
Chapter 3

Architecture and Software

In this chapter, we will present the architecture of Starfish designed by hardware team

at NCTU. We implemented the design that supports CHKB, BFLOAD,and LDMV BF

instructions based on the Starfish architecture. To incorporate those new instructions, mod-

ifications to the tool-chain of Starfish will be introdued at the end of this chapter.

3.1 The Architecture of Starfish

3.1.1 Parallel Issue

Starfish, which is a Digital Signal Processor (DSP) that includes its own hardware

core and tool-chain, has various length of instructions. In its ISA, most of the load/store

instructions are encoded by 16 bits and arithmetic/vector/video instructions are encoded in

32 bits in length except some frequently used instructions. Starfish can issue up to three

instructions in parallel and execute them in the same cycle. These three instructions must

be one arithmetic/vector/video instruction along with two load/store instructions. Fig. 3.1

shows all the instruction types that Starfish supports and describes all kinds of instruction

length.

3.1.2 Pipeline Issue

The architecture of Starfish contains seven pipeline stages which are IF, ID, OF,

EX1/DAG, EX2/MEM, EX3/DA,and WB. Functions of each stage are briefly described

in Table. 3.1.

19



Single issue

Parallel issue

Parallel issue

Parallel issue

Single issue 16-bits instruction

32-bits instruction

32-bits instruction

32-bits instruction

32-bits MNOP

16-bits instruction 16-bits NOP

16-bits instruction 16-bits instruction

16-bits instruction 16-bits instruction

Figure 3.1: Single/parallel issue and three types of instruction length

IF ID OF

DAG MEM DA

EX1 EX2 EX3

WB

Memory-related

Arithmetic/Logic

Figure 3.2: Pipeline stages of Starfish

20



Table 3.1: The descriptions of pipeline stages of Starfish

pipeline stages briefly descriptions

IF Instruction Fetch unit, which fetches instructions from instruction memory.
ID Instruction Decode unit, which decodes control signal and operand number from

instructions
OF Operand Fetch unit, which fetches operand data from registers
EX1 Including Arithmetic/Logic/Vector/Video execution unit.

Step1 of multiply operations
EX2 Step2 of multiply operations
EX3 reserved
DAG Data Address Generator, which computes the address of Load/Store instructions.
MEM Memory access of Load/Store instructions.
DA Data Alignment, which extends the result by the option of instruction.
WB Write back the result of computation into registers.

Starfish has two data paths of pipeline, one of which is for Memory-related operations,

while the other is for Arithmetic/Logic operations. A graphical representation of data path

is shown in Fig. 3.2. There are three types of execution unit in Arithmetic/Logic opera-

tion path. One is a Multi-Function Unit (MFU) in the EX1 stage that supports 32-bits

arithmetic and dual 16-bits vector operations. Another is a video unit that supports quad

8-bits operation in the EX1 stage. The other is a multiplier accumulator in the EX1 and

EX2 stages. The function units in Memory-related path includes DAG, MEM, and DA. The

DAG stage (Data Address Generator) has two DAG units which can compute addresses in

parallel. The MEM stage is the memory stage, and is to load the data from the address

generated by DAG. The Data Alignment stage (DA) is used to perform extensions, such as

zero-extension option.

3.2 Data Path for New Instructions

3.2.1 Hardware Design for CHKB instruction

We modify the original Memory-related data path for the new instructions. At first, we

show the modification to the DAG design in Fig. 3.3. The modules in grey color are new

modules we proposed, while other circuits are the original designs. The DAG has four data

21



input from registers, which are src0, src1, src2,and src3. The BR module outputs the bit-

reversed data of the input. It is chosen only if the bit-reverse option is activated. The ADD

module is a pure 32-bits full-adder, used in addressing circular buffering. The ADD/SUB

module performs addition or substraction selected by the control signal addorsub. The CHKB

module outputs the value of CHKB instruction, and finally selected by If chkb which decide

the value to be propagated to the MEM stage. DAGoutput will be drived by CHKB module

if If chkb is 1. On the opposite, DAGoutput is drived by OutMEM if If chkb is 0.

ADD

>0

src0src1src2src3cir_encir as_sel

>0

< >=

BR

MUX

BR

MUX

ADD/SUB

breverse

MUX

updSEL

ADD/SUB

MUX

cir_sel

UpdREG

BR

MUX

MUX

OutMEM

addorsub

MUX

If_chkb

DAGoutput

0

MIN

MAX

CHKB

Figure 3.3: The block diagram of DAG that supports CHKB instruction

22



3.2.2 Hardware Design for BFLOAD and LDMVBF Instructions

The second proposal to decrease the instruction count of interpolation procedure is a

special buffer. The first issue is to locate the buffer. The buffer could be implemented at

DAG stage to store the address calculated by previous iterations. Since that all the data

loaded while interpolating are byte in size, we will have four times of overhead in buffer size

if we store the address.

The second choice is the MEM stage. It is true that the buffer could work precisely when

we place it at this stage. As the matter of timing issue, the MEM stage usually determines

the timing of the whole machine. That is, if we implement the buffer at MEM stage, timing

issue will be violated.

We now have the last chance of DA stage, however, this is the best choice by the result of

experiment. The DA stage has much less circuits than all other stages (except EX3) because

that the data-extension unit and data-alignment unit can be implemented easily. Although

this stage has only a few circuits, it remains necessarily to be established to support the

original ISA of Starfish. Fig. 3.4 shows the block diagram of DA stage with a new buffer.

Both kinds of buffer operation result in shifting the buffer by 8-bits. Difference between

them is the data that stores into BF[4]. The control signal BFwrite will be set if the

LDMVBF instruction is performing while the BFread control signal is activated by the

BFLOAD instruction.

We design the buffer to have the ability of self-rotating by analyzing the property of the

interpolation procedure and reducing the behavior of the new buffer. The procedure will

load data for six times, and five of which are overlap as discussed in Chapter 2. As shown in

Fig. 3.5, we can see that BFread is used here for rotating the data of the new buffer. It will

decide which one of BF[0] and BF[4] is to be stored into BF[4]. If BFLOAD is performed,

the buffer will be rotated and BF[0] will be stored into BF[4]. Meanwhile the original data

of BF[4] will be propagated to BF[3] and so on. The programming of BFLOAD is written

for five times so that the context of the new buffer will remain unchanged.

BFwrite is used to store the data into BF[4] propagated from lower order byte of data

of MEM stage or from the buffer. When LDMVBF is performed, the buffer will be updated

23



with inserting a new data at the bottom. Whenever LDMVBF or BFLOAD instruction is

performed, the data of {BF[1], BF[2], BF[3], BF[4]} will be moved to {BF[0], BF[1], BF[2],

BF[3]}.

Extension unit 

&

Data Alignment 

unit

BUFFER

[7:0] M
U

X

BFwrite_

M
U

X
M

U
X

[31:8]

BFread_

CLK
BFwrite

BFread

Figure 3.4: The block diagram of DA stage with the new buffer

BF[0]

BF[1]

BF[2]

BF[3]

BF[4]

Mem[7:0]

Buffer_output

M
U

X

BFread

M
U

X

BFwrite

M
U

X
M

U
X

M
U

X
M

U
X

Figure 3.5: The block diagram of the new buffer

3.3 Encoding of New Instructions

The instruction format of the new instructions is described as follows. We encode our

instructions as 16-bits instruction. In the encoding of ISA of Starfish, the leading two bits

24



decide the instruction types: ’00’ and ’01’ are the field of 16-bits instructions without parallel

issue, ’10’ is the field of 16-bits instructions with parallel issue, and ’11’ is the field of 32-bits

instructions. The CHKB instruction is not required to be executed in parallel and is encoded

leading by ’01’. Load/Store instructions that can be executed in parallel are encoded ’10’ at

the most significant bits. We encode LOADBF and LDMVBF in the ’10’ field since they are

designed with parallel issue. Fig. 3.6 shows the encoding of CHKB instruction and Fig. 3.7

shows that of BFLOAD and LDMV BF instructions.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x dest.Preg src0.Preg src1.Preg

Instruction Decoder

DAG

group

CHKB

M
U

X

DAGout

If_chkb

op

0 1 1 1 0 0 0 dest.Preg src0.Preg src1.Preg

Figure 3.6: The encoding of CHKB

3.4 Tool-Chain of Starfish

After designing the data path, we have to develop software to support our new instruc-

tions. Partial source code of Starfish tool-chain, including the assembler and the simulator, is

modified to recognize our new instructions. We add the assembly syntax and the correspond-

ing binary code for our new instructions to Starfish-Assembler and also add the behavior

(including the new buffer) of new instructions to Starfish-Simulator.

We now demonstrate how to modify Starfish-Assembler. The first task before adding

the new instruction into Starfish-Assembler, LDMV BF for example, is to modify the token

parser by adding the keyword LDMV BF so that the token parser takes the keyword as a

25



LDMVBF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reg field0

01 11 dest.Dreg0 0 1 11

group0 major op

1

sub-op

Instruction Decoder

group1

Extension unit 

&

Data Alignment 

unit

BF

BFread

BFwrite

BFout

Mem_data[7:0]

Mem_data[31:8]

src.Preg

reg field1

BFLOAD 01 11 dest.Dreg0 0 1 11 0 x x x

M
U

XMem_data[7:0]

[7:0]

Figure 3.7: The encoding of BFLOAD and LDMV BF

legal token. Then the token parser transmits the token sequence (LDMV BF ) to the syntax

parser of assembler. We can add the syntax rule for our new instructions after all these steps

were done. The syntax rule contains the field information including the length and position

of op-code, source field, and destination field. According to the new rule, the syntax parser

will then generate the corresponding binary code of this new instruction. Modification flow

of the assembler is shown in Fig. 3.8.

Starfish-Simulator is to be modified in the second step. New behavior files of the cor-

responding binary code are placed in the simulator. Those files include the code range,

operand field, and operation of the new instruction. To built up the buffer, the simulator

needs a file that describes the actions performing on the buffer. Like the file that describes

the memory, the file of buffer must be included in the the simulator core engine. Fig. 3.9

shows the modification of simulator.

26



Token parser

Dreg = LDMVBF [ Preg ]

New token LDMVBF 

and the rule of it.

Generate the token sequence.

R0 = LDMVBF [ ]P2

Syntax parser
New rule of LDMVBF:
REG  ASSIGN  LDMVBF  LBRACK  REG  RBRACK

Binary code of 

LDMVBF instruction

Figure 3.8: Modification to assembler

27



Core Engine

buffer.cpp

buffer.h

chkb.cpp

chkb.h

ldmvbf.cpp

ldmvbf.h

bfload.cpp

bfload.h

modified core file

( #include <buffer.h> )

Figure 3.9: Modification to simulator

28


