

 41

CHAPTER 4 DECOMPOSITION OF

INSTRUCTION DECODER FOR LOW

POWER DESIGNS

Most previous studies [18-26] focused on the power reduction of fetching

instructions. Only a few studies focused on power reduction for instruction decoding

and control signal generation. A two sub-decoders structure [27] was proposed for the

power minimization on instruction decoders. In [28], two types of instruction

decoders were designed for Pentium Pro: one for simple instructions and the other for

complex instructions. This structure was proposed for performance improvement

rather than power minimization. The studies have also shown that the instruction

decoder can consume as much as 18% of the system power in StrongArm [4] and 14%

in Pentium Pro [24]. Thus, this paper focuses on the reduction of instruction decoder

power usage.

In this chapter, we present two techniques for decomposing instruction decoders

to minimize power consumption. First, based on the irregular execution frequency of

instructions, we propose to decompose an instruction decoder into two or more

coupling sub-decoders, a process called horizontal decomposition. With this approach,

only one small sub-decoder is activated at a time. Second, based on a pipelined

decoder structure, we partition the decoder into two pipelined stages, a process called

vertical decomposition. The first stage identifies instruction types, while the second

stage generates control signals. With this approach, only the second stage is activated

in the subsequent execution stages.

 42

4.1. Horizontal decomposition
The instruction-set of a processor consists of many types of instructions,

including arithmetic/logic, data transfer, decision-making, sequencing, and operations

that handle exceptions. The execution occurrences of instructions in various

application programs may vary in a wide range [43]. For example, exception-handling

instructions are executed much less frequently compared to

arithmetic/logic-instructions. Moreover, for each specific type of application, the

programs exhibit similar behaviors and instruction patterns. For example, in most

signal-processing programs, large percentages of the execution time are consumed in

loops. Hence, the instructions within loops have higher execution frequencies than

those outside of the loops.

Figure 4.1: The instruction execution-frequency examples of (a) the Powerstone and

(b) the MediaBench.

 43

Figure 4.1 illustrates the profiling of the instruction execution-frequency by

executing the benchmark set of Motorola’s Powerstone [44], which consists of a set of

benchmark programs targeted to various applications, including compression,

quicksort, and automotive control codes. The set is compiled and profiled on the

emulator of SimIt ARM v1.0 [45]. Figure 4.1(a) shows that the three instructions in the

MOV class are executed very frequently, with a 22% probability. On the other hand,

some instructions are never executed. Figure 4.1(b) shows the profiling result of

another benchmark set: the MediaBench. Although the instruction distributions are

different from those distributions of Powerstone, the characterization of instruction

execution frequency is the same. That is, the MOV and LDR/STR categories are the

most frequently executed instruction types.

These observations indicate that active instructions occur only within a sub-set of

all instructions. Intuitively, instruction-decoding circuit can be decomposed into two

sub-circuits, one for the three MOV instructions and the other for the rest of the

instructions. In this case, one instruction-decoding sub-circuit can be turned off while

executing the other one and hence reduce the overall power dissipation. This

motivates us to develop a decomposed architecture for low-power decoders.

4.1.1 The decomposition architecture

As discussed in the previous section, active instructions occur only within a

subset of all instructions. Based on this observation, we propose a

decomposed-decoding method [46] to decompose an instruction decoder into a

number of coupling sub-decoders such that only a small decoder will be activated at

any time. Figure 4.2 shows that the decoder is decomposed into two coupled

sub-decoders, Sub-Decoder0 and Sub-Decoder1.

 44

The control logic to turn on/off sub-decoders consists of three parts:

Activate-Control, input AND-ORs, and output ORs. The operation of the decomposed

Control Logic is described as follows. Activate-Control determines which sub-decoder

will be activated by decoding the input instruction. There are two output signals,

Control0 and Control1. When Control0 = 0, Sub-Decoder0 is on and Sub-Decoder1 is

off. In contrast when Control1 = 0, Sub-Decoder1 is on and Sub-Decoder0 is off.

Turning off Sub-Decoder0 (Sub-Decoder1) is controlled by the AND and OR gates in

front of the sub-circuits. When the control signal Control0 (Control1) is 1, it inhibits

the propagation of other inputs to an OR gate and the inverted value inhibits inputs to

an AND gate. The outputs of all OR gates and AND gates will be 1s and 0s,

respectively. The vector formed by these 1s and 0s is called the turning-off vector. If

the sub-circuit remains off for the subsequent instruction, the turning-off vector will

remain the same and there will be no signal transition and hence, no power

consumption. As for the outputs of Sub-Decoders, the output OR gates are used to

select the outputs of the activated sub-circuit. When Sub-Decoder0 (Sub-Decoder1) is

off, the output is set to all 0s for the turning-off vector. Since 0 is a non-controlling

value for OR gates, the outputs are determined by Sub-Decoder1 (Sub-Decoder0).

Note that in using this decomposition architecture, when one sub-decoder is

turned off and relinquishes the control to the other sub-decoder, both sub-decoders

will be activated and hence consume power for one instruction execution: The

sub-decoder that relinquishes the control will set its inputs to 0 in one clock cycle and

in the next clock cycle, the inputs remain 0 to prevent the circuit from transiting in

order to reduce dynamic power consumption.

Next, the AND-OR gates (turning-off vector) is constructed in front of the

Sub-Decoders to inhibit the propagation of inputs by selecting a minterm that is don’t

care to the sub-circuit. For example, for a four-input sub-circuit with 1101 as don’t

 45

care, we construct OR-OR-AND-OR gates in front of the sub-circuit. For this input

combination of 1101(turning-off vector), we assign all 0s to the output of the

sub-decoder. Since the decoder is decomposed into more than one sub-decoder, the

care minterm of other sub-decoder is don’t care for this sub-decoder. Thus, such a

‘don’t care’ minterm can always be found.

Figure 4.2: The decomposed-decoder architecture.

The issues remaining to be solved are (1) how to partition instructions so that the

instruction decoding has a high frequency of execution in a small sub-circuit and the

transition among sub-decoders is infrequent and (2) how to take the overhead of

Activate Control for the instruction decoder (decoder that determines the active

Sub-Decoders) into consideration when performing the decomposition. We explain

how to solve the two issues in the next sub-section.

4.1.2 The decomposition algorithm

The behavior of an application-specific system design, which is unchanging, is

usually known. Hence, it is feasible to analyze the application programs and utilize

 46

their characteristics to further optimize the systems. First, we collect a set of

instruction-execution sequences from various application programs. Then, we model

the execution of instructions as a graph and transform the instruction decomposition

into a graph-partitioning problem. The goal is to find a partitioned graph solution

given a graph and the number of partitions such that a pre-defined power cost function

is minimized.

To apply the graph partition algorithm, we model the instruction-execution

sequences as a weighted graph G = (V, WV, E, WE), where V is a node set, WV the

weights on the nodes, E an edge set, and WE the weights on the edges. A node iv in V

represents one instruction IV of the instruction set, the weight on the node iv

represents the execution frequency of the instruction IV, an edge between node ia and

node ib represents that instruction IA is executed before instruction IB or instruction

IB is executed before instruction IA, respectively, and the weight on the edge

represents the transition frequency between IA and IB.

Figure 4.3 shows an example of constructing the weighted graph from an

execution sequence. In Figure 4.3(a), there are five types of instructions in the

program sequence. Hence, there are five nodes in the graph as shown in Figure 4.3 (b).

The numbers next to the nodes are the execution frequencies of the instructions. For

example, mov is executed 5 times, as marked by dots in Figure 4.3(a), and there are 15

instructions in total. As a result, the execution frequency of node mov is 5/15. The

edges between nodes and the weights on the edges are constructed by tracing the

instruction execution sequence. For instance, in Figure 4.3(a), the three arrows show

that the mov is executed before mul twice, mul is executed before mov once, and the

total number of transitions is 14. Hence, there is an edge between nodes mov and mul

and the weight of the edge is 3/14.

 47

Figure 4.3: A transition graph example.

After constructing an instruction-execution graph, we apply a partitioning

algorithm to partition the graph. The cost function for our partitioning algorithm is

based on the power estimation between partitioned groups, which is defined as

follows. Suppose the original instruction-execution graph G containing S instructions

is partitioned into π = (G1, G2,…,Gn) sub-graphs where sub-graphs Gi has Si

instructions. Let SFi denotes the transition frequency of instructions in Gi transiting to

Gi itself, and CFij the frequency of transition between instructions in Gi and

instructions in Gj (where i ≠ j). Hence, SFi is calculated as the sum of transition

frequencies (weights) of edges that connect two instructions in Gi, and CFij is

calculated as the summation of transition frequencies of edges that cross two

sub-graphs, Gi and Gj. For example, let the transition graph shown in Figure 4.3(b) be

partitioned into two sub-decoders: Sub-Decoder0 and Sub-Decoder1 and

Sub-Decoder0 decodes instructions, mov, ldr, and b and Sub-Decoder1 decodes

instructions, mul and cmp. Then, SF1 is 6/14, SF2 4/14, and CF12 4/14.

Next, power estimation of a sub-graph Gi, poweri, is estimated from the result of

report_power after synthesizing the sub-graph with the Synopsys Design Compiler

[47]. Finally, the total power consumption is estimated as:

 48

∑∑ ++×+×=
= ji

jiij

n

1i
ii overheadpowerpowerCFpowerSFG

,

)()(),(ππPower_Cost .

The first term represents the estimated power consumption for each sub-graph. The

second term represents the estimated power consumed during cross transition. When

cross transition happens, two involved sub-graphs are activated and hence both

consume power. The third term, overhead(π), is the power overhead of activate logic

and input/output control logic. It is also estimated by the report_power. Take the

circuit shown in Figure 4.2 as an example. The overhead includes activate control (it

is a one-to-two decoder if the number of sub-decoders is 2), the AND/OR gates in

front of Sub-Decoder0 and Sub-Decoder1, and the OR gates at the outputs of

Sub-Decoder0 and Sub-Decoder1.

In our implementation, we use a three-step algorithm [46] to partition the

transition graph into n groups, where n is the desired partition number. First, the

algorithm clusters graph nodes into c clusters by a random walk procedure. Then, the

n-1 clusters with the largest steady instruction frequencies are selected as the seeds of

n-1 groups, G1, G2,…, Gn-1. The remaining clusters, Cn, Cn+1, … , Cc, form the last

group, Gn. Third, a cluster in Gn is iteratively selected for a possible movement into

one of the other groups G1, G2,…, Gn-1, according to the estimated power consumption

based on Power_Cost(G,π). In each iteration, a cluster Ck in Gn is selected. Power

consumption is evaluated for all the possible movements of Ck into one of G1, G2,…,

Gn-1, as well as for the possibility of leaving Ck in Gn. The move with the lowest

power cost will be selected. The reason behind this heuristic is that when a cluster is

moved into a group, it increases the steady instruction frequency of the group and

changes the transition frequency of the related groups. Partition results with high

steady-instruction frequencies, low transition frequencies, and low power are

desirable.

 49

4.2. Vertical decomposition
The instruction decoder for pipelined control-signal generation also affects the

power consumption of processors. In this section, we propose a vertical

decomposition method to reduce power consumption. First, we review two basic

pipelined decode structures. Then, we present our decomposed decoding structure for

low power designs. Finally, we present an algorithm for intermediate code assignment

to reduce the area cost incurred by the proposed decomposition structure.

Figure 4.4: Centralized pipelined control-signal generation.

Figure 4.5: Distributed pipelined control-signal generation.

 50

4.2.1 Overview of control-signal generation for a

pipelined structure

There are two commonly-used approaches for generating control signals for a

pipelined structure. The first [49] decodes all control signals once for all the following

stages in the ID stage and propagate the control signals down to the pipelined stages,

as shown in Figure 4.4 (centralized control-signal decoder). Rather than propagating

control signals down to the pipelined stages, the second approach [50] decodes

instructions when they are needed at each stage (distributed control-signal decoder),

as shown in Figure 4.5. While neither of these approaches is a perfect solution, each

has its benefits. For example, the former approach has the advantage of single

decoders at the ID stage (suitable for designs with less control signals) while the latter

approach requires no pipelined registers to store control signals (suitable for designs

with large numbers of control signals). In this thesis, we will use the second approach.

REX RM RWB
Control
Logic
(PEX)

IF/ID ID/EX EX/MEM MEM/WB

Control
Logic
(PM)

IM IM

Control
Logic

(PWB)

Instr-
Decoder

Figure 4.6: The proposed two-stage control-signal decoding structure.

 51

4.2.2 The structure for two-stage pipelined

control-signal generation

One disadvantage of a distributed control-signal decoder is that it requires

identifying instruction types and generating control signals. To save the logic for

identifying instruction types, we propose a two-stage decoding structure where

identifying instruction types is performed only once in the decoding stage and

generating control signals is performed at all stages. At the decoding stage of the

pipeline, in the first stage, an instruction type is identified and an intermediate code is

introduced to represent the specific instruction. In the second stage, this intermediate

code is decoded to generate the control signals for the EX stage. This intermediate

code generated at the first stage will be passed along the pipelined stages and used to

produce control signals in time for the remaining stages.

Figure 4.6 shows the block diagram of our proposed pipelined instruction

decoder. In the first stage, an instruction is decoded by the Instr-Decoder and the

output is an intermediate code. In the second stage, the generated intermediate code is

decoded by the Control Logic to generate control signals for the next execution stages.

The intermediate code, rather than the long instruction, is also stored in the

Intermediate Code Registers (IM) that will be passed along the pipelined stages.

The generation of intermediate code may incur some control-circuit overhead for

instruction identification and control signal generation, depending on how

intermediate codes are assigned.

4.2.3 The intermediate-code assignment algorithm

In this section, we present an intermediate code assignment algorithm to reduce

the overhead. The goal of the assignment is to simplify the decoder for the generation

 52

of intermediate codes (Instr-Decoder) and to simplify the decoders (PEX, PRM, and

PWB) for the generation of control signals. To solve the problem, we model the

intermediate-code assignment as a state assignment of Finite State Machines (FSMs).

We can use the many existing state assignment tools for FSMs to solve our

intermediate-code assignment. In this thesis, we use JEDI [51] to perform the state

assignment.

In an FSM, a state-transition table is used to represent the transitions among

states. A row in the table corresponds to a transition. There are four columns in a row:

input condition, present state, next state, and output, where input condition and output

are binary codes, and present state and next state are symbolic representations. A

state-assignment tool will determine the state assignment of an FSM based on the

transition table for the overall gain in logic reduction.

Now, we model our intermediate code assignment problem as an FSM transition

problem. The transition table construction of an FSM considers two issues: (1)

minimizing the logic of Instr-Decoders for generating intermediate codes and (2)

minimizing the logic of the sub-decoders for generating control signals. To construct

the first part of the transition table, we place intermediate codes of instructions with

similar instruction op-codes close to each other. First, a don’t care state, DC is created.

Then, for each instruction, IX, a transition from state DC to IX under the input

condition specified by the op-code of instruction IX is created, and all 0s are produced

as the transition-outputs. Similarly, to construct the second part of the transition table,

we place intermediate codes of instructions generating similar control signals close to

each other. To this end, for each instruction IX, under any input combination, a

transition from IX to itself is constructed and control output-signals of the instructions

are generated as transition-outputs.

 53

For example, Figure 4.7(a) shows three instructions, IA, IB, and IC, their

op-codes, and the generated control signals. Figure 4.7(b) illustrates the state

transition table constructed from Figure 4.7(a). The upper part focuses on assigning

codes to instructions with similar op-codes (the generation of intermediate code) and

the lower part focuses on assigning codes to instructions generating similar control

signals. After constructing the state transition table, a state assignment tool is invoked

to perform the code assignment.

Instruction Op-code Control Signals
IA 011 0101
IB 001 0101
IC 100 1010

(a)

Input
Present
State

Next
State

Output

011 DC IA 0000
001 DC IB 0000
100 DC IC 0000
xxx IA IA 0101
xxx IB IB 0101
xxx IC IC 1010

(b)
Figure 4.7: (a) Three instructions with their op-codes and output signals, (b) the
instruction state transition table (DC: don’t care state and x: input don’t care).

The quality of an intermediate code assignment also depends on the selected

code length. A code length can be a minimum, maximum, or anything in between. Our

selection of intermediate codes is determined as follows. From the minimum bit-width

that represents all the instructions in the decoder to the maximum bit-width, the

bit-width of the original op-code, we generate a two-stage decoder using JEDI and

estimate its power with the Synopsys Design Compiler. The two-stage decoder using

the smallest amount of power is selected as our solution.

 54

The proposed horizontal and vertical decompositions can be applied to the

design of decoders in various processors. The implementation depends on the

Instructions Set Architecture (ISA) and pipelined structure of a processor. ISA designs

are categorized into two groups: reduced instruction set computer (RISC) and

complex instruction set computer (CISC). For RISC-type ISAs, decoding instructions

usually takes one clock cycle (because of simple instruction functions), whereas for

the CISC-type ISAs, decoding instructions will take one or more clock cycles because

of the complex instruction type. As to the implementation of a pipelined structure,

besides the standard pipelined structure, there is a Superscalar (or VLIW) pipeline for

high-performance processors where processors fetch and dispatch more than one

instruction at a time. Combining these two design options, we have four types of

decoders. The first type is a standard RISC pipeline, e.g., ARM and MIPS processors.

The second is a Superscalar RISC pipeline, e.g., Alpha, PA-RISC, and MIPS

R8000/R10000, and the third is a standard CISC pipeline, e.g., Intel 486 processors.

The final type is a Superscalar CISC pipeline, e.g., Intel Pentium processors.

In the standard RISC pipelined structure, the proposed horizontal and vertical

decompositions can be directly applied to the structure. In the Superscalar RISC

pipeline, the horizontal decomposition can be applied to each control signal decoder

in the pipeline. The vertical decomposition can be applied to the instruction decoders

in the decoding stage that identifies instruction type and passes the information with

the pipelined stages. In the standard CISC pipeline, the instruction decoder decodes a

complex instruction into micro-operations (u-ops) and then dispatches each u-op into

the following pipelines. As a result, the pipelined stages after the decoding stage are

basically the same as the RISC pipelines. To apply the horizontal decomposition, the

instruction decoders can be decomposed according to the u-op profiling results. The

vertical decomposition is applied to the decoding stage for generating u-ops and

 55

passing the u-op information along the pipeline. Finally, in the Superscalar CISC

pipeline, the horizontal decomposition of each decoder in the pipeline can be applied

depending on the u-op profiling. The vertical decomposition can also be applied to

each decoder in the decoding stage and passing the u-op information along the

pipelined stages.

4.3 Experimental results
We have conducted three sets of experiments. In the first experiment, we

compare the power consumption and area using the un-decomposed decoder (Figure

4.5) to that using the horizontal decomposed decoder presented in Section 4.1. Next,

in the second experiment, we compare the power consumption and area using the

un-decomposed decoder (Figure 4.5) to that using the vertical decomposed decoder

presented in Section 4.2. Finally, in the third experiment, we examine the power

consumption and area overheads by applying both horizontal and vertical

decomposition techniques to the decoder. In this experiment, we used the Powerstone

as our benchmarking programs.

The benchmarking circuits are described in Verilog. The final designs were

generated by the Synopsys Design Compiler using the TSMC 0.25um cell library. For

all experiments, we used Synopsys PrimePower to compute the power consumption

(both dynamic and static power consumption). The output capacitances of the

instruction decoder and processor are set to the input capacitance of D flip-flop (0.06

pF) and output PAD (0.10 pF), respectively. The goal of optimization is area. The

timing and area data were reported by Design Compiler with the report_timing and

report_area options.

We used ARMSDT v2.5 to compile each benchmark program into a machine code.

The generated machine code and our ARM Verilog code were fed into PrimePower for

 56

calculating power consumption. Table 4.1 shows the power consumption of the

un-decomposed instruction decoder and processor. In this table, DEX, DM, and DWB

are the results for the instruction decoders in the ID, EX, and MEM stages,

respectively. DEX, DM, and DWB decode control signals for the first execution stage,

execution stages (for multiple execution-stage instructions), memory access, and

write-back, respectively. IR is the instruction register for storing instruction

information (op-code), and PE is the processor. The results show that the instruction

decoder (DEX, DM, DWB, and IR) consumes about 9.83% of the total processor

power consumption. Table 4.2 shows the timing and area of the un-decomposed

decoder.

 57

Table 4.1: Power consumption of the un-decomposed decoder and processor.

Benchmark DEX(W) DM(W) DWB(W) IR(W) PE(W)
adpcm 1.29E-04 2.29E-04 1.53E-04 7.83E-05 5.07E-03
auto2 9.17E-05 1.63E-04 1.09E-04 8.68E-05 5.77E-03
bcnt 1.16E-04 2.08E-04 1.38E-04 9.43E-05 5.06E-03
bilinear2 1.17E-04 2.16E-04 1.41E-04 9.46E-05 5.33E-03
bilv 1.17E-04 2.08E-04 1.39E-04 8.57E-05 4.83E-03
binary 1.04E-04 1.75E-04 1.23E-04 7.96E-05 4.98E-03
blit 1.08E-04 2.27E-04 1.35E-04 9.42E-05 5.97E-03
brev 6.85E-05 1.22E-04 8.12E-05 7.40E-05 5.16E-03
compress 9.70E-05 1.74E-04 1.07E-04 7.06E-05 6.25E-03
crc 1.03E-04 1.83E-04 1.22E-04 8.91E-05 5.15E-03
des 9.10E-05 1.79E-04 1.20E-04 8.80E-05 5.15E-03
dhry 1.04E-04 1.85E-04 1.24E-04 7.85E-05 5.52E-03
engine 9.73E-05 1.73E-04 1.16E-04 8.18E-05 5.06E-03
fir_int 9.80E-05 1.53E-04 1.08E-04 4.92E-05 5.10E-03
g3fax 1.06E-04 2.12E-04 1.42E-04 9.07E-05 5.57E-03
g721 1.36E-04 2.34E-04 1.62E-04 8.36E-05 5.39E-03
insert 1.06E-04 1.90E-04 1.26E-04 8.67E-05 5.66E-03
jpeg 1.12E-04 2.17E-04 1.45E-04 8.75E-05 5.47E-03
ludcmp 9.83E-05 1.75E-04 1.17E-04 8.43E-05 4.89E-03
mattst 1.50E-04 2.68E-04 1.58E-04 7.62E-05 5.10E-03
pocsag 1.39E-04 2.28E-04 1.65E-04 9.66E-05 5.76E-03
select 2.81E-06 5.18E-06 3.45E-06 4.79E-05 2.35E-03
summin 1.23E-04 2.19E-04 1.46E-04 1.11E-04 6.07E-03
ucbqsort 1.10E-04 1.87E-04 1.31E-04 6.20E-05 4.39E-03
v42 1.18E-04 2.11E-04 1.41E-04 8.97E-05 1.95E-03
whetstone 9.80E-05 1.29E-04 1.03E-04 8.09E-05 5.10E-03
Average 1.05E-04 1.87E-04 1.25E-04 8.24E-05 5.08E-03

Table 4.2: Timing and area information of the un-decomposed decoder and processor.

 DEX DM DWB IR PE

Area 5418 16332 9936 2841 307054

Timing(ns) 24.62 32.87 30.93 0.76 50

 58

0

1.E-04

2.E-04

3.E-04

4.E-04

5.E-04

Original 2 way 3 way 4 way 5 way

Decoder Overhead

Po
w

er
(W

)

30000

32000

34000

36000

38000

40000

A
re

a

(a)

(b)

Original 2 way 3 way 4 way 5 way

0

10

20

30

40

Ti
m

in
g(

ns
)

(c)

Original 2 way 3 way 4 way 5 way

DMDEX overheadDWB

Figure 4.8: The comparisons of (a) power consumption, (b) area, and (c) timing for

multi-way partitions.

4.3.1 The horizontal decomposition

In the first experiment, we evaluated the power reduction, area overhead, and

timing reduction of our proposed decomposed instruction decoding method described

in Section 4.1. The instruction transition graph is constructed from the profiling

results of the Powerstone benchmarks.

Figure 4.8 shows the average power consumption, area, and timing comparisons

both on instruction decoders without decomposition and decoders with different

 59

number of partitions. Figure 4.8(a) shows the power consumption, which is the sum of

DEX, DM, and DWB. The results show that when the decoder is partitioned into more

than two partitions, the overhead of the turning-off control circuit consumes more

power. As a result, the two-way partitioning achieves the best power reduction

(23.14% power reduction).

Figure 4.8(b) shows the results of area, which is the sum of DEX, DM, and DWB.

The results show that the area of the partitioned circuit is proportional to the number

of partitions. Figure 4.8(c) shows the timing comparisons. The results show that the

timing of the decomposed decoder is reduced because the original decoder is

decomposed into several smaller and parallel decoders. The results also show that

timing is no longer reduced when the number of partitions becomes larger than four.

In summary, Figure 4.8 shows that when the partition number is two, our

proposed instruction-decoding method achieves on an average of 23.14% in power

reduction as compared to the un-decomposed instruction decoder. The results also

show that the critical timing of decomposed decoder (DM) is 6.53% shorter than the

original decoder and the area overhead of the decomposed decoding circuits is 8.93%

larger than the original decoding circuit. The results demonstrate that the horizontal

decoding technique can improve the power consumption and critical timing of

instruction decoders with small area overhead.

As to the running time of the partitioning program, we have conducted an

experiment to record the number of iterations tried. Table 4.3 shows the results. From

this table, we can see that the number of iterations is reasonably small.

Table 4.3: The iteration number of the partitioning algorithm.

 2 way 3 way 4 way 5 way

Iteration number 1378 2652 3675 4704

 60

4.3.2 The vertical decomposition

 In this experiment, we re-designed the instruction decoder (Figure 4.5) into a

two-stage decoder (Figure 4.6) where the intermediate codes were assigned using the

algorithm described in Section 4.2.3. The option we used for generating intermediate

code was jedi –e r. Using the option and the FSM transition model, we generated

intermediate codes with different bit-widths ranging from eight (the smallest bit-width

to represent all 142 instructions) to sixteen (the original op-code bit-width). For each

bit-width, we generated a two-stage decoder using the timing of the un-decomposed

decoder shown in Table 4.2 as the timing constraint. Since the smallest estimated

power is the bit-width of ten, we used ten bits as our intermediate code length to

generate a two-stage instruction decoder.

 Figure 4.9 shows the average power consumption, area, and timing comparisons

of one- and two-stage instruction decoding. In the figure, Instr-Decoder, PEX, PM,

PWB, and IM are the sub-decoders shown in Figure 4.6. Figures 4.9(a) and 4.9(b)

show that the power consumption and area of the ID stage are increased. This happens

because the intermediate code is synthesized under the timing constraint of the

un-decomposed decoder (24.62 ns, Table 4.2). On the other hand, the power

consumption, area, and timing of PM and PWB are reduced, due to the removal of the

instruction identifying circuit. The pipelined registers for propagating instruction

information are also reduced, because the intermediated code (ten bits) is shorter than

the original op-code (sixteen bits). As a result, the two-stage decoding structure

achieves 14.73% in power reduction and 5.14% in area reduction.

 61

0

2.0E-04

DEX DM DWB

0

5000

10000

15000

20000

Instr-Decoder
PEX

PM PWB

(a)

(b)

0

10

20

30

40

(c)

IMIR

1.5E-04

1.0E-04

0.5E-04

DEX DM DWBInstr-Decoder
PEX

PM PWB IR IM

DEX DM DWBInstr-Decoder
PEX

PM PWB IR IM

Figure 4.9: The comparisons of (a) power consumption, (b) area, and (c) timing for

one- and two-stage instruction decoding.

4.3.3 Combining horizontal and vertical

decompositions

 In this experiment, we apply both techniques (horizontal and vertical

decomposition) to the pipelined instruction decoder. First, we applied the two-way

horizontal decomposition. Then, for each sub-decoder, we applied the vertical

decomposition. For the two sub-decoders, the bit-widths of the intermediate codes

were seven and ten, respectively. As a result, he bit width of IM is ten.

 Figure 4.10 compares the average power consumption, area, and timing of the

original decoder with decoders containing horizontal and vertical decompositions.

Figure 4.10(a) shows that power consumption reduces by up to 34.28% by applying

both techniques to the original instruction decoder. The results also show that the area

 62

overhead of the decomposed decoding circuits is 7.85% larger than that of the original

decoding circuit, while the critical timing of the decomposed decoder (DM) is 11.36%

shorter than the original one.

0

2.0E-04

Po
w

er
(W

)

0

5000

10000

15000

20000

A
re

a

(a)

(b)

0

10

20

30

40

Ti
m

in
g(

ns
)

(c)

1.5E-04

1.0E-04

0.5E-04

DEX DM DWBInstr-Decoder
PEX

PM PWB IMIR

DEX DM DWBInstr-Decoder
PEX

PM PWB IMIR

DEX DM DWBInstr-Decoder
PEX

PM PWB IMIR

Figure 4.10: The comparisons of (a) power consumption, (b) area, and (c) timing by

applying both horizontal and vertical decompositions.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

