
國 立 清 華 大 學

碩 士 論 文

考量電源消耗之多位元正反器合成

Synthesis of Multi-bit Flip-flops for Clock Power
Reduction

系 所 別 ： 資訊工程學系 組別：

學號姓名 ： 9862524 張安琪 (An-Chi Chang)

指導教授 ： 黃婷婷 博士 (Dr. TingTing Hwang)

中華民國一百年七月

Synthesis of Multi-bit Flip-flops for Clock
Power Reduction

Student: An-Chi Chang
Advisor: TingTing Hwang

Department of Computer Science
National Tsing Hua University

HsinChu, Taiwan 300

July, 2011

中文摘要

 電力的消耗長期以來一直是現代積體電路設計的重要考量。這篇論文中，我

們提出對於時脈樹之電力優化技巧，使用多位元正反器及降低總線路長度這兩者

來達成目標。我們經由合併多個單位元正反器成為多位元觸發器，有效降低正反

器的電力消耗；除此之外，透過謹慎的選擇正反器合併組合與合併後的擺放位置，

總線路長度在合併後也能大幅降低。兩者合併的效用能有效大幅減少時脈樹的電

力消耗。

Abstract

Power optimization has always been an important issue for modern IC design.

In this paper, we present a power optimization technique for clock tree by

applying multi-bit flip-flops and reducing total wire length. Through merging

flip-flops into MBFFs, we effectively reduce power consumption caused by

clock buffers. Moreover, by judiciously merging and placing the MBFFs, the

total wire length is also significantly reduced. The combined effect of both

techniques leads to a strong reduction in total power consumption of the

clock network.

Contents

1 Introduction 1

2 Previous Work and Motivation 4

3 Problem Formulation 7

3.1 Input . 7

3.2 Objective Function . 8

3.3 Constraint . 9

3.3.1 Non-Overlap Constraint 9

3.3.2 Placement Density Constraint 10

3.3.3 Timing Slack Constraint 11

4 Synthesis of MBFF 13

4.1 Phase Transition . 16

4.1.1 RNDC . 16

4.1.2 DNDC and DDC . 16

4.1.3 CCR . 17

4.2 Select Window . 17

4.2.1 Fixed Window Size . 18

i

4.2.2 Dynamic Window Size 18

4.3 Compute Target FF Set . 19

4.3.1 Non-Disruptive Collection 19

4.3.2 Disruptive Collection 20

4.4 Generating MBFF . 22

4.4.1 Valid Timing Slack Region (VTSR) Computation . . . 22

4.4.2 Valid Timing Slack Clique (VTSC) Generation 24

4.4.3 Clique Selection . 31

4.4.4 Decide Location of MBFF 31

5 Experimental Result 33

5.1 Pruning and Wire Length Estimation 34

5.2 Power, Wire Length and Run Time 36

6 Conclusion 39

ii

List of Figures

1.1 An Example of merging two 1-bit FFs into one 2-bit FF . . . 2

2.1 As the distribution of FFs becomes sparser, a larger window

size is preferred. 5

2.2 (a) Given flip-flops. (b) Clustering status in [2]. (c) A better

solution. 6

3.1 An Example of Density Constraint 10

3.2 After merging f1 and f2 into f3, the additional wire length

caused timing violation on net n3 and n4. 12

4.1 Four phases of our optimization process: RNDC, DNDC, DDC

and CCR and the transitions between them. 14

4.2 Window-Based Clustering . 15

4.3 Possible composition of a merged MBFF: the 4-bit flip-flop f 4
1

is composed two 1-bit flip-flops f 1
1 and f 1

2 , and a 2-bit flip-flop

f 2
1 . 20

4.4 Decomposition the 4-bit flip-flop f 4
1 : (a) Original clustering.

(b) Target set after disruptive collection. (c) A better solution. 21

iii

4.5 The V TSR for f1 is the intersection of the V TSRs of the pins

connected to the f1 . 23

4.6 f1 and f2 are to FFs be merged. If the intersection of V TSRs

of f1 and f2 is a null set, f1 and f2 cannot be merged together. 25

4.7 The merged MBFF must must be placed within V TSRf1f2f3f4 ,

which is the intersection of V TSRs of f1, f2, f3 and f4. 26

4.8 (a) intersection graph of six FFs. (b) enumeration of corre-

sponding cliques of (a). 27

4.9 (a) intersection graph of six FFs. (b) enumeration with prun-

ing of corresponding cliques of (a). 28

4.10 An Example of inner point (IP), meso-point (MP) and outer

point (OP). 30

5.1 Estimated wire length and actual minimum wire length for

case c1 . 36

iv

List of Tables

1.1 Industrial Test Cases . 3

5.1 Industrial Test Cases . 34

5.2 Area and Power of Industrial Test Cases 34

5.3 Number of Cliques Enumerated of Each Case 35

5.4 Error Percentage of Wire Length Estimation of Each Case . . 35

5.5 Number of Each Type of FFs and Total Wire Length 37

5.6 Comparisons of Ratio of Power and HPWL After Clustering . 37

5.7 Normalized Power of Each Cell (to per Unit Wire) 38

5.8 Combined Power Consumption of FFs and Wires 38

1

Chapter 1

Introduction

In modern VLSI design, power has become a critical issue. With limited

power/thermal budget, as well as the increasing demand of reducing power

dissipation, minimizing power consumption has become one of the most im-

portant objectives.

Power consumption of an IC chip can be categorized into two types: dy-

namic and static power consumption. Clock tree is one of the major causes

of both types of power dissipation; it may consume as much as 40% of the

total power [1] of the IC due to its frequent switching activity; clock tree is

also the major consumers of leakage power because of the large number of

buffers it contains. A lot of work related to reducing power consumption of

clock tree has been proposed. Some address this problem when constructing

clock network, reducing power consumption by planning a suitable topology

and inserting buffer wisely [11]. Creating multiple supply voltage [3] is an-

other approach. Donno et al. [9] and Mahmoodi et al. [8] use clock gating

to resolve this problem. Energy recovery is also a feasible approach adopted

in [8]. Lu et al. [6] and Lou et al. [10] focus on minimizing clock networks

1

Sharing clk signal

Figure 1.1: An Example of merging two 1-bit FFs into one 2-bit FF

through replacing non-timing-critical cells with their high Vt counter parts.

Hou [5], Kretchmer [7] and Chang [2] took another direction: applying

multi-bit flip-flop (MBFF), or register banks. MBFF is one of the most effec-

tive methodologies in saving both chip area and power consumption. Hou [5]

proposed an incremental clock tree placement flow applying MBFF. Kretch-

mer [7] introduced a design methodology to create the models of multi-bit

registers in the cell library to be inferred by logic synthesis tools. Chang [2]

incrementally applied MBFFs at post-placement stage.

Figure 1.1 shows an example of merging two 1-bit flip-flops into one 2-

bit flip-flop. Originally each flip-flop requires two inverters to generate clock

signal respectively. However, due to the manufacturing ground rules, in-

verters in flip-flops tend to be oversized; as the process technology advances

into smaller geometry nodes like 65nm and beyond, even the minimum-sized

inverter-chain can still drive more than one flip-flop. We can merge multiple

2

Table 1.1: Industrial Test Cases

Bit Number Power per Bit Area per Bit

1 100 100
2 86 96
4 78 71.25

flip-flops into a multi-bit flip-flop; through sharing of the clock signal, the

number of inverters required, as well as the power consumption and area

occupied can be significantly reduced; Table 1.1 shows comparisons of power

consumption and area of flip-flops with different bit numbers. Also, through

choosing proper clusters and placement location, the wire length can also be

reduced.

We address the problem of applying multi-bit flip-flops when perform-

ing synthesis of clock network. We propose a novel power optimization

method of clock tree by applying MBFF with a clique-based approach. The

cluster problem of flip-flops as formulated into clique-finding and maximum

independent-set problems. Through iterative window-based optimization,

the flip-flops are gradually clustered into MBFFs, reducing the total power

consumption and area of the clock tree; the total wire length is also taken

into consideration to avoid additional driving load and further reduce power

consumption caused by long metal wires.

The remaining chapters of this paper is organized as follows: Chapter 2

gives the motivation of our approach; the weakness of previous work is ana-

lyzed. Chapter 3 describes the problem formulation. Chapter 4 details our

proposed algorithm. Chapter 5 presents the experimental results. Chapter 6

gives the conclusion of this paper.

3

Chapter 2

Previous Work and Motivation

In Chang et al’s work [2], they proposed an algorithm to reduce the power

consumption of clock tree by replacing flip-flops into multi-bit flip-flops. To

realize this process, each time a window is selected. For flip-flops within the

window, a set of cliques consisting of theses flip-flops is computed, where each

clique denotes a cluster combination that satisfies the given constraints. To

solve the conflict between the cliques, a greedy selection method is adopted

to generate independent set of the cliques. The priority to select the clique

is evaluated in terms of power consumption and wire length overhead. The

algorithm repeats the above procedure until the whole chip is processed.

This flow is capable of effectively merging flip-flops into multi-bit flip-flops.

However, there are three key factors of this algorithm left to be discussed.

First is the size of the selected window. In Chang’s work, the window size

is fixed to two values. We found it is better to adjust it dynamically. A sim-

ple example of our reasoning is shown in Figure 2.1. Initially the distribution

of flip-flops is relatively dense; a smaller window size suits (Figure 2.1(a)).

However, as the clustering process proceeds, the distribution of flip-flops be-

4

(a) (b)

Figure 2.1: As the distribution of FFs becomes sparser, a larger window size
is preferred.

comes sparser. A larger window size is required in order to reach solutions

involving clustering distant flip-flops (Figure 2.1(b)). We proposed a mech-

anism to dynamically adjust the size of the selected window to reflect the

distribution of flip-flops.

The second observation is that in Changs work, once a flip-flop is merged

into a multi-bit flip-flop, other solutions involving this said flip-flop being

merged is not considered anymore. As shown in Figure 2.2, Figure 2.2(a) is

the original flip-flops. If the cluster state of Figure 2.2(b) is reached first,

the solution of clustering the flip-flops as Figure 2.2(c) will not be considered

anymore. In order to rectify this deficient, we proposed disruptive collec-

tion, which is to decompose the merged multi-bit flip-flops so that a broader

solution space can be explored.

Last is the process of generating clique set that corresponds to cluster

combinations satisfying the given constraints. An accurate and fast wire es-

timation for cliques is proposed to identify potential long metal wires. A

5

f
4
1

f
1
1

f
1
2

f
1
3

f
1
4

f
1
5

f
1
6

f
1
1

f
1
2

f
1
3

f
1
4

f
1
5

f
1
6

f
4
2

f
1
1

f
1
3

f
1
5

f
1
6

f
1
2 f

1
6
f
2

1

(a) (b) (c)

Figure 2.2: (a) Given flip-flops. (b) Clustering status in [2]. (c) A better
solution.

pruning mechanism using this method to eliminate inferior cluster combina-

tions is adopted in our synthesis flow. Benchmarking results show that by

applying this estimation mechanism, we significantly reduce the total wire

length for merged flip-flops and the resulting power consumption.

The details of our algorithm will be explained in Chapter 4.

6

Chapter 3

Problem Formulation

This chapter is to describe the problem formulation in detail. The section is

organized as follows: Section 3.1 gives the detail and definition of input data;

Section 3.2 formally defines the objective functions; Section 3.3 specifies three

major constraints of this problem.

3.1 Input

This problem has the following inputs:

• The width Wc and height Hc of the chip C.

• The width Wg and height Hg of placement grid. Placement grid is the

basic resolution unit; pins and flip-flops must be placed on grids. There

can be only one pin or one flip-flop on each placement grid.

• A set of pre-placed flip-flops F . Each flip-flop fi ∈ F is with its coor-

dinate (xfi , yfi), and can be either 1-bit or multi-bit.

• A cell library L containing a set of flip-flop cells. For an m-bit flip-flop

7

fm
i in L, the power consumption PCfm

i
of fm

i , and the area of fm
i Afm

i

are specified.

• A set of pins P . Each pin pi ∈ P has its coordinate (xpj , ypj), which

can be either an input pin or an output pin.

• A set of net N describing the connections between F and P . For each

m-bit flip-flop fm
i ∈ F , there are total 2m nets, where m nets connect

to m input pins of fm
i and m nets connecting m output pins of fm

i . For

a net nij(pi, fj) connect to a pin pi ∈ P and a flip-flop fj ∈ F , there is

a specified slack Sij, where Sij >= 0.

• A set of bins B with given width Wb and height Hb. The chip C is

covered by bi ∈ B.

• A set of pre-placed logic blocks K. Each ki ∈ K is with its own

coordinate (xki , yki) , and the area of ki, Aki. The maximum placement

density Dmax.

3.2 Objective Function

The Synthesis of Multi-bit Flip-flops for Clock Power Reduction Problem is

to minimize the total power consumption of all flip-flops fi ∈ F by replacing

flip-flops with MBFFs specified in the given cell library L, as well as the the

total wire length of every net nij(pj, fj) ∈ N .

The total power consumption of all flip-flops fi ∈ F is calculated by

aggregating the power consumption PCfi of each flip-flop fi ∈ F .

PCF =
∑

PCfi ,∀fi ∈ F (3.1)

8

The total wire length of N is the aggregation of the wire length of every

net nij ∈ N .

LN =
∑

Lnij
, ∀nij ∈ N (3.2)

The wire length Lnij
of net nij(pi, fj) is defined as the Manhattan distance

between pi and flip-flop fj. Let (xpi , ypi) be the coordinate of pin pi, and

(xfj , yfj) be the coordinate of flip-flop fj,

LNi
=| (xpi − xfj) | + | (ypi − yfj) | (3.3)

3.3 Constraint

In this optimization problem, there are three constraints: Non-overlap con-

straint, placement-density constraint, and timing slack constraint. We dis-

cuss them in details in the following subsections.

3.3.1 Non-Overlap Constraint

Placement grid is the basic resolution unit; pins and flip-flops must be placed

on grids. Each placement grid can only be occupied by either one pin or one

flip-flop. For a chip C with width Wc and height Hc, there are total
Wc

Wg
× Hc

Hg

placement grids. When generating multi-bit flip-flops, one must avoid placing

the new flip-flop onto an occupied grid.

Also note that the coordinate of pins cannot be changed. However, the

flip-flops in original design can be re-placed in order to optimize the total

wire length.

9

Figure 3.1: An Example of Density Constraint

3.3.2 Placement Density Constraint

The total area consumption Di of a bin bi is the aggregation of the area of

all flip-flops and pre-placed logic blocks within bi. In order to avoid routing

congestion, there is a placement density constraint Dmax to all bins. When

a new flip-flop is generated, it can only be placed into a bin where the area

consumption of the bin after adding up the area of the new flip-flop does not

exceed Dmax as stipulated.

An example is shown in Figure 3.1. Each square denotes a bin. The

number on each bin is the total area of pre-placed logic blocks and flip-flops

within the bin. Let Dmax equal to 10. In this example, the grey bins in

Figure 3.1 violate the placement density constraint since the total area of

those bins exceed Dmax, while the white bins satisfy it.

10

To further define this constraint: Let AKbi
be the total area of pre-placed

logic blocks within bin bi, and AFbi
be the total area of flip-flops in bi.

AKbi
+ AFbi

<= Dmax,∀bi ∈ B (3.4)

3.3.3 Timing Slack Constraint

For each nij(pi, fj) ∈ N , there is a slack Sij given in the input file for the net.

Sij is the additional driving load that pin pi could afford. The timing slack

constraint demands the slack of every net remains larger than or equal to zero.

This constraint may be violated when reposition of flip-flops. If a flip-flop

fj of a net nij(pi, fj) is relocated, the slack of the net will increase/decrease

according to additional distance between the pin and flip-flop. When merging

several flip-flops into a multi-bit flip-flop, the location of the newly generated

flip-flop must be chosen wisely, so that the additional distance would not lead

to negative slacks on any connected nets.

Figure 3.2 is an example of invalid slack. There are two 1-bit flip-flops,

f1 and f2; f1 is connected to p1 and p2 by net n11 and n21 respectively; f2 is

connected to p3 and p4 by net n32 and n42. f1 and f2 are to be merged into a

2-bit flip-flop f3, which connects to all four pins, p1, p2, p3 and p4. As shown

in Figure 3.2(b), due to relocating and merging f1 and f2, the additional wire

length and the resulting driving load lead to a negative slack on n13(p1, f3)

and n33(p3, f3), violating the timing slack constraint.

The timing slack constraint can be formulated as follows:

Let TijMAX be the maximum timing tolerance of net nij(pi, fj), where fj

is the original locations of flip-flop sink specified in the golden input.

TijMAX =| xpi − xfpj
| + | ypi − yfpj | +Sij (3.5)

11

f1

p1

p2

f2

p4

p3

n11 n21 n42 n32

p1

p2

p4

p3

n13

n23

n43

n33f3

(a) (b)

Figure 3.2: After merging f1 and f2 into f3, the additional wire length caused
timing violation on net n3 and n4.

After repositioning flip-flops or merging them into MBFFs, for every net

nij(pi, fj) ∈ N on the chip, the corresponding Tij must remain equal to or

less than its TijMAX .

Tij =| xpi − xfj | + | yi − yfj |<= TijMAX (3.6)

The golden input design should also meet all aforementioned constraints

before performing power/wire length optimization.

12

Chapter 4

Synthesis of MBFF

Based on the aforementioned problem descriptions, we proposed a window-

based cluster algorithm, which iteratively selects a window from the chip and

merge the flip-flops within the window into multi-bit flip-flops.

Our optimization process is divided into four phases, as shown in Fig-

ure 4.1. Each phase performs a variation of our window-based cluster al-

gorithm. The first phase, Regular Non-Disruptive Clustering (RNDC) gen-

erates an initial solution; the second phase, Dynamic Non-Disruptive Clus-

tering (DNDC) and the third phase, Dynamic Disruptive Clustering (DDC)

further refine the result; the last phase, Corner Case Refinement (CCR) fo-

cuses on enhancing corner cases. The detailed differences and transitions of

these four phases will be explained in the later sections of this chapter.

A detailed pseudo code of our window-based optimization is shown in

Figure 4.2. In the first stage, a window W is selected. In the second stage,

we collect Flocal, the set of flip-flops withinW , and based on Flocal we compute

Ftarget, which is the target set for our algorithm to generate MBFFs. In the

third stage, a clique set C for Ftarget is computed, and each cmi ∈ C is a legal

13

Regular Non-Disruptive Clustering (RNDC)

Dynamic Non-Disruptive Clustering (DNDC)

Dynamic Disruptive Clustering (DDC)

Corner Case Refinement (CCR)

Figure 4.1: Four phases of our optimization process: RNDC, DNDC, DDC
and CCR and the transitions between them.

cluster corresponding to a cell type fm
j ∈ L. The algorithm greedily selects a

cmi ∈ C with the lowest cost to generate its corresponding multi-bit flip-flop.

All cliques conflicting with the selected clique are then removed from C. The

process is repeated until C becomes an empty set.

There are two key factors of our window-based clustering algorithm. First

is the size of the selected window W . Second is the mechanism to compute

Ftarget. Instead of adopting all flip-flops in Flocal directly as in [2], we intro-

duce disruptive collection, optionally decomposing flip-flops in Flocal before

merging them. The details will be discussed in the later sections.

The remaining sections of this chapter are organized as follows: Sec-

tion 4.1 renders the transitions between the four phases of our optimization

process; Section 4.2 focuses on deciding the size of selected window. Sec-

tion 4.3 gives details of disruptive collection, our proposed mechanisms to

compute target set of flip-flops to merge. Section 4.4 explains the clique-

14

Select Window

Compute Target FF Set

Generate MBFFs

Figure 4.2: Window-Based Clustering

15

based merging process. The generation of cliques and pruning of solution

space will also be discussed.

4.1 Phase Transition

4.1.1 RNDC

In the first phase of our optimization process, Regular Non-Disruptive Clus-

tering (RNDC), the chip is equally divided into windows with same size.

This phase ends after clustering of all windows is completed.

4.1.2 DNDC and DDC

For the second and the third phases (DNDC and DDC), these two phases end

when the solution converges. The definition of convergence is as follows: Each

time a window is selected and the flip-flops within this window is clustered

is called a round. After completing a round, the reduction of total power

consumption is computed. Due to the nature of our algorithm, the gain is

guaranteed to be either equal to or larger than zero. If the number of rounds

with zero gain consecutively is larger than a threshold T , our optimization

process will end current phase and continue to next phase.

Threshold T is defined as follows:

T = α× # of FFs in input

of bits of MBFF in L with smallest bit number
(4.1)

where L is the library of MBFFs given in the input.

Ideally during each round the process should be able to merge several

flip-flops into one MBFF with the minimum bit number. We use the ratio

16

of the original number of flip-flops in the input to the number of bits of the

smallest MBFF as the threshold to indicate time to end current phase. For

DNDC, α is set as 1; for DDC, in order to pursuit the quality of solution

more persistently, α is set to 5 to allow more rounds of attempts to search

for better cluster.

4.1.3 CCR

The last phase of our optimization process, Corner Case Refinement focuses

on enhancing flip-flips with the highest 20% power consumption. Each round

one of those flip-flops is used as the center of the selected window to perform

our window-based clustering. This phase ends after all the aforementioned

flip-flops are processed.

4.2 Select Window

We apply a window-based approach is to reduce the problem size. Through

processing only a window instead of the whole chip at a time, the original

problem is divided into smaller ones to be conquered.

In Chang et al.’s work [2], the size of the selected window is fixed as

either 2 × 2 or 4 × 4 bins. We observe that the window size should relate

to the specific volume of the chip instead of bins. Moreover the window

size should be able to adjust more freely. Our algorithm adopts fixed and

dynamic window size according to different stages of clustering. Here we

introduce the specific value σ to control the window size.

17

σ =
Width×Height

number of FFs
(4.2)

The details of our mechanism will be discussed in the following subsec-

tions.

4.2.1 Fixed Window Size

When computing an initial solution of our algorithm in RNDC phase, a fixed

window size is preferable. In consideration of run time and the relatively

dense nature of the initial input, we use a fixed specific value σfixed in this

stage.

σfixed is set as:

σfixed = σgolden =
Wc ×Hc

number of FFs of golden input
(4.3)

where Wc and Hc are the width and height of the chip respectively.

Since the number of flip-flops in the input, as well as Wc and Hc are all

constants, σfixed is also constant. The chip is divided into identical windows

with the same width and height (σfixed) to be processed.

4.2.2 Dynamic Window Size

After the initial solution is computed, in order to retrieve a further refined

solution, the algorithm should allow distant flip-flops being merged together.

A larger window size is thus required. It is dynamically adjusted according

to σdynamic.

σdynamic =
Wc ×Hc

current number of FFs on the chip
(4.4)

18

where Wc and Hc are the width and height of the chip respectively and are

both constant. As the clustering process proceeds, the number of FFs on the

chip decreases, leading to a larger σdynamic. This trend fits our requirement

of a growing window size.

In DNDC and DDC phases, the exact coordinates of the selected window

are randomly decided, with the size computed as σdynamic.

In CCR phase, we focus on clustering poorly merged flip-flops. The flip-

flops with the highest 20% power consumption are to be re-processed. The

window size in this stage is computed in same fashion as σdynamic. However,

the flip-flops to be processed are set as the center of the selected windows.

4.3 Compute Target FF Set

In Chang et al’s work [2], once a flip-flop is merge into a multi-bit flip-flop,

other solutions involving this said flip-flop being merged is not considered

anymore. In order to overcome this weakness, when computing Ftarget, the

set of flip-flops to merge into MBFFs, we propose the option of disruptive

collection, which is to decompose the merged flip-flops into its component flip-

flops and re-cluster these component flip-flops instead of directly adopting

the existing Flocal(non-disruptive collection). The details of both mechanisms

will be elucidated in the following subsections.

4.3.1 Non-Disruptive Collection

In our algorithm, each time for a window W selected to be processed, Flocal

is the set of flip-flops whose coordinated are within W and Ftarget is the set

of flip-flops to be merged. If Ftarget is computed in the fashion of directly

19

f13

f14
f
2

1f
4

1

f11

f12

Figure 4.3: Possible composition of a merged MBFF: the 4-bit flip-flop f 4
1 is

composed two 1-bit flip-flops f 1
1 and f 1

2 , and a 2-bit flip-flop f 2
1 .

adopting Flocal, it is called non-disruptive collection. The advantage of this

method is that it is easy for computation with fast run time. However,

as mentioned before, this mechanism lacks the ability to reach for a broader

range of solution space. We utilize this approach in RNDC phase to compute

initial solution, generating MBFFs with fast run time and fair quality.

4.3.2 Disruptive Collection

After initial solution is computed, in order to search the solution space more

thoroughly, we propose disruptive collection, which decomposes the merged

flip-flops and re-cluster.

As shown in Figure 4.3, each newly merged multi-bit flip-flop is con-

structed by several component flip-flops. For a merged 4-bit flip-flop f 4
1 , it

is composed of three flip-flops: two 1-bit flip-flops f 1
1 and f 1

2 , and one 2-bit

flip-flop f 2
1 , while f

2
1 is composed of two 1-bit flip-flops, f 1

3 and f 1
4 . f

4
1 can in

fact be decomposed back into f 1
1 , f

1
2 and f 2

1 , or into f 1
1 , f

1
2 , f

1
3 , and f 1

4 .

In the example in Figure 4.4, originally Flocal has two 1-bit flip-flops, f 1
1

and f 1
2 , and a 4-bit flip-flop f 4

1 , where f
4
1 is composed of four 1-bit flip-flop f 1

3 ,

20

f
4
1

f
1
1

f
1
2

f
1
3

f
1
4

f
1
5

f
1
6

f
1
1

f
1
2

f
1
3

f
1
4

f
1
5

f
1
6

f
4
2

f
1
1

f
1
3

f
1
5

f
1
6

f
1
2 f

1
6
f
2

1

(a) (b) (c)

Figure 4.4: Decomposition the 4-bit flip-flop f 4
1 : (a) Original clustering. (b)

Target set after disruptive collection. (c) A better solution.

f 1
4 , f

1
5 , and f 1

6 and f 1
1 and f 1

2 cannot be merged together due to violation of

timing slack constraint. If we adopt non-disruptive collection, we cannot find

any better solution. However, if disruptive collection is performed and f 4
1 is

decomposed to four 1-bit flip-flops as shown in Figure 4.4(b), re-clustering

the six 1-bit flip-flop can potentially lead to a better clustering with one 2-bit

flip-flop and one 4-bit flip-flop f 4
2 as shown in Figure 4.4(c).

The procedure to decompose a given flip-flops is shown in Algorithm 1.

F is the global set of flip-flops of the clustering result. Ftarget is the set of

target flip-flops to be merged, fi is the flip-flops to be decomposed, and fi is

recursively broken down into its component flip-flops.

Algorithm 1 decompose ff (F , Ftarget, fi)

if fi is not basic FF then
for all fi’s component FF fj do
decompose ff(F , Ftarget, fj)

end for
F ← F − fi

end if
Ftarget < −Ftarget + fi

21

In our algorithm, disruptive collection is adopted in DNDC, DDC and

CCR phases to compute Ftarget. If the quality of the solution in measure

of power consumption deteriorates after performing disruptive collection and

re-clustering, our algorithm would restore the cluster status back to before

decomposing and re-clustering.

4.4 Generating MBFF

Once a window is selected and the set of flip-flop Ftarget within the window

is obtained, the clustering of Ftarget is performed. We propose a clique-based

algorithm to decide how to cluster flip-flops in Ftarget into multi-bit flip-flops,

while satisfying the constraints in Chapter 3, Section 3.3.

4.4.1 Valid Timing Slack Region (VTSR) Computa-
tion

In order to meet the timing slack constraint, all flip-flops must be placed on

a grid on which all nets connecting to the flip-flop are with a slack larger

than or equal to zero. For a flip-flop fi, let Pi be the set of pins connected

to fi by a set of nets Ni. Let TkiMAX be the maximum timing tolerance for

net nki(pk, fi) ∈ Ni, pk ∈ Pi, as defined in Equation (3.5). Let V TSR of pin

pk be the set of grids with the Manhattan distance from the grid to pk less

than or equal to the TkiMAX . To satisfy timing slack constraint for all nets

in Ni, fi must be placed within the intersection of V TSR of every pin in

Pi. The intersection of V TSR of every pin of a flip-flop fi is defined as the

valid timing slack region of fi, V TSRfi . An example is shown in Figure 4.5.

f1 is an 1-bit flip-flop with two pins p1 and p2 connected. V TSRf1 is the

22

p1

p2

VTSRP1

VTSRP2

VTSRf1

f1

Figure 4.5: The V TSR for f1 is the intersection of the V TSRs of the pins
connected to the f1

intersection of VTSR of p1 and p2.

V TSRfi = intersection of VTSR of every pin connecting to fi (4.5)

Given two flip-flops fi and fj, let Pi be the set of pins connected to fi

by net set Ni, and Pj be the set of pins connected to fj by net set Nj. If

fi and fj are to be merged into a new flip-flop fk, the timing slack on all

nets in Ni and Nj must be satisfied after reconnecting to fk. V TSRfk is the

intersection of V TSRi and V TSRj, which are the intersection of V TSR of

all pins in Pi and Pj respectively as Equation (4.6).

23

V TSRfk = V TSRfi ∩ V TSRfj (4.6)

If fi and fj are to be merged into a new flip-flop fk but V TSRfk is null,

fi and fj cannot be merged together since the timing slack constraint cannot

be met. Figure 4.6 shows an example. f1 and f2 are the flip-flops to be

merged, and V TSRf1 and V TSRf2 are the valid timing slack region of f1

and f2 respectively. V TSRf1 and V TSRf2 does not intersect; V TSRf1f2 is a

null set. f1 and f2 cannot be merged together since there is no grid satisfies

the timing slack constraints for every net connecting to f1 and f2.

Let F be the set of flip-flops to cluster together, the V TSR for the merged

multi-bit flip-flop is the intersection of V TSR for every fi ∈ F . For exam-

ple, in Figure 4.7, f1, f2, f3 and f4 are the intended flip-flops and V TSRf1 ,

V TSRf2 , V TSRf3 and V TSRf4 are their valid timing slack region respec-

tively. The merged MBFF must be placed with the intersection of V TSR of

all the four flip-flops, V TSRf1f2f3f4

4.4.2 Valid Timing Slack Clique (VTSC) Generation

A VTSR intersection graph is a non-directed graph G(V,E), where each

vertex vi ∈ V corresponds to a flip-flop fi in the design. eij between vertex

vi and vj exists if the intersection of V TSRfi ∩ V TSRfj ̸= ∅.

If a set of flip-flop is to be merged, as aforementioned, there must be a

non-null intersection of the V TSRs of every flip-flop in the set, which means

that there is an edge eij between every vi, vj ∈ V . In other words, for all vi

corresponds to the set of flip-flops, they form a clique.

Let a window W be selected, and the target set of flip-flop to merge

24

f1

VTSRf1 f2

VTSRf2

Figure 4.6: f1 and f2 are to FFs be merged. If the intersection of V TSRs of
f1 and f2 is a null set, f1 and f2 cannot be merged together.

25

f1

VTSRf1
f2

VTSRf2

f3

f4

VTSRf1f2f3f4

VTSRf4

VTSRf3

Figure 4.7: The merged MBFF must must be placed within V TSRf1f2f3f4 ,
which is the intersection of V TSRs of f1, f2, f3 and f4.

26

v1

v2

v3

v4

v5

v6

c1

c12 c13 c14

c123

c1234

c124 c134

c2

c23 c24

c3 c4 c5 c6

c234

c34

c245

c45 c56

(a) (b)

Figure 4.8: (a) intersection graph of six FFs. (b) enumeration of correspond-
ing cliques of (a).

Ftarget is collected. To explore the cluster combination of Ftarget, the VTSR

intersection graph of F is first computed. Then we enumerate cliques with

degree less than m in the intersection graph, where there is a corresponding

cell type in the input library L with bit number m.

To enumerate cliques, the flip-flops in the input forms the initial cliques in

the clique list. Each time two cliques are tested to see whether their V TSR

have non-null intersection; if yes, these two cliques forms a new clique. This

new clique will also be tested with other cliques to derive larger cliques.

The process repeats until all combinations to form cliques corresponding to

multi-bit flip-flop with the maximum bit number in the library is explored.

An example is shown in Figure 4.9. Figure 4.8(a) is the VTSR intersection

graph of six flip-flops. Figure 4.8(b) shows the corresponding enumerated

cliques.

However, if the above clique generation method is utilized straight for-

ward, many redundant solutions with large wire length cost may be generated

27

v1

v2

v3

v4

v5

v6

c1

c12 c13 c14

c123

c1234

c124 c134

c2

c23 c24

c3 c4 c5 c6

c234

c34

c245

c45 c56

(a) (b)

Figure 4.9: (a) intersection graph of six FFs. (b) enumeration with pruning
of corresponding cliques of (a).

and consumes momentous computation time. A branch-and-bound method

is applied to eliminate these undesired cliques and limit their number. If the

estimated wire length of the clique and its corresponding flip-flop is too long,

this clique is considered undesirable and be pruned. In Figure 4.9(b), the

grey cliques are cliques pruned based on above pruning mechanism. Cliques

with too large wire length are considered undesirable and will not be used to

derive more cliques. For instance, c23 in Figure 4.9(b) is pruned, along with

its derivative c234.

The pruning procedure is shown as Algorithm 2. In this algorithm,

AVWL is the average wire length of each pin in the golden input, computed

as Equation (4.7).

AVWL =

∑∀nij∈N
wire length of nij

of pins
(4.7)

To estimate the wire length of clustering flip-flops, EWL is defined. It

is computed as follows. For an m-clique cmi , which corresponds to an m-bit

28

Algorithm 2 Prune Clique (cmj , f
m
j)

if σW < σgolden then
return false;

else if estimated wire length EWL > #pins ×AVWL then
return true;

else
return false;

end if

flip-flop fm
j , an estimation point EPfm

j
is the point within V TSRfm

j
used to

estimate wire length for fm
j . The estimated wire length (EWL) of cmi and its

corresponding flip-flop fm
i is the aggregation of Manhattan distance between

EP and every pin connected to fm
i .

To compute the coordinate of the EP , first we need to compute three

types of estimation points, inner point (IP), meso-point (MP), and outer

point (OP). The estimation point of fm
i is the weighted center of its inner

points, meso-points and outer points.

The shared estimation point for all pins inside V TSR, inner point IP (xinner, yinner),

is the center of those pins. The x-coordinate of inner point, xinner is com-

puted as Equation (4.8).

xinner =

∑
(∀pk∈Pj ,pk within V TSR)

xpk

of component FF
(4.8)

Winnerx is the weight of xinner and is computed as Equation (4.9).

Winnerx =
∑

(∀pk∈Pj ,pk within V TSR)

| xinner − xpk | (4.9)

yinner and its corresponding weight Winnery are computed in similar fashion.

For pin ps, which is outside V TSRfj but within bounding box of V TSRfj ,

the estimation point for ps, MPps is the point on the edge of V TSRfj with

the minimum Manhattan distance to ps. meso-point can be obtained by

29

f1

p1

p2

VTSRf1

IEP

p3

p4

OIEP

OEP

Figure 4.10: An Example of inner point (IP), meso-point (MP) and outer
point (OP).

solving linear equations. The weight of MPps(xmesops , ymesops), Wmesops , is

the distance between ps and MPps .

For pin pt, which is outside the bounding box of V TSRfj , the estimation

point outer point is the corner of V TSR with the minimum Manhattan

distance to pt. The weight of OPpt(xouterpt
, youterpt), Wouterpt

, is the distance

between pt and OPpt .

Figure 4.10 shows an example of estimation points. f1 is a 2-bit flip-flop

with four connected pins, p1, p2, p3 and p4. First, p1 and p2 are inside V TSR

of f1. The inner point for p1 and p2 is computed as Equation (4.8), as point

IP marked on the Figure. Next, p3 is outside of V TSR of f1 but within

bounding box of V TSR of f1. Thus MP of p3 is the point on the edge of

V TSRf1 with the minimum Manhattan distance to p3. Finally, p4 is outside

of the bounding box of V TSRf1 . The estimation point of p4, OPp4 is the

corner of V TSRfa closest to p4.

The estimation point of fm
j , EPfm

j
(xestimate, yestimate) is the weighted cen-

30

ter of inner points, meso-points and outer points of all pins connected to

fm
j .

xestimate =
xinner ×Winnerx +

∑
(xmesops ×Wmesopsx) +

∑
(xouterpt

×Wouterpt
x)

Winnerx +
∑

Wmesopsx+
∑

Wouterpt
x

(4.10)

yestimate is computed in similar fashion.

4.4.3 Clique Selection

Let C be the set of all V TSC of the flip-flop set F explored by method in

Section 4.4.2. To select V TSCs to merge into multi-bit flip-flops, we propose

an intuitive greedy heuristic.

Let Ri be the cost of an V TSC ci ∈ C corresponding to an multi-bit

flip-flop fi.

Ri = PCfi + EWLfi (4.11)

Each time our algorithm picks the clique cmin with the minimum cost

to perform clustering; then every other cliques with flip-flops in cmin are

removed from the set.

4.4.4 Decide Location of MBFF

When an multi-bit flip-flop fm is generated, the coordinate of fm is decided

by searching VTSR of fm. The grid within the VTSR that satisfy the den-

sity constraint and with the minimum wire length to all pins connected is

chosen.

31

Algorithm 3 Selection of VTSC

Sort C in descending order with respect to Ri of ci
while C ̸= ∅ do
if there is a legal placement grid within V TSRcmin

then
Merge fi in cmin into MBFF fcmin

F ← F − (fiincmin) + fcmin

for all ci ∈ C do
if any fj in ci also in cmin then
C ← C − ci

end if
end for

end if
end while

32

Chapter 5

Experimental Result

We implement our algorithm in C programming language under Linux oper-

ating system. We applied six industrial test cases to corroborate the quality

of the solution our algorithm. The number of flip-flops in these cases ranges

from approximately 100 to 170000. The exact composition of the test cases

are listed as Table 5.1. We adopt a library with 1-bit, 2-bit and 4-bit, three

kinds of flip-flops. The specification of the library is shown as Table 5.2.

Our experiments include two parts. First is to validate the effectiveness

of our pruning mechanism and wire length estimation method. Second we

compare the power reduction, wire length ratio, and runtime of our algorithm

with Chang et al’s work [2].

33

Table 5.1: Industrial Test Cases

Case # of 1-bit FFs # of 2-bit FFs # of 4-bit FFs HPWL

c1 76 22 0 89425
c2 366 57 0 60132
c3 1464 228 0 240528
c4 4378 751 0 772076
c5 9150 1425 0 1083300
c6 146400 22800 0 24052800

Table 5.2: Area and Power of Industrial Test Cases

of bit Power Area

1 100 172
2 172 192
4 312 285

5.1 Pruning and Wire Length Estimation

In Chapter 4 we proposed an approach to estimate the wire length of a

clique based on its corresponding implementation of multi-bit flip-flop, and

use this information to prune inferior cliques. Table 5.3 shows the number of

cliques enumerated during computing each case with and without applying

our pruning mechanism. The result demonstrate the effectiveness of our

pruning mechanism to reduce the computation time. Table 5.4 further shows

the average wire length estimation error percentage of each test case. Among

all cases the maximum average estimation error is less than five percent,

manifesting the accuracy of our estimation mechanism, which is capable of

predicting the wire length without actually searching every placement grid

34

Table 5.3: Number of Cliques Enumerated of Each Case

w/o pruning w/ pruning
of cliques # of cliques

c1 1,454,263 649,129
c2 1,916,864 1,508,818
c3 2,172,782 1,241,211
c4 4,290,655 1,450,271
c5 2,228,695 1,446,202
c6 72,644,440 7,547,874

Table 5.4: Error Percentage of Wire Length Estimation of Each Case

Case Average Error %

c1 4.28%
c2 3.51%
c3 2.50%
c4 2.31%
c5 2.31%
c6 2.42%

in V TSC of the clique.

Figure 5.1 visualizes the estimated wire length and the actual minimum

wire length for all cliques generated during computing test cases c1. The blue

line is the estimated wire length, and the red line is the actual minimum wire

length for the clique. We can see that the two lines are almost identical in

their trends, proving the accuracy of our estimation.

35

Figure 5.1: Estimated wire length and actual minimum wire length for case
c1

5.2 Power, Wire Length and Run Time

Table 5.5 shows the results of our clustering algorithm, and Table 5.6 shows

the comparison between Chang et al’s work [2] and ours based on the given

cell library. Our work has competitive, if not slightly finer performance in

power consumption of flip-flops, as well as significantly improvement in wire

length. Our algorithm takes longer time to compute due to a more thorough

search in solution space, but the run time is still acceptable in every cases.

Even in the largest case with around 170000 flip-flops, our program still takes

less than five minutes.

36

Table 5.5: Number of Each Type of FFs and Total Wire Length

Case # of 1-bit FFs # of 2-bit FFs # of 4-bit FFs HPWL

c1 2 3 28 48740
c2 4 12 113 206960
c3 18 51 450 816720
c4 84 258 1320 2492860
c5 240 586 2647 4975180
c6 5456 15686 38793 71458816

Table 5.6: Comparisons of Ratio of Power and HPWL After Clustering

Chang’s in [2] Ours
Case Power % WL% Time(s) Power % WL% Time(s)

c1 85.2% 91.7% 0.01 83.03% 54.50% 6.60
c2 83.1% 94.7% 0.04 81.29% 59.31% 9.90
c3 82.9% 94.8% 0.10 81.34% 58.52% 12.74
c4 83.2% 94.5% 0.28 81.95% 58.10% 15.28
c5 82.9% 94.9% 0.60 81.95% 57.03% 20.18
c6 82.8% 94.9% 78.92 82.69% 51.20% 299.07

Compared with Chang’s work, our work addresses the importance of wire

length reduction more. As the manufacturing technology evolves, the ratio of

power consumption caused by metal wires becomes more and more significant

among the whole chip. In addition to power reduction through merging flip-

flops, we further model the benefits in power due to reduced wire length into

consideration.

Under 65nm technology node, assume the grid size is equal to the mini-

mum distance between two flip-flops, which is 0.56 micron. The power ratio

of an 1-bit flip-flop to 1-micron of metal wire under 65nm technology node

37

is 250:1, thus the normalized power of 1-bit flip-flop to one unit-length (one

grid) of metal wire is 140. We estimate the power consumption of 2-bit and 4-

bit flip-flops based on the ratio of their area. Table 5.7 shows the normalized

power of each cell type.

Table 5.7: Normalized Power of Each Cell (to per Unit Wire)

of bit Normalized Power/Unit Wire

1 140
2 156
4 232

Based on above normalized cell power, we compute the combined power

consumption of both flip-flops and metal wires before and after our clustering

process. The impact of reduced wire length is shown in Table 5.8.

Table 5.8: Combined Power Consumption of FFs and Wires

Case Before Clustering After Clustering Ratio

c1 103497 55984 54.09%
c2 406052 235608 57.60%
c3 1636208 931596 56.94%
c4 5062731 2851108 56.32%
c5 9806300 5714300 58.27%
c6 163620800 83669648 51.14%

38

Chapter 6

Conclusion

In this paper, we introduced a problem formulation to synthesis multi-bit

flip-flop to optimized the power consumption of clock tree, as well as the

wire length consumed. We proposed a window-based algorithm, in which a

clique-based clustering is performed. Experimental results based on indus-

trial cases show the effectiveness of our algorithm in merging flip-flops and

decreasing wire length. In addition to the benefits of applying multi-bit flip-

flops, comparing with previous work, our algorithm has stronger impact on

total power dissipation since we are capable of reducing the wire length more

significantly.

39

Bibliography

[1] D.E. Duate, N. Vijaykrishman and M.J. Irwin, ”A clock power model

to evaluate impact of architectural and technology optimization,” IEEE

TVLSI, 10(6): 844-855, Dec 2002.

[2] Y.T. Chang, C.C. Hsu, P.H. Lin, Y.W. Tsai, and S.F.Chen, ”Post-

placement power optimization with multi-bit flip-flops.” Proc. of IC-

CAD, 2010.

[3] A. Khan, P. Watson, G. Kuo, D. Le, T. Nguyen, S. Yang, P.Bennett,

P. Huang, J. Gill, C. Hawkins, J. Goodenough, D. Wang, I.Ahmed,

P. Tran, H. Mak, O. Kim, F.Martin, Y. Fan, D. Ge, J. Kung,and V.

Shek, ”A 90-nm Power Optimization Methodology With Application to

the ARM 1136JF-S Microprocessor,” IEEE JSSC, 41(8), pp. 1707–1717,

August 2006.

[4] Y. Cheon, P.-H. Ho, A. B. Kahng, S. Reda, and Q. Wang, ”Power-aware

placement,” Proc. DAC, pp. 795–800, 2005.

[5] W. Hou, D. Liu, P.-H. Ho, ”Automatic register banking for low-power

clock trees,” Proc. ISQED, pp. 647–652, 2009.

40

[6] Y. Lu, C. N. Sze, X. Hong, Q. Zhou, Y. Cai, L. Huang, and J.

Hu,”Navigating registers in placement for clock network minimization,”

Proc. DAC, pp. 176–181, 2005.

[7] Y. Kretchmer, ”Using multi-bit register inference to save area and power:

the good, the bad, and the ugly,” EE Times Asia, May 2001.

[8] H. Mahmoodi, M. Cooke, and K. Roy, ”Ultra Low-Power Clocking

Scheme Using Energy Recovery and Clock Gating, IEEE TVLSI, 17(01),

Jan 2009

[9] M. Donno, A. Ivaldi, L. Benini and E. Macii, ”Clock-tree power opti-

mization based on RTL clock-gating”, Proc. of DAC, 2003

[10] T. Luo, D. Newmark, and D. Z. Pan, ”Total power optimization com-

bining placement, sizing and multi-Vt through slack distribution man-

agement,” Proc. ASPDAC, pp. 352–357, 2008.

[11] A. Vittal and M. Marek-Sadowska, ”Low-power buffered clock tree de-

sign,” IEEE TCAD, 16(9), pp.965–975, Sep 1997

41

