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CHAPTER 5 A POWER-DRIVEN 

MULTIPLICATION INSTRUCTION-SET 

DESIGN METHOD FOR ASIPS 
Power consumption has become one of the most important design issues for DSP 

designs targeted to multimedia and handheld applications. An important trend for low 

power DSP designs is to customize the instruction set for accommodating program 

characteristics with ASIPs (Application Specific Instruction-set Processors) [5].  

Due to the large area, critical timing and high power dissipation, multipliers are 

the most critical components in an application-specific design. In [8], a configurable 

structure was proposed to reduce the power consumption of multiplier design. The 

key idea of a configurable multiplier-structure [8] to save power consumption is that 

the multiplier has two configurations. When the smaller multiplication is performed, 

unused parts of the multiplier are turned off, where “turn off” means gating input 

signals. This technique has been proven to be very effective in power reduction. 

Nevertheless, these techniques focus on ASIC (Application Specific Integrate Circuit) 

designs rather than processor designs. Moreover, the bit-width of the smaller 

configuration is simply chosen as the half bit-width of the larger multiplier. 

However, we have observed that a smaller configuration with half of the 

maximum bit-width is not necessarily a good choice for the bit-width distribution of 

multiplication instructions for some specific applications. For example, in IDCT of 

MPEG2 (video decoder) [52], one of the operands in mostly frequent executed 

multiplication is constant, whose maximum bit width is not whole or half of the bit 

width. Figure 5.1 illustrates the bit-width distribution of multiplication instructions by 

analyzing the C source program of an MPEG2 video decoder. The data is collected by 

assuming that two operands of a multiplication instruction are the same bit-width. 
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Figure 5.1: The bit-width distribution of multiplication-instructions of an MPEG2 

decoder design. 
 

To achieve low power, one efficient multiplier design is using the configurable 

multiplier structure described in [8] to realize all multiplication instructions. A 

straightforward bit-width selection as described in [8] is to have the smaller 

configuration with the half bit-width of the large one. That is, a 24-by-24 bits 

multipliers with two configurations, 24-by-24 and 12-by-12. Then, using this 

straightforward configurable multiplier, the power consumption is 24 × 24 × 0.49Ctotal 

(instructions with operands’ bit-widths greater than 12) + 12 × 12 × 0.51Ctotal 

(instructions with operands’ bit-widths equal to and smaller than 12) = 355.68 × Ctotal 

(area × execution cycle count), where Ctotal is the total execution cycle count. 

Instead, we can also execute the multiplication instructions with two 

configurations, 24-by-24 and 13-by-13. By using this selection, the power 

consumption is 24 × 24 × 0.10Ctotal (instructions with operands’ bit-widths greater 

than 13) + 13 × 13 × 0.90Ctotal (the instructions with operands’ bit-widths equal to and 

smaller than 13) = 209.70 × Ctotal. 

Obviously, the latter configurable multiplier (24-by-24 and 13-by-13) is 41.04% 

better than the straightforward one (24-by-24 and 12-by-12) in terms of power 

consumption. This motivates us to investigate how to determine the bit-width of a 

multiplication instruction-set using a dual-&-configurable multiplier (will be depicted 
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in the following section) for power reduction. 

The rest of the section is organized as follows. Section 5.1 presents the multiplier 

structure. Section 5.2 presents the multiplication-instruction formation method.  

 

5.1 A dual-&-configurable-multiplier structure 
Before introducing the dual-&-configurable-multiplier structure, we define the 

notation {M, N} as a multiplication instruction with two operands where the bit-width 

of the first operand is M and the second one is N. 

To speed up performance, most state of art DSP processors provide two 

multipliers. Table 5.1 lists the summarized results of several processors and their 

multiplication instructions. The table shows that most DSP processors provide dual 

multipliers and two multiplication modes. A dual-multiplier can implement two 

multiplication modes: dual-multiplication and single-multiplication. In the 

dual-multiplication mode, two multipliers can execute two single multiplication 

instructions in parallel. In the single-multiplication mode, two multipliers are 

configured to operate on one single long bit-width multiplication. From the table, we 

observe that all of multipliers (32 bits) are composed of two smaller multipliers (16 

bits, half of maximum bit-width) of equal size. It seems that designers suggest that 

two equal bit-widths to form a square multiplier is an efficient bit-width in terms of 

area and parallelism. We would like also to exploit this problem in this thesis. 
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Table 5.1: The survey of several DSP processors and their multiplication instructions. 

Names 
Type and number of 

multiplier 
Multiplication instructions 

Analog Device TigerSharc 8 16-by-16 multipliers {16,16} and {32,32} 
DSP Group OAK, Teak, Palm 2 16-by-16 multipliers {16,16} and {32,32} 
Lucent Technology DSP 
16000 

2 16-by-16 multipliers
{16,16}, {16,32}, and 
{32,32} 

PHILIPS REAL DSP 2 16-by-16 multipliers {16,16} 
TI TMS320C6000 2 16-by-16 multipliers {16,16} 
ZSP 400 2 16-by-16 multipliers {16,16} and {32,32} 
 

In this thesis, we adopt a dual-&-configurable multiplier as our target multiplier 

structure. Figures 5.2 and 5.3 show an example of the dual-&-configurable structure. 

Figure 5.2 shows our dual structure that includes two multipliers, Multiplier1 and 

Multiplier2, to execute {m, n1} and {m, n2}, respectively, and the control 

multiplexers. When control is set to zero, the multiplexers forward all zero values to 

carry (borrow) inputs of the adders and subtraters of Multiplier1. Hence, the two 

multipliers can execute two multiplications, {m, n1} and {m, n2}, in parallel. When 

control is set to one, the multiplexers select the carry and borrow values of 

Multiplier2 to Multiplier1 and produce one product of a multiplication {m, n1+n2}. 

Figure 5.3 shows the configurable-multiplier structure used in each multiplier 

which is based on the configurable-multiplier structure described in [8]. A 

configurable multiplier can execute two or more multiplication instructions with 

different bit-widths. Figure 5.3 shows a configurable multiplier with two 

configurations that can perform two multiplication instructions: {m, n1} is executed 

in Multiplier1 and {m1lp, n1lp} in Multiplier1lp. When the control is set to one, the 

entire multiplier (i.e., Multiplier1) is activated. When the control is set to zero, 

Multiplier1lp is activated alone. In the following section, this dual-&-configurable 

multiplier structure is used as our target structure. 
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Figure 5.2: The block diagram of a dual-multiplier. 
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Figure 5.3: The block diagram of a configurable multiplier with two configurations. 

 

5.2. The multiplication instruction-set formation 

algorithm 
This section presents the detailed multiplication instruction-set formation 

algorithm. Section 5.2.1 gives the problem definition and overview of the 

multiplication instruction-set formation algorithm. Section 5.2.2 describes the 

algorithm to determine the bit-widths of a dual-multiplier. Finally, Section 5.2.3 

presents the configurable-multiplier formation algorithm. 
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5.2.1 Problem definition and overview of the algorithm 

In an application-specific system design, the bit-widths of multiplication 

operands usually have a wide variation range from different applications. Often, the 

behavior of the application-specific system is statically known. Hence, it is feasible to 

analyze the application programs and utilizing their characteristics to further optimize 

the application-specific systems. Based on this observation, our problem is defined as 

follows: Given an application specific program (or a set of programs) and input data 

set, generate a set of multiplication instructions such that both the power consumption 

and the execution time of multiplication instructions are minimized. 

Figure 5.4(a) presents the design flow of the proposed algorithm that consists of 

three steps: 

Step 1: For a given application program and input data, we analyze the variables 

of each multiplication statement at instruction level and report the effective bit-width 

[53] of variables. In this thesis, we use the effective bit-width proposed in [53], where 

the effective bit-width is calculated as the smallest size that can hold both maximum 

and minimum values of a variable. We use two methods [54][55] to analyze the 

effective bit-width of variables. One is the static analysis and the other is the 

simulation-based dynamic analysis. After analyzing multiplication instructions in the 

program, a set of initial bit-widths for multiplication instructions is determined. 

Step 2: Based on the analyzed results including effective bit-width and profiling 

execution sequence generated in Step 1, an instruction transition graph is thus 

constructed. We, from the instruction transition graph, then determine the bit-widths 

of two multiplication instructions that can be executed by each multiplier, one 

multiplication instruction that can be executed by both multipliers in parallel, and one 

multiplication instruction that can be executed by the concatenated multipliers. The 
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details will be discussed in Section 5.2.2. 

Step 3: After determining the bit-widths of the dual-multiplication instructions, 

we apply the VLIW compiler techniques [56] to parallelize multiplication instructions 

into dual multipliers. After that, we build an instruction transition graph for each 

individual multiplier. For each graph, we apply a node-merging procedure as a 

pre-processing step and then a graph partitioning algorithm [57] to determine the 

multiplication instruction-set for the configurable-multiplier. The details will be 

presented in Section 5.2.3. After determining the multiplication instruction set, we 

generate the dual-&-configurable-multiplier. 

Figure 5.4(b) shows a simple example of the design flow. In Step 1, the target 

program is analyzed. In Step 2, a transition graph is built according to the analyzed 

result. The four multiplication instructions, M1, M2, M3, and M4, and a 

dual-multiplier are generated after the bit-width determination for the dual multiplier. 

M1 performs {m, n1} in Multiplier1, M2 {m, n2} in Multiplier2, M3 {m, n1} and {m, 

n2} in the dual multiplication mode, and M4 {m, n1+n2} in Multiplier1 + Multiplier2 

by concatenating Multiplier1 and Multiplier2. In Step 3, a transition graph for each 

multiplier is built according to the parallelized multiplication instruction code and the 

dual-multiplier. The multiplication instruction-set for each multiplier is generated 

according to the transition graph. In Figure 5.4(b), configuration number is set to two. 

In Multiplier1, M1lp is generated for low power configuration, while in Multiplier2, 

M2lp is generated. 
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Figure 5.4: The design flow of the multiplication instruction formation algorithm. 

 

5.2.2 Bit-width determination for the dual-multiplier 

In Step 2, bit-width for dual multiplier will be determined. First, we construct a 

weighted graph to model the execution frequency and transitions among 

multiplication instructions with different bit-widths. The weighted graph is 

constructed from the profiling of the multiplication instruction execution sequences 

generated from the target application programs. Let G=(V, WV, E, WE) be a weighted 

graph, where V is a node set, WV weights on the nodes, E an edge set, and WE 

weights on the edges. A node v in V represents one multiplication instruction in the 

program, the weight on the node, v, represents the execution frequency of the 

instruction v, an edge between node v1 and node v2 represents that instruction v1 is 
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executed before instruction v2 or v2 is executed before v1, and the weight on the edge 

represents the transition frequency between v1 and v2. 

Execution sequence

 
Figure 5.5: A transition graph example. 

 Figure 5.5 shows a transition graph example. In Figure 5.5(a), there are 5 types 

of multiplication instructions in the execution sequence. Hence, there are 5 nodes in 

the graph as shown in Figure 5.5(b). The numbers next to the nodes are the execution 

frequencies of the instructions. For example, {20, 20} is executed 5 times (marked by 

dots in Figure 5.5(a)) and there are 15 multiplication instructions in total. As a result, 

the execution frequency of node {20, 20} is 5/15. The edges between nodes and the 

weights on the edges are constructed also by tracing the multiplication instruction 

execution sequence. For instance, in Figure 5.5(a) the three arrows show that the {20, 

20} is executed before {15, 12} twice and {15, 12} before {20, 20} once and the total 

number of transition is 14. Hence, there is an edge between nodes {20, 20} and {15, 

12} and the weight of the edge is 3/14. 

 After generating a transition graph, we determine the bit-widths of two 

individual multiplication instructions for the dual-multiplier. The goal of selecting the 

bit-width is to minimize the total energy consumption while taking execution time 

into consideration. To that end, the first objective is to minimize the total area and 

hence power consumption. The second objective is to allow as many multiplication 
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instructions with small bit-widths executed in parallel as possible. In this case, the 

total execution time is minimized. 

To determine the bit-width of the dual-multiplication instructions, a 

straightforward algorithm is to enumerate all possible configurations. This 

enumeration takes exponential time in terms of the number of possible bit-widths, i.e. 

the number of nodes in the transition graph. Instead, we consider only the 

configurations presented in the nodes and edges of the instruction transition graph. 

For a node v representing a multiplication instruction of {m1, n1} in G, we consider a 

dual-multiplication instruction that allows two m1-by-n1 multiplication instructions to 

be executed in parallel. For an edge e representing transition between multiplication 

instruction of {m1, n1} and multiplication instruction of {m2, n2} in G, we consider a 

dual-multiplication instruction that allows multiplication instructions of m1-by-n1 and 

of m2-by-n2 multiplications to be executed in parallel. Moreover, when a 

dual-multiplier is in single-multiplication mode, the bit-width must be large enough to 

hold the largest operands of the multiplication instruction.  

Therefore, the configuration of the dual-multiplier is determined as follows. Let 

max_m and max_n be the maximum bit-width of the first operand and the second 

operand of all multiplication instructions. For the configuration corresponding to a 

node v representing multiplication instruction of {m1, n1}, we have a 

dual-multiplication instruction with two individual multipliers of max_m-by-n1 and 

max_m-by-(maximum of max_n-n1 and n1). This dual-multiplier, in the 

single-multiplication mode, can support one multiplication instruction of {max_m, 

max_n} and in the dual-multiplication mode, can support two multiplication 

instructions of {max_m, n1} and {max_m, n1}. Similarly, for the configuration 

corresponding to an edge e representing multiplication instruction of {m1, n1} and 

multiplication instruction of {m2, n2}, we have a dual-multiplication instruction with 
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two individual multipliers of max_m-by-n2 and max_m-by-(maximum of max_n-n2 

and n1). This dual-multiplier can support {max_m, max_n} multiplication instruction 

in the single-multiplication mode and support two multiplication instructions of 

{max_m, n1} and {max_m, n2} in the dual-multiplication mode. Figure 5.6 shows a 

configuration for an edge connecting nodes of {m1, n1} and {m2, n2}. 

 
Figure 5.6: A configuration-determination example. 

For each configuration c, we compute the cost function, Energy(G,c). When c 

corresponds to a node, v, we have 

,),( maxareatimingparallelwvcGEnergy
v

vv ××⎟
⎠

⎞
⎜
⎝

⎛
×= ∑  

where wvv represents execution frequency of instruction v, parallelv is 1 if the 

bit-width of multiplication instruction at node v is smaller than or equal to one single 

multiplier, parallelv is 2 otherwise, timing is the critical timing of the generated 

multiplier and areamax is the area of this dual-multiplier. Similarly, when c 

corresponds to an edge, e, we have 

,),( maxareatimingparallelwecGEnergy
e

ee ××⎟
⎠

⎞
⎜
⎝

⎛
×= ∑  

where wee represents transition frequency on the edge e. If two nodes of an edge can 

be executed in parallel, parallele is 1. Otherwise, parallele is 2. 

 The reason behind this cost function is to minimize the total energy consumption. 

The first two terms represent the execution time required to complete the job with 

achievable maximum parallelism and the third term is the power consumption of each 

clock cycle estimated by the total area. The total number of configurations considered 

is (|e| + |v|). The configuration that results in the minimum cost is selected. 
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5.2.3 The configurable-multiplier formation 

After determining the bit-width of dual-multiplier, we need to determine the low 

power configuration of each multiplier in the dual-multiplier. To decide the 

configuration of each multiplier, a possible execution sequence on each multiplier 

needs to be known. Since a dual multiplier allows instructions to run in parallel, the 

source code is recompiled by the VLIW tool, Trimaran [56], to parallelize the 

executions of multiplication instructions.  

Now, for each multiplier, we have an instruction execution sequence. The next 

step is to build an instruction transition graph described in Section 5.2.2 for each 

individual multiplier according to the generated instruction execution sequence. The 

next step is applying the multilevel partitioning algorithm [57] to the transition graph. 

To determine the low power configuration, total energy cost instead of cut size is used 

as the cost function of the partitioning algorithm. The cost is defined as follows. 

Suppose the reduced graph G is partitioned into π = (G1, G2,…,Gn), where n is the 

number of partitioning. Let GSFi denote the frequency that transitions will bring an 

instruction of Gi to Gi itself and GCFij the transition frequency occurs between 

instructions in Gi and instructions in Gj (where i ≠ j). Hence, GSFi is calculated as the 

sum of transition frequencies (weight) of edges that connect two instructions in Gi, 

and GCFij the summation of transition frequencies of edges that cross two sub-graphs, 

Gi and Gj. The energy cost is defined as 

,)(
,
∑∑ +×+×=

ji
jiijii overheadGareaGCFGareaGSFtEnergy_Cos |  

where Gareai represents the area of the maximum bit-width instruction that can hold 

all instructions in the group i, Gareai|j the area of the configuration multiplier for 

group i and j and overhead the selection multiplexer overhead. The partitioned result 

has two properties. One is that group with smaller area will have a higher self 
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transition. The other is that the cross transition between groups is minimized. Clearly, 

multiplication instructions with high self-transition frequencies, low cross-transition 

frequencies, and low energy are desirable. 

Based on the results produced by partitioning algorithm, low power 

multiplication instructions and low power configurations are generated for each 

multiplier. For each partitioned group, a low power configuration and its 

corresponding low power multiplication instruction is generated. The bit-width of the 

configuration is set to be the maximum bit-width of the multiplication in that group. 

 

5.3 Experimental results 
We have conducted two sets of experiments by using the MediaBench [52] as the 

target application. Our experimental platform used the Trimaran infrastructure [56].  

In the first experiment, we compared the average power consumption and area 

overhead with/without applying the configurable-multiplier formation algorithm in 

Section 5.2.3. In the second experiment, we compared the average power 

consumption, execution time, and area of equal-size partitioning square-multipliers 

design method and our proposed bit-width determination algorithm described in 

Section 5.2. 

We used three representative benchmarks from the MediaBench suite: one for 

video decompression (MPEG2), one for audio codec (G721), and one for image 

compression (EPIC). We obtained the input data of each program from [65][66][67]. 

Based on the profiling result on these programs, a 24-by-24 bit was selected as the 

maximum bit-width. 

After determining the bit-width of multipliers, we generated the Verilog design 

description. The final circuit was generated by the Synopsys Design Compiler with the 

TSMC 0.25um cell library. Throughout the entire experiments, we used Synopsys 
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PrimePower to calculate average power consumption. Both dynamic and leakage 

power are considered. The area and timing data was reported by Design Compiler 

with the report_area and report_timing options. 

 

5.3.1 The configurable-multiplier formation algorithm 

In this experiment, we evaluated our method for the configurable multiplier with 

the configurable-multiplier formation algorithm proposed in Section 5.2.3.  

Figure 5.7 shows the power consumption and area comparisons with different 

configuration numbers and timing constraints on the three benchmarks. Since the 

results of the three benchmarks show the same trend, we only used MPEG2 (Figure 

5.7(a)) as a demonstrated example. The timing constraints ranging from 32.22ns to 

40.27ns (Figure 5.7(a)) were obtained by first synthesizing the 24-by-24 multiplier 

with the fastest timing option, and then based on the fastest timing, gradually relaxing 

the timing constraints from 105% to 125%. For each multiplier, we performed 

experiments on four different numbers of configurations (from one to four 

configurations).  

The results show that the multipliers with two configurations achieved the 

highest power reduction. For example, at the timing constraint of 32.22ns, the 

two-configurations achieved 17.92% power reduction with only 7.46% area overhead. 

Since more configurable control circuits are needed when increasing the number of 

configurations, the result also shows that the total area is proportional to the number 

of configurations. 
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Figure 5.7: Power consumption and area of a configurable multiplier with different 

configurations. 

 

Table 5.2: The multiplication instruction-set generated by the configurable-multiplier 
formation algorithm. 

Bench
Multiplication 
Instruction-Set 

MPEG2 {24, 24} and {13, 13}

G721 {24, 24} and {16, 16}

EPIC {24, 24} and {14, 14}

Table 5.3: Power comparisons of the low power configuration with the bit-width 
being the half of the larger multiplier and that instruction generated by our algorithm. 

Bench 
Half of Large 
Multiplier(W)

Our 
Algorithm(W)

Power 
Improvement 

MPEG2 1.22E-2 1.11E-2 9.02% 
G721 1.27E-2 1.14E-2 10.23% 
EPIC 1.19E-2 1.07E-2 10.08% 
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Table 5.2 shows the generated configurations for the three benchmarks when the 

configuration number is set to two. For these three benchmarks, the best bit-width of 

the smaller configuration is not half of the bit-width of the large multiplier. Take 

MPEG2 as an example, we can find that the bit width of a smaller configuration is 

13-by-13 rather than 12-by-12. Table 5.3 shows the comparison results of the low 

power configuration with the bit-width being the half of the larger multiplier (i.e., a 

multiplier has two configurations, 24-by-24 and 12-by-12) and that instruction 

generated by our algorithm (shown in Table 5.2). The results also show that our 

method achieves 10% improvement. 

 

5.3.2 The multiplication instruction-set formation 

algorithm 

In this experiment, we applied the multiplication instruction-set formation 

algorithm presented in Section 5.2. The number of configurations of the multiplier is 

set to two. Table 5.4 shows the multiplication instruction-sets generated by our 

algorithm. For these three benchmarks, we found that the best bit-width of the smaller 

multiplier in each configurable multiplier selected by our algorithm would not be half 

of maximum bit-width. Moreover, two combined dual multiplier do not form a square 

multiplier. Take MPEG2 as an example, two low power configurations of two 

multipliers are 20-by-13(out of 24-by-13) and 13-by-13(out of 24-by-13). Two dual 

multipliers are 24-by-13 and the combined larger multiplier is 24-by-26 bits. 

Moreover, for the example of EPIC, the bit-widths of the two multipliers are not the 

same (24-by-13 and 24-by-16).  
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Table 5.4: The multiplication instruction-set generated by the multiplication 
instruction-set formation algorithm. 

Bench Multiplication Instruction-Set 

MPEG2 M1 performs {24, 13} and {20, 13},  
M2 performs {24, 13} and {13, 13},  
M3 performs dual-multiplication, and  
M4 performs {24, 26}. 

G721 M1 performs {24, 16} and {14, 16},  
M2 performs {24, 16} and {16, 16},  
M3 performs dual-multiplication, and  
M4 performs {24, 32}. 

EPIC M1 performs {24, 13} and {13, 13}, 
M2 performs {24, 16} and {14, 14},  
M3 performs dual-multiplication, and  
M4 performs {24, 29}. 

 

Tables 5.5, 5.6, and 5.7 show the comparison results of equal bit-width 

partitioning of square multiplier; that is, two 24-by-12 bits multipliers (each multiplier 

has two configurations, 24-by-12 and 12-by-12) and multiplication instructions 

generated by our algorithm (shown in Table 5.4). From Table 5.5 and 5.6, it can be 

seen that power and execution time are improved by using the instructions produced 

by our algorithm. Take MPEG2 as an example. The power reduction achieves 17.91% 

improvement by replacing the equal-size partitioning multiplication instructions with 

the instructions shown in Table 5.4. Although the critical timing of the multipliers 

generated by our method is longer than that of traditional one (32.22ns), the number 

of execution cycles is reduced. As a result, the total execution time using our 

instruction set is shorter than that using the traditional multiplication instruction set. 

For the other two benchmarks, similar results were observed. Tables 5.6 and 5.7 show 

the improvement of execution time and the area overhead. For MPEG2, the execution 

time is 3.51% faster with only 8.02% area overhead. For G721, at the area overhead 

of 28.27%, the execution time is improved to 10.43%.  
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The results demonstrate that our method can improve the power consumption 

and execution time of multiplication instructions with some increase in area overhead. 

The results also show that the bit-width of the smaller multiplier in a 

configurable-multiplier is not necessary to be half of maximum bit-width. Moreover, 

the two multipliers in a dual-multiplier do not necessarily form a square multiplier. 

Table 5.5: Power comparisons on an equal bit-width partitioning of square multiplier 
and our algorithm. 

Bench 
Square 

Multiplier(W)
Our 

Algorithm(W)
Power 

Improvement 
MPEG2 2.01E-2 1.65E-2 17.91% 

G721 2.32E-2 1.89E-2 18.53% 
EPIC 1.84E-2 1.56E-2 15.22% 

Table 5.6: Timing and execution time comparisons on an equal bit-width partitioning 
of square multiplier and our algorithm. 
Critical 

Timing(ns) 
Cycle Count

(Average) 
Execution Time(s) 

Bench
Square 
Mul. 

Our 
Method

Square 
Mul.

Our 
Method

Square 
Mul.

Our 
Method

Imp. 
(%) 

MPEG2 32.22 33.51 8.62E6 7.99E6 277.74 267.99 3.51 
G721 32.22 34.14 4.85E6 4.10E6 156.27 139.97 10.43 
EPIC 32.22 33.72 2.38E6 2.11E6 76.68 71.15 7.21 

Table 5.7: Area comparisons on an equal bit-width partitioning of square multiplier 
and our algorithm. 

Bench 
Square 

Multiplier
Our 

Algorithm
Area 

Overhead
MPEG2 188527 203646 8.02% 

G721 188527 241829 28.27% 
EPIC 188527 222800 18.18% 
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