling (IR), register renaming (RR), clique partitioning (CP), bin 

packing (BP), and simulated annealing (SA). The results show that the running time 

takes only several seconds. The running time of instruction rescheduling is much 

larger than that of register renaming. That is because instructions in a basic block are 

usually larger than the number of registers to be re-assigned. 

Table 3.6: The average number of basic blocks (NB) and the running time of 
instruction rescheduling (IR), register renaming (RR), clique partitioning (CP), bin 

packing (BP), and simulated annealing (SA). 

 NB IR (s) RR (s) CP (s) BP (s) SA (s) 

DSPStone 3828 1.19 0.31 0.11 0.04 0.12 
Powerstone 5017 3.12 0.99 0.28 0.17 0.35 
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