
Chapter 1

Introduction

H.264/AVC is the latest video coding standard and is recognized as the most efficient one.

Several studies have shown that H.264 gains up to 50% of compression rate as compared to

other previous standards [1]-[3]. Similar to previous standards, the H.264/AVC is based on a

motion compensated hybrid DCT (Discrete Cosine Transform) algorithm. Where sub-pixel

motion compensation is one of the main factor that makes H.264 a good coding scheme.

However, sub-pixel motion compensation comes with a cost of the high computational com-

plexity.

After profiling the H.264 decoder code (JM 8.0, [4]) on ARM development environment,

we observe the percentage of runtime of each sub-procedure. Table. 1.1 shows the parameter

of the benchmark. Fig. 1.1 shows the result. We can see that the interpolation procedure

takes up to 22% execution time. In this thesis, we will pay attention to the interpolation

procedure which is one of the most time-consuming functions.

Table 1.1: Parameters of benchmark for profiling

benchmark foreman.qcif
number of frames 128
frame sequence IPPPPP....
reference frame 5

QP 28

[5] discuss the optimization of the H.264/AVC sub-pixel interpolation operation. UN-

PACK and PACK [6] instructions were combined with {LOAD} and {MIN, MAX, STORE},
respectively. The proposed instruction set extensions result in cycle savings without much

1

Deblocking Filter,

33.55%
others, 31.97%

Interpolation,

21.98%

CALVC, 7.05%

Transform and

Reconstruction,

5.45%

Figure 1.1: Execution time profiling of foreman.qcif on H.264 decoder

hardware overhead.

We take the architecture and the instruction set of ADI Blackfin533 as an example

DSP to understand how exactly the interpolation performs. After porting the interpolation

procedure code on the simulator of ADI Blackfin533, we dump out the assembly code of

interpolation procedure and analyze it in detail. We notice that even if the compiler can

generate the most efficient code based on current ISA, the procedure still spends much

time on computing unnecessary operations. The reason is that traditional instructions are

designed for general usage. Since the computation of interpolation is high, it worths to

design special instructions for the procedure.

Many researches have been proposed to decrease the computational complexity of in-

terpolation. For a pixel in a referenced block, computation of interpolation needs six mul-

tiplications. To reduce the number of multiplications, [7] proposed a new algorithm for

interpolating with a 4-tap filter. The interpolation procedure loads data from memory fre-

quently. To reduce the number of memory access, [8] proposed an efficient method to achieve

the goal where a set of vector registers that hold a block of pixels to minimize the latency

of memory access is designed.

In this thesis, we will define new instructions to execute the interpolation procedure in a

DSP processor. We use the existing components as much as possible and add small amount

2

of hardware overhead to execute new instructions. Functionality of interpolation remains

unchanged and the number of executing instructions are decreased.

The rest of the thesis is organized as follows. In Chapter. 2, we briefly describe the

functionality of interpolation, definition of new instructions, and how new instructions are

applied. Chapter 3 demonstrates the hardware design which is based on Starfish DSP devel-

oped in NCTU. Modifications of Starfish-assembler and Starfish-Simulator are also briefly

described. Experimental results on performance and overhead of our design are shown in

Chapter 4. Finally, Chapter 5 gives the concluding remarks.

3

