
Chapter 4

Experimental Results

In this chapter, we present the result of software and hardware which we proposed in

chapter 2 and chapter 3. The number of instructions executed of interpolation procedure is

demonstrated with and without our new instructions. One the other hand, the area overhead

and timing issue of the hardware will be discussed later.

4.1 Software Performance

To make sure that our new instructions will be scheduled during compilation, we use

inline assembly. If the compiler parses a special keyword asm, it will call the assembler

to parse the parenthetic codes. Because the compiler may or may not generate the best

assembly code for procedures, our results are compared to a code which is written by us

using inline assembly for the original ISA. This means that the number of instructions

executed in the interpolation procedure is the best we can found. Since instruction CHKB

is independent of LDMV BF and BFLOAD, we compare these results in three columns:

CHKB only, BF only, and CHKBwithBF. Decoding 128 frames (one I-frame and followed

by 127 P-frame) is used as our test data. The result is shown in Table. 4.1 sorted by

original instruction count. We list the instruction count and the improvement compared to

original code. By the experimental result, we can see that CHKB instruction can reduce the

instruction count to 70.54% in average and BF instructions (LOADBF and LDMVBF) can

reduce it to 71.31% in average. The instruction count will be decreased to 55.84% with both

CHKB and BF instructions.

29



Table 4.1: Instruction count comparison

testbench original CHKB only/Ratio BF only/Ratio CHKBwithBF/Ratio

bridge 90026541 63492865 / 70.53% 79489699 / 88.30% 59088269 / 65.63%
salesman 126645892 90189827 / 71.21% 99377635 / 78.47% 75994915 / 60.01%
grandma 131720565 93895943 / 71.28% 101819945 / 77.30% 78102895 / 59.29%

news 147367027 104422772 / 70.86% 113643750 / 77.12% 87144116 / 60.61%
silent 169693030 119416696 / 70.37% 123078053 / 72.53% 95589033 / 56.33%

highway 209906220 147075994 / 70.08% 143759855 / 68.49% 112822003 / 53.75%
mthr dotr 218442651 154154065 / 70.57% 149983980 / 68.66% 118099314 / 54.06%
carphone 375794438 265596751 / 70.68% 243518000 / 64.80% 194866382 / 51.85%
foreman 414850120 290957149 / 70.14% 262237307 / 63.21% 211057535 / 50.88%
tempete 461245930 326033782 / 70.69% 288495000 / 62.55% 234942516 / 50.94%
mobil 483655521 336245242 / 69.52% 304679189 / 63.00% 246154891 / 50.89%

average 70.54% 71.31% 55.84%

4.2 Hardware Overhead

Implementation of Fig. 3.3 and Fig. 3.4 are written in Verilog and are verified with

Starfish. Input pattern that are generated randomly are fed to our design and DAG/DA

design of Starfish to check the correctness of our design.

We use Design Compiler with UMC .18 library to synthesize our design and the original

Starfish. Table. 4.2 shows the result of gate count and timing delay of DAG stage and

Table 4.3 shows the result of DA stage.

Table 4.2: Gate count and timing delay of DAG stage

DAG DAG+ ours

gate count 3076 3513 3471
timing delay (ns) 5.99 5.99 5.99

Table 4.3: Gate count and timing delay of DA stage

DA DA+ ours

gate count 162 394 401
timing delay (ns) 4.09 4.21 4.25

30



We synthesize the Starfish code written by NCTU team and report the data in the

column named ’DAG’ in Table. 4.2 and the column named ’DA’ in Table. 4.3. Then, we

modify the Starfish code with our approach then synthesize it. The result is proposed in the

column named ’DAG+’ in Table. 4.2 and the column named ’DA+’ in Table. 4.3. Finally,

the column named ’ours’ in Table. 4.2 and Table. 4.3 lists the result of rewriting the DAG

and DA stage.

31


