
Chapter 3

Algorithm for Cell Placement

Based on our motivation in Chapter 2, we propose two standard cell

placement algorithms to minimize wirelength overhead and sleep transistor

size. The first one is a functionality directed placement algorithm and the

second one is a direct placement with iterative cell-moving algorithm.

In section 3.1, we first introduce the layout style of standard cells with

sleep transistor insertion. Then, the detailed description of our placement

algorithms will be presented in section 3.2 and section 3.3.

3.1 Standard-Cell Layout Style with Sleep Tran-

sistor

In this section, we introduce the standard-cell layout style in Section

3.1.1 and show how to perform cell characterization to compute the allowed

maximum current flowing through the sleep transistor under a specified per-

10

formance degradation in 3.1.2.

3.1.1 Layout Style

To incorporate the MTCMOS layout style to the traditional standard

cell style, the cell library is required to redesign. One way is to re-draw the

cell from scratch and the other is to modify the existing library. The former

has the advantage of compact layout and the latter takes less design effort.

We will take the second way.

Figure 3.1 is the structure of standard cells used in MTCMOS layout

style where the structure of a regular standard cell with low Vth is shown in

Figure 3.1(a), and the structure of a sleep transistor with high Vth is shown

in Figure 3.1(b) [6]. This second structure is proposed to modify a regular

standard cell library so that the cell can be used for MTCMOS. MTCMOS

layout require each cell connects to a virtual ground and in term the virtual

ground connects to sleep transistors.

A cell in a regular cell library is modified so that it is a low Vth transistors

and is connected to V GND (virtual ground) through layer 2 where the GND

remains on layer 1. A new cell for sleep transistors is designed where a high

Vth transistor is used and connected to GND. The output of this sleep

transistor cell is connected to the VGND through layer 2. Only one unit-

size sleep transistor cell is designed. Figure 3.2 shows an example of a row

11

Figure 3.1: (a) Low Vth standard cell (b) High Vth sleep transistor cell

of connected standard cells where low Vth standard cells and high Vth sleep

transistor cells are coneected. In this figure, low Vth standard cells C1 -C5 are

clustered to be connected to high Vth sleep transistors, S1 -S3, by V GND.

We can see that a sleep transistor can be arbitrarily placed at two sides of a

cluster from this structure.

Figure 3.3 shows an example of the standard cell placement. All cells

are connected to sleep transistors. The cells in the same row are connected

to the sleep transistors which are at the end of the same row in our place-

ment. To maintain the circuit performance under a pre-specified performance

degradation, multiple unit-size sleep transistors are abutted.

The row size (width) includes the the size (width) of low Vth standard

cells and the size (width) of high Vth sleep transistor cells. The chip width is

12

Figure 3.2: Example of the connection between low Vth standard cells and
high Vth sleep transistor

Figure 3.3: Example of placement style

13

equal to the maximum row size, the chip height is determined by the number

of rows, and the chip size is the multiplication of the chip width and the chip

height.

3.1.2 Sleep Transistor Sizing

The sleep transistor sizing problem is to determine the size of sleep tran-

sistor and compute the maximum current flowing through the sleep transistor

under a specified timing constraint. We will calculate the size of sleep tran-

sistor by equations from [1].

When the sleep transistor is absent, the propagation delay (τd) for a

CMOS gate can be approximated by Equation (3.1),

τd =
CloadVdd

(Vdd − VtL)α
(3.1)

where Cload is the load capacitance, Vdd is the supply voltage, VtL is the

threshold voltage in the low Vth module, and α is the velocity saturation index

for modeling short channel effects. When the sleep transistor is present, the

propagation delay (τ sleep
d) for a CMOS gate increases to Equation (3.2),

τ sleep
d =

CloadVdd

(Vdd − Vx − VtL)α
(3.2)

where Vx is the potential of the virtual ground. Assuming the circuit can tol-

erate a 5% performance degradation with the presence of the sleep transistor,

14

then

τd

τ sleep
d

= 95% (3.3)

According to Equation (3.1), Equation (3.2), and Equation (3.3), and

assuming Vdd=1.8V, VtL=350mV, and α=1 for simplification, Vx can be for-

mulated as in Equation (3.4).

Vx = 0.05(Vdd − VtL) (3.4)

Thus, Vx is computed as 0.0725V. Then, we can calculate the maximum

current flowing through one sleep transistor (denoted as ST maxcurrent) by

SPICE simulation. We use TSMC spice model in 0.18μm technology, and set

high Vth of sleep transistor to be 500mV. The ST maxcurrent is computed as

432uA under (W
L

)sleep ≈ 35. This means that if the maximum simultaneous

switching (discharging) current (MSSC) of the low Vth module is less than

432uA (ST maxcurrent), the performance of circuit will be maintained.

In the library, let the width of and height of a unit low Vth transistor

be 0.25U and 1U, respectively. Then, from the above simulation, when

Vx=0.0725V, to maintain the maximum current flowing through one sleep

transistor being 432uA, the width and height of the sleep transistor are set to

0.25U and 8.7U by SPICE simulation, respectively, which is nearly ninefold

the width of the unit size low Vth transistor. Therefore, we assume that the

size (width) of a sleep transistor cell is ninefold size (width) of the standard

15

cell which has only one transistor. Now, assuming the maximum simultane-

ous switching (discharging) current (MSSC) of the cells in row i is known,

the number of the sleep transistor cells needed can be calculated as

Numberst = �(MSSC(rowi)

STmaxcurrent

)� (3.5)

So, the size of the sleep transistor cells needed is Numberst unit-size sleep

transistors. In the next paragraph, we will show a method to estimate

(MSSC(rowi)). Although this method overestimates (MSSC(rowi)), it is

more simple and efficient compared to the method finding optimal solution

of (MSSC(rowi)).

As to the computation of the maximum simultaneous switching (discharg-

ing) current (MSSC) of the cells in row i (MSSC(rowi)), it is computed

based on the approach proposed in [3], which takes into consideration both

topology and functionality. It proceeds as follows. First, we can construct a

relation graph G(V,E) which represent the discharge relation among cells in

row i. A vertex vi ∈ V stands for one gate in row i and an edge (vi, vj) ∈ E

represents that vi and vj do not make transition at the same time. Note that

all cells in a clique of the relation graph are mutually exclusive discharge.

Therefore, only the maximum current among them need to be computed as

the discharge current of the clique. Thus, we want to partition our relation

graph to as fewer cliques as possible. The heuristic algorithm in [15] is uti-

16

lized to achieve our objective. At each step, each pair of vertices connected

by an edge is taken as a candidate, and a candidate with largest cost (the

number of common neighbors) will be selected. After a candidate is selected,

these two vertices are combined to form a new vertex and the relation graph

is updated. This algorithm stops when there is no pair of vertices to combine

and each vertex stands for one clique finally. Figure 3.4 shows this algorithm,

and the more detailed description of this algorithm is shown in [15] . As a

result, MSSC(rowi) is the sum of the maximum current among each clique

in row i

17

1 Algorithm : Clique Partitioning Algorithm()
2 Input : Relation Graph G = (V,E)
3 Output : Clustered Relation Graph
4
5 While(E �= ∅)
6 {
7 find (vi, vj) ∈ E with the largest cost ;
8 /* cost = N(CommonNeighbor) */
9 s ← vi ∪ vj;
10 V ← V ∪ s;
11 delete edges linked vi or vj;
12 add edges connecting between s and neighbors of s;
13 }

Figure 3.4: Clique partitioning

18

3.2 Functionality Directed Placement

In this section, we propose our functionality directed placement method.

Our method follows the clustering technique proposed in [3], and incorpo-

rates the wire connectivity issue into placement process. The design flow is

presented in Figure 3.5. First, we construct a relation graph among all cells

taking topology and functionality into consideration. Then, we find exclu-

sive discharge clusters based on the relation graph. After that, we perform

cell placement according to the cluster information. Finally, the cell mov-

ing among clusters process is performed to refine the placement result. The

detailed description of each step is described in the following sections.

19

Figure 3.5: Design flow of the functionality directed placement

20

3.2.1 Find Exclusive Discharge Clusters

Following the clustering technique proposed in [3], we can construct a

relation graph (mutual exclusive discharge graph) among all cells of the entire

circuit. Then, we want to find exclusive discharge clusters. The algorithm

used here is very similar to the clique partition algorithm in [15]. However,

the algorithm of [15] has one major drawback. The algorithm only considers

the reduction of cliques. Hence, two cells clustered together may be far

away in the placement. This will cause the increase of total wirelength. As

a result, we do some modifications to reduce the wirelength overhead. In

the following, we show our modifications and explain why it can reduce the

wirelength overhead.

The main modification is the cost function defined on an edge which is

used to choose the clustering candidates. Let cost(vi, vj) be the cost on an

edge between vi and vj. It is defined as

cost(vi, vj) = α ∗ N(connection) + β ∗ N(CommonNeighbor) (3.6)

where α and β are weighting factors, N(CommonNeighbor) is the number of

common neighbors of vi and vj, and N(connection) is the number of connec-

tions between vi and vj. We take Figure 3.6 as an example to illustrate the

cost function. The graph in Figure 3.6(a) is a relation graph. Each vertex vi

21

represents a clique. Each edge (vi, vj) represents a mutual exclusive discharge

edge. Two vertices (cliques) can be combined together to form a new vertex

(clique). We see that both v1 and v2 have edges connecting v3 and v4. So,

v3 and v4 is the common neighbors of (v1,v2), and N(CommonNeighbor) of

(v1,v2) is equal to 2. In Figure 3.6(b), we show the detailed connections be-

tween v1 and v2. Each node ci is a cell clustered into a vertex (clique). Each

dotted line connecting two cells ci and cj means that there is a wire connect-

ing ci and cj in the circuit topology. Then, N(connection) of (v1,v2) is the

number of dotted lines between v1 and v2. In this example, N(connection)

of (v1,v2) is equal to 3.

The reason that we add this factor, (N(connection)), in the cost function

is to make the cells clustered in a clique more connective. This will reduce

the wirelength overhead since the cells clustered in a clique will be placed

together in our placement method proposed in Section 3.2.2.

Moreover, we add a procedure to remove edge when area constraint is

not satisfied. Area(vi) denote the sum of area of the cells clustered in vi .

For an edge (vi, vj), if the sum of Area(vi) and Area(vj) is greater than area

constraint, this edge will be deleted. This procedure limits the area of each

clique (cluster) found finally under a computed area constraint. The reason

behind this heuristic is because a large cluster causes large wirelength over-

22

head in our placement method proposed in Section 3.2.2. Figure 3.7 shows

our modified clique partitioning algorithm, we call it Placement Directed

Clique Partitioning Algorithm.

23

Figure 3.6: Illustration of the cost function in placement directed clique
partitioning : (a) Relation graph (b) Detailed connections between v1 and
v2

24

1 Algorithm : Placement Directed Clique Partitioning Algorithm()
2 Input : Relation Graph G = (V,E)
3 Output : Clustered Relation Graph
4
5 construct connection edge
6
7 remove edges which are over area constraint
8 While(E �= ∅)
9 {
10 find (vi, vj) ∈ E with the largest cost;
11 /* cost = α ∗ N(connection) + β ∗ N(CommonNeighbor) */
12 s ← vi ∪ vj;
13 V ← V ∪ s;
14 delete edges linked vi or vj;
15 add edges connecting between s and neighbors of s;
16 remove edges which are over area constraint
17 }

Figure 3.7: Placement directed clique partitioning

25

3.2.2 Initial Placement

After performing our placement directed clique partitioning, we find many

clusters, and mutual exclusive discharge cells in each cluster. Then, this

cluster information is used to perform our initial placement. We use a fast,

effective standard cell placement tool called ”Dragon” [10] to assist us with

placement of cells. First, we regard each cluster as a supercell, and construct

the new netlist of supercells. Using the placement tool, we do the global

placement to obtain the position of each cluster. Second, for each cluster,

we do the local placement of the cells in the cluster. After these two steps,

the position of each cell is known, and it is taken as our initial placement.

Referring to Section 3.1.2, the size of sleep transistors needed for each row

can be calculated.

3.2.3 Cell Moving Among Clusters

To reduce the total wirelength overhead, in this section we propose a

cell moving among clusters method to refine the initial placement. Our al-

gorithm is shown in Figure 3.8 . Step 1, step 2 and step 5 are in the outer

while loop of cell replacement. Step 3 and step 4 are in the inner while loop

of iterative cell moving. In the following, we give a detailed description for

each step in the algorithm.

26

Step 1. We partition the initial placement according the area constraint

given by user. Successive cells in the same row are view as in a cluster if the

total area of these cells do not exceed the area constraint. Otherwise, a row

is partitioned to more than one cluster. The area constraint here is used to

constrain the size of each cluster. The reason for this area constraint is to

has a more accurate estimation of wirelength. During the moving process,

when a cell x moves to a cluster j, we assume that the center of the cluster j

is the new position of cell x. A large cluster causes the inaccurate estimation

of wirelength for the actual position of the cell.

Step 2. In this step, we compute the gains of all cells. Let the number

of clusters be k. Each cell has k-1 gains for moving to other k-1 different

clusters. Let g(cx,i−>j) be the gain of cell x moving to cluster j from cluster

i. It is defined as :

g(cx,i−>j) = α ∗ W (cx,i−>j) + β ∗ RD(cx,i−>j) (3.7)

The first term, W (cx,i−>j), is the gain of wirelength while cell x moves to

cluster j from cluster i. It is computed as :

W (cx,i−>j) = W (cx,i) − W (cx,j) (3.8)

27

where W (cx,i) is the total wirelength connecting to cell x before moving, and

W (cx,j) is the total wirelength connecting to cell x after moving to cluster j.

Note that when a cell x moves to a cluster j, we assume that the center of

the cluster j as the new position of cell x, and Manhattan Distance is used

for our estimation of wirelength. The second term, RD(cx,i−>j), is the the

difference of the size of two rows. It is computed as :

RD(cx,i−>j) = RS(cx,i) − RS(cx,j) (3.9)

where RS(cx,i) is the size of the original row that x is located in, and RS(cx,j)

is the size of the new row that x is moved to.

In Equation (3.7), W (cx,i−>j) is used to reduce the wirelength overhead

and RD(cx,i−>j) is used to reduce the maximum size of all rows, namely the

chip size. Because our main objective here is to reduce the wirelength, we

give the factor W (cx,i−>j) a higher weight.

Step 3. Having computed the gains of each cell, we now choose the base

cell. The base cell, cx,i−>j, is the one that has a maximum gain greater than

zero and does not violate the moving constraint. The moving constraint is

defined to limit the increase of one row. It is set to be the maximum row

size of all rows in the placement. For a base cell cx,i−>j, we assume that cell

x moves to cluster j, and cluster j is in row m. We compute the size of row

28

m. If the size of row m is greater than the maximum size of all rows, this

base cell violate the moving constraint. If a base cell cx,i−>j is chosen, then

the cell x moves from cluster i to cluster j. If no base cell is found, then the

inner while loop of iterative cell moving ends and the procedure goes to step 5.

Step 4. After each move, the selected cell is locked. Then the gains of cells

are updated. The procedure continuously runs in the inner while loop of iter-

ative cell moving until all cells are locked or the choosing number reaches the

user constraint number. The choosing number is used to count the times

that base cells are selected. The user constraint number given by user is the

number of cells that can be moved in the current moving iteration. It is used

to limit the number of cells that can be moved, because we take the center

of clusters as the new position for the chosen base cell. This assumption

causes more and more inaccurate estimation of wirelength when more and

more cells are chosen to move to other clusters. So, after a number of base

cells are selected, the procedure ends inner while loop of iterative cell moving.

Step 5. After the inner while loop of iterative cell moving, a number of

cells were moved to other clusters. For each modified cluster we perform the

local cell placement in a cluster and obtain the new placement information.

29

We calculate the total wirelength of the circuit and the chip area, and record

them. The outer while loop continues until T (the user defined parameter)

number of times is reached. Then we select the placement which has the

minimum total wirelength in the process as our final placement.

30

Algorithm : Cell Moving among Clusters Algorithm()
Input : Initial Placement Information
Output : New Placement Information

/* Outer while loop of cell replacement */
While(NOT Continuous T times that the wirelength can not be improved)
Step 1. Partition initial placement to k clusters according the given area constraint;

Step 2. Compute gains of all cells;
(Each cell has k-1 gains for moving to k-1 different clusters.)

/* Inner while loop of iterative cell moving */
While(unlock cells �= ø and choosing number < user constraint number)
Step 3. Select base cell and call it cij;

(i is the cell number, and j is the cluster number moving to.)
If no base cell Then Goto step 5;
A base cell is the one which
(1) has maximum gains (gain>0);
(2) satisfies the moving constraint ;

Step 4. Lock cell ci;
choosing number = choosing number + 1;
Update gains;

End inner while loop

Step 5. Obtain new placement information;
(Replace the cells for the modified clusters.)
Calculate the wirelength and the chip area, and record them;

End outer while loop

Figure 3.8: Cell moving among clusters algorithm

31

3.3 Direct Placement with Iterative Cell Mov-

ing

The direct placement means using ”Dragon” to perform cell placement

without taking functionality into consideration. In Section 3.2, functionality

directed placement, we use the the information of mutual exclusive discharge

clusters to obtain initial placement. Comparing to direct placement, it needs

less sleep transistor cells. This implies the maximum row size of initial place-

ment using cluster information is less than that of direct placement. Hence,

we get smaller chip area by considering cluster information. However, the

limit of connecting the cells in the same cluster together causes the significant

increase of wirelength overhead. Therefore, we propose to use a direct place-

ment result as the initial placement. Then, we perform the same cell moving

among clusters algorithm in Section 3.2.3 to fine tune the initial placement.

Because the initial placement from direct placement has better wire-

length, yet worse chip size, we will increase the weight of RD(cx,i−>j) in

Equation (3.7) to reduce the chip area. Using this cost function, the itera-

tively cell moving among clusters algorithm will gradually trade total wire-

length for area.

32

