
國 立 清 華 大 學

博 士 論 文

先進微影技術與三維整合技術之優化方法

Optimization Methods for Modern Lithography
and 3D Integration Technologies

系 所 別 ： 資訊工程學系 組別：
學號姓名 ： 938316 蔡名詔 (Ming-Chao Tsai)
指導教授 ： 黃婷婷 博士 (Dr. TingTing Hwang)

中華民國九十九年十二月

Optimization Methods for Modern
Lithography and 3D Integration

Technologies

Student: Ming-Chao Tsai

Advisor: Prof. TingTing Hwang

December 3, 2010

Abstract

As the semiconductor technology advances, the interconnect delay gradually dom-

inates the entire circuit delay and becomes the bottleneck of the circuit perfor-

mance. To further improve the performance, manufacturers invest great deal of

effort to reduce the delay by miniaturizing the chip size and shortening the in-

terconnects. In this dissertation, we propose using modern lithography and 3D

integration technologies to scaling down the chip size. Since the phase shift

mask(PSM) is a very effective lithography technology to miniature the layout pat-

terns, we focus on PSM design issues and propose a wire spreading algorithms

to modify layouts for PSM compliance. Experimental result shows that our algo-

rithm can eliminate more than 98% of phase conflicts without increasing the die

size.

With the aid of through-silicon via (TSV), 3D integration is able to shorten

the wirelength of inter-tier net and achieves high performance. However, TSV is

not volumeless point and cannot be placed anywhere on a layout. Without plan-

ning TSVs in the early design stage, a post TSV insertion procedure is required to

arrange TSV to white space. To this end, we also propose a 3D floorplanning al-

gorithm to simultaneously plan functional blocks and TSVs. Experimental results

show that our algorithm outperforms a post-processing TSV planning algorithm

in wirelength by 22.3%.

Although TSV potentially reduces the wirelength of a 3D-IC, the area over-

head of TSV poses negative impact to circuit. Applying too many TSVs in a de-

sign increases the size of a 3D-IC and extends the distances among active devices.

Therefore, we also propose evaluation methods to study the trade-off among wire-

length, number of TSVs, size of TSVs and placement of 3D-ICs. Experimental

results reveal that the optimal number of TSVs of a design varies with the size

of TSVs. When the size of TSV is small, the using more TSVs is beneficial

for wirelength reduction. On the contrary, when large TSV is applied, a design

prefers using routing topologies with least number of TSVs to minimize the total

wirelength. Also, our experimental results show that the best partition scheme for

placement is sensitive to the size of TSV. The larger TSV we use, the earlier we

have to partition cells to different tiers.

Contents

1 Introduction 1

2 An MILP-Based Wire Spreading Algorithm for PSM-Aware Layout

Modification 4

2.1 Preliminaries and Problem Formulation 7

2.1.1 Preliminaries . 7

2.1.2 Problem Formulation . 13

2.2 Algorithm . 17

2.2.1 Candidate Removal Set 17

2.2.2 An MILP-Based Wire Spreading Algorithm 20

2.3 Experiment Results . 24

2.4 Summary . 25

3 Through-Silicon Via Planning in 3D Floorplanning 29

3.1 Motivation . 32

3.2 Problem Formulation and Modeling 35

3.2.1 Face-to-Back Integration Technology 37

I

3.2.2 Wirelength Estimation 39

3.2.3 Fixed-Outline Floorplan 41

3.2.4 Problem Formulation . 42

3.2.5 Thermal Analysis . 42

3.3 Algorithm . 44

3.3.1 Perturbation of Solution 45

3.3.2 TSV Planning . 47

3.3.3 TSV Re-Assignment . 51

3.4 Experiment Results . 55

3.4.1 Results of TSV-Aware Floorplanning 56

3.4.2 Results of TSV Re-Assignment 61

3.4.3 Sensitivity Analysis on Size of TSVs 61

3.5 Summary . 62

4 An Evaluation of Trade-off among Wirelength, Number of Through-

Silicon Via and Placement in 3D-ICs 65

4.1 Motivation . 67

4.2 Evaluation of TSV and Wirelength 69

4.2.1 Wirelength of 3-D Spanning Tree 71

4.2.2 TSV Impact on Longest Paths 73

4.2.3 Wirelength of Different 3-D Placements 75

4.3 Experiment Results . 79

4.3.1 Results of Spanning Trees 79

II

4.3.2 Results of TSV Impact on Lengths of Longest Paths . . . 81

4.3.3 Results of Different Placements 83

4.4 Summary . 85

5 Conclusion 89

III

List of Figures

2.1 A layout which has the phase conflict problem 10

2.2 (a) The conflict graph of four wire segments. (b) The simulated

aerial image. 10

2.3 Odd face elimination method. 11

2.4 (a) A case which overestimates the number of eliminated odd

faces. (b) A layout infeasible case. 11

2.5 An illustration of a conflict graph and its dual graph. 12

3.1 A demonstration of how TSV position affects wirelength. 34

3.2 Statistical results of numbers of nets. 36

3.3 Face-to-back chip stacking. 38

3.4 Our wirelength estimation method 40

3.5 Thermal model. 43

3.6 Overall flow. 46

3.7 Flow chart of prob TSV planning. 49

3.8 Flow chart of detailed TSV planning. 51

3.9 Expansion and detouring. 52

IV

3.10 A flow network and the corresponding placement. 54

3.11 Average wirelengths with different TSV sizes. 63

4.1 The impact of TSV on wirelength of IBM-PLACE2 benchmarks [45]. 68

4.2 Pseudo code of spanning tree construction 70

4.3 The exact net model. 74

4.4 The trade-off between wirelength and number of TSV under fixed

TSV size in IBM01. 81

4.5 The trade-off between wirelength and size of TSV in IBM01. . . 83

4.6 Normalized optimal wirelengths of all test cases. 85

4.7 TSV impact on longest paths. 86

4.8 Number of TSVs and parameter α in our cutting scenario. 87

4.9 Normalized wirelength versus parameter α. 87

V

List of Tables

2.1 Notation list . 27

2.2 Benchmark layout parameters. 28

2.3 The experimental results of layout modification. 28

3.1 Notation list . 39

3.2 Comparison between algorithm proposed in [15] and our algorithm. 59

3.3 Comparison between TSV-aware and TSV-unware algorithms. . . 60

3.4 Comparison between algorithm with and without thermal consid-

eration. 60

3.5 The total wirelength improvement rate of TSV re-assignment. . . 61

4.1 Benchmarks . 68

4.2 Notation list . 69

4.3 Maximum TSV area ratio . 88

VI

Chapter 1

Introduction

Since the invention of semiconductor transistors, the performance of integrated

circuits (ICs) keeps improving with the evolving of semiconductor technology.

The ever-growing demand for higher performance drives the development of semi-

conductor industry. To reduce the interconnect delay and achieve higher circuit

performance, IC manufacturers invest a great deal of effort into IC miniaturization

technologies. Among all the technologies, the advanced lithography and three di-

mensional (3-D) integration technologies are viewed as two promising solutions

to effectively scale down circuits. Phase shift mask (PSM) is the pioneer of the

advanced lithography technology and has been widely used in recent years. By

effectively scaling down the feature size and shortening interconnects, PSM dras-

tically improves the performance of a chip. Different from PSM, the 3-D integra-

tion technology stacks up multiple chips and uses through-silicon vias (TSVs) to

connect the inter-chip wires. The TSVs directly punch through silicon substrates

and provide direct links among the stacked up chips. Hence, the signal delay can

be reduced. Since these two technologies are in different stages of the manufac-

1

turing flow and can be used without interfering each other, applying both of the

technologies further improves the performance.

Although PSM and 3D integration technologies profoundly enhance the per-

formance of circuits, they also bring extra burdens to modern circuit design. In

order to apply PSM, the layout of a circuit must comply with extra design con-

straints. Thus, the design rules become more complicated. Also, in the 3D integra-

tion, TSVs occupy the silicon area and are viewed as routing obstacles. Applying

too many TSVs in a design, the negative impact will cancel out the benefit of

3D integration. To take full advantage of the modern techniques, it is necessary

to make an in-depth study on PSM and 3D integration technologies and designs

optimization methods for them.

This dissertation is divided into three parts. The first part focuses on the PSM

technology. We propose algorithms to modify the layout for PSM rule compli-

ance. The second part studies the 3D floorplan with TSV planning considera-

tion. Since lengths of interconnects change with the areas and positions of TSVs,

we propose an algorithm to simultaneously plan TSVs and functional blocks for

wirelength reduction. As mentioned previously, TSVs potentially reduce the wire-

length by providing direct links in 3D-IC. However, the area overhead of TSVs

poses negative impact to designs. To make a comprehensive analysis, in the third

part of the dissertation, we study the trade-off among wirelength, number of TSVs

and size of TSVs. Also, we propose a fast evaluation algorithm to evaluate how

TSVs influence the wirelengths of nets with different routing topologies.

The rest of the dissertation is organized as follows. Chapter 2 presents a wire

2

spreading method for PSM-aware layout modification. Chapter 3 presents TSV

planning in 3D-ICs. Chapter 4 presents the evaluation of trade-off among wire-

length, number of TSV and placement in 3D-ICs. Finally, Chapter 5 concludes

our work.

3

Chapter 2

An MILP-Based Wire Spreading
Algorithm for PSM-Aware Layout
Modification

Optical lithography has been a critical step in the VLSI fabrication process. As the

pitches of leading-edge products scale down, phase shifting mask (PSM) and im-

mersion lithography are viewed as potential solutions to carry the 193nm lithog-

raphy beyond 65nm node. The key of immersion lithography lies on high-index

fluids which increase the numerical apertures of the lithography system. Never-

theless, ASML and Nikon recently announced that the numerical apertures had

essentially reached their limit for water-based immersion lithography [1]. In the

45nm technology node, the pitch of metal 1 (M1) is reduced to 90nm, which ne-

cessitates the incorporation of immersion lithography and strong PSM techniques

such as alternating PSM (altPSM). Assume that the minimum spacing which can

be resolved by applying conventional mask is B. Beyond this spacing, strong

constructive diffraction effect interferes the imaging of critical features. Applying

4

altPSM extends the limit of resolution to b (= B/2) by destructive interference.

However, this resolution improvement can be achieved only if the apertures of

two adjacent critical features are assigned to opposite phases. Although altPSM

shows great potential in resolution enhancement, a layout must be compliant to

the phase assignment constraint. Figure 2.1 shows a layout which cannot satisfy

the phase assignment constraint. Since spacing between any two of the three rect-

angular wire segments in Figure 2.1 is critical, any two of these features must

be in opposite phases. However, no matter what phase we assign to the bottom

feature, it will be the same as one of the upper two features. Thus, this layout

has the phase conflict problem. Masks can be categorized into dark field masks

and bright field masks. The dark field masks are mainly used for metal layers,

and the bright field masks are usually used for poly layers. Targeting on the dark

field altPSM, McCullen reported routing restrictions that enable the generation of

phase-correct layout [2]. Berman et al. [3] proposed a graph based algorithm for

solving the phase conflict problem. To obtain altPSM compliant layouts, conflict

graphs are constructed according to given layouts, and then a minimum-weight

set of edges is removed from each graph to ensure the resultant graph 2-colorable.

The edge deletions in the conflict graphs are accomplished by changing the place-

ment of the features. Although their algorithm is efficient, it is hard to assign edge

weights since we cannot compute how far each layout object needs to be moved

before replacement is done. Moreover, this approach may induce area overhead.

To handle the phase conflict problem for bright field masks, Cao et al. proposed a

Boolean satisfiability based method to generate PSM compliant and composiable

5

cell libraries [4]. Although their algorithm considered the phase conflict problem

within and between library cells, it does not consider phase conflicts among in-

terconnections. In addition, the areas of resultant library cells increase. Chiang

et al. proposed a layout correction algorithm for standard-cell layouts [5]. The

proposed algorithm targets on bright field AAPSM (alternating aperture PSM) for

the poly layer. It inserts end-to-end spaces into layouts to solve the phase conflict

problem. Although it completely eliminates phase conflicts in a given layout, un-

fortunately it also induces area increasing. Since the pitch of critical metal layers

continues to scale down, it becomes urgent to find a solution to solve the phase

conflict problem for critical metal layers. In addition, the advanced VLSI tech-

nology adopts the dual damascene (DD) process flow to accomplish the copper

metallization. Therefore, in this chapter, we focus on the dark field altPSM which

pertains to the DD process. Although Berman et al. [3] has presented an effi-

cient algorithm to remove phase conflicts, unfortunately the algorithm not only

induces area overhead but also changes the placement, which is costly from the

viewpoint of a physical design flow. To cope with these drawbacks, we propose a

new layout modification algorithm to solve the phase conflict problem. Our algo-

rithm uses the wire spreading technique to adjust the wire segment positions on

the critical metal layers within the predefined die size. In addition, to effectively

reduce the perturbation to a layout, our algorithm tries to reduce phase conflicts

as many as possible and to minimize the total amount of wire segment movement.

Our algorithm is designed based on mixed integer linear programming (MILP),

and is applicable to both standard-cell and custom layouts. The MILP based al-

6

gorithm is flexible enough to take other practical issues, such as the lengths of

critical nets, into consideration as well. Different from existing works which first

solve the phase conflict problem by removing edges from the layout-associated

conflict graphs to make the resultant graphs 2-colorable and then try to revise

the layout to match the resultant conflict graphs, our algorithm directly fixes the

phase conflict problem through wire spreading while at the same time minimiz-

ing the total amount of wire segment movement. Compared with the number of

edges deleted from conflict graphs, the total amount of wire segment movement

is a more direct metric to reflect the cost for revising a layout. Furthermore, the

recently remarkable improvement on linear programming solvers [6] has made

our algorithm become competitive, and the experimental results well support the

effectiveness of our algorithm. The rest of this chapter is organized as follows.

In Section 2.1, we describe the preliminaries and our strategy to solve the phase

conflict problem using wire spreading. Section 2.2 describes our algorithm. Sec-

tion 2.3 provides the experimental results which demonstrate the effectiveness of

our approach. Finally, Section 2.4 summarizes this chapter.

2.1 Preliminaries and Problem Formulation

2.1.1 Preliminaries

The phase assignment of wire segments on a metal layer can be done by coloring

the corresponding conflict graph with two colors. In the graph each node repre-

sents a wire segment. If the spacing between a pair of adjacent wire segments

falls in [b, B], the two wire segments must be assigned to opposite phases and

7

we create an edge between their corresponding nodes. The layout is said to be

altPSM compliant if and only if all associated conflict graphs are 2-colorable. If

two nodes connected by an edge have the same color, we say they incur a phase

conflict. For simplicity and clarity, we assume all wire segments are rectangles .

The construction of a conflict graph is described as follows. First, we bloat each

wire segment by the distance b. Next, we apply the line sweeping algorithm to

check if two bloated regions intersect or not. Then, the edges are constructed be-

tween pairs of nodes whose corresponding bloated segments intersect. However,

according to our empirical study, we observed that if a wire segment is placed at

the lower-left or lower-right position of another wire segment and their bloated

regions intersect, the phases of these two wire segments can be identical with-

out causing unresolvable aerial image. To demonstrate this observation, we use a

layout with four wire segments A, B, C and D as shown in Figure 2.2(a). The

dashed rectangles show their bloated regions, and the shaded area highlights the

bloated region of C. The four red solid lines and two red dashed lines are the

edges of the conflict graph. Figure 2.2(b) shows the simulated aerial image of

the four wire segments as well as their phases. The simulation is performed by

Silvaco Athena [7], where the wavelength and NA are 193nm and 0.85, respec-

tively, and the wire width and spacing are both 90nm. From the result, we can see

that although the bloated regions of B (the upper-left wire segment) and C (the

lower-right wire segment) overlap, no image bridging occurs between them and

therefore they both can be assigned to the same phase. As a result, we can remove

the edge between their corresponding nodes from the conflict graph (i.e., the red

8

dashed edge connecting B and C in Figure 2.2(a) can be removed). The same ob-

servation applies to A (the upper-right wire segment) and D (the lower-left wire

segment) as well, and therefore the edge (A, D) in Figure 2.2(a) can be removed.

By removing these ”crossing” edges, we can guarantee the planarity of the con-

flict graph. Throughout the rest of this chapter, we will assume conflict graphs

are all planar. It is not hard to see that a metal layer is altPSM compliant if and

only if its conflict graph does not have any odd face. On the other hand, the mini-

mum number of phase conflicts among all possible phase assignment solutions of

a metal layer is bounded by half the number of the odd faces in the corresponding

conflict graph, which can be derived from [8]. Therefore, we use the number of

odd faces as a metric to measure the amount of phase conflicts. In this chapter,

we use wire spreading to remove phase conflicts among wire segments. A proper

wire spreading solution induces edge deletion to remove odd faces of a conflict

graph. Thus, our goal is to use the wire spreading technique to reduce the num-

ber of odd faces as many as possible. For an easier presentation, we only focus

on wire spreading along the vertical direction throughout the rest of this chapter,

unless stated otherwise. In order to maintain the correct circuit functionality and

avoid over distortion for a given layout, the following constraints must be satisfied

after wire spreading:

1. Die region constraint:

Since the dimensions of a die have been specified in the very beginning of

a physical design flow, it is costly to fix phase conflicts by relaxing the die

size. Thus, all the wire segments must locate within the original die region.

9

Figure 2.1: A layout which has the phase conflict problem

AB

D CC

Figure 2.2: (a) The conflict graph of four wire segments. (b) The simulated aerial
image.

10

(a) (b)

F1 F2 F3

F4

1
2

3

4
5

6
7 8

F5

F4

1
2

3

4
5

6

Figure 2.3: Odd face elimination method.

p

(a) (b)

u

vw
A

B
C

r

q

Figure 2.4: (a) A case which overestimates the number of eliminated odd faces.
(b) A layout infeasible case.

11

1

2

3

4
5

1
2

34

5
6 7

89

10
11

3* 2*
4*

1* 5
*

10
*

6
*

11
*

9
*

8
*

7
*

N1

N3

N5

N4

N2

Figure 2.5: An illustration of a conflict graph and its dual graph.

2. Fixed pin constraint:

Since we do not alter the placement results, the I/O pins of cells or hard

macros are thought to be immovable. If one end of a wire segment con-

nects with an immovable pin, then the coordinate of this end must be left

unchanged.

3. Connection constraint:

If wire segments in different layers are connected through vias, then these

connections must be maintained.

4. Vertical order constraint:

To ensure that routing patterns will not be drastically changed, if the hor-

izontal spans of two wire segments in the same layer overlap, then their

relative positions in the vertical direction must be held.

12

5. Minimum spacing constraint:

The spacing between any two wire segments cannot be smaller than mini-

mum spacing b.

6. Maximum movement constraint:

Each wire segment can be moved only within a user defined range.

Besides, it is favorable to size down the conflict graphs and not to over

modify the original layout. Therefore, the following constraint should also

be satisfied after wire spreading:

7. Graph simplicity constraint:

If the distance between two wire segments is longer than B, then this spatial

relation should be kept in the revised layout. Otherwise, it will introduce a

new edge in the conflict graph. This constraint ensures not to add edges into

conflict graphs.

A wire spreading solution is said to be feasible if it meets the above seven con-

straints.

2.1.2 Problem Formulation

The problem of applying wire spreading to remove phase conflicts is stated as

follows: Given a layout which contains n metal layers, we first construct a conflict

graph for each of the n layers. The problem asks for finding a new arrangement for

the wire segments lying in each of the n layers such that the sum of the numbers

of odd faces of the resultant conflict graphs is minimized and the total amount

13

of wire segment movement is also minimized. In addition, the wire spreading

solution must satisfy all the constraints stated in Section 2.1.1. To reduce the

number of odd faces in a conflict graph, we need to delete edges from the graph.

Each edge in a conflict graph can be exactly categorized into one of the following

four types:

1. Shared by two odd faces:

If the edge is deleted, it will merge two odd faces into one even face and

therefore the number of odd faces can be reduced by two.

2. Shared by two even faces:

If the edge is deleted, it will merge two even faces into one even face and

therefore the number of odd faces will be unchanged.

3. Shared by one odd face and one even face:

If the edge is deleted, it will merge the two faces into one odd face and

therefore the number of odd faces will be unchanged.

4. Not shared by two faces: If the edge is deleted, it does not merge any face

and therefore the number of odd faces will be unchanged.

From the above observations, we have the following lemma.

Lemma 1 For each edge deletion, the number of odd faces can be reduced if and

only if the deleted edge is shared by two odd faces.

Although merging an odd face with an even face by deleting one of their common

edges does not immediately reduce the number of odd faces, it makes the odd

14

face grow. After several iterations, this growing odd face may directly abut with

another odd face and then we can delete one of their common edges to merge them

into an even face. The series of mergings can be regarded as pairing two odd faces

through a series of even faces. Figure 2.3 shows an example of how to pair two

odd faces which are not directly abutted. Initially, two odd faces F1 and F3 are not

abutted as seen in (a). By sequentially removing edges 7 and 8 from the graph,

F1, F2 and F3 gradually merge into an even face F5 which is shown in (b). In this

chapter, we aim to reduce the number of odd faces by pairing odd faces (which

may or may not be directly abutted at the beginning). In the following, we define

a special edge set called merging set.

Definition 1 (Merging set): Given a conflict graph, a merging set is a set of edges

whose deletion from the graph can merge two odd faces into one even face. For

a pair of odd faces, there may exist more than one merging set. A merging set is

said to be minimal if there exists no edge e in the set such that after deleting the

edge e, the resultant set is still a merging set.

According to the above definition and Lemma 1, deleting all edges in a minimal

merging set from a conflict graph reduces the number of odd faces by 2. It is also

worth noting that a set of odd face pairings may not always reduce the number of

odd faces by twice the number of pairings, or may not be always achievable by

wire spreading. We use Figure 2.4(a) and (b) to explain these two cases, respec-

tively. In Figure 2.4(a), we have the merging sets {(u, v)} and {(v, w)} for odd

face pairs (A, B) and (B, C), respectively. Deleting edge (u, v) or edge (v, w)

alone merges faces A and B, or B and C into one even face. Intuitively, deleting

15

two merging sets simultaneously implies to eliminate two pairs of odd faces, and

the number of odd faces should be reduced by four. However, because the two

odd face pairs share a common face B, simultaneously deleting (u, v) and (v, w)

merely merges the three odd faces into one odd face and thus the number of odd

faces is reduced only by two. Figure 2.4(b) shows an example where simulta-

neously performing two odd face pairings may be infeasible. According to the

conflict graph shown in Figure 2.4(b), both odd face pairs in the upper and the

lower parts can be merged individually by deleting edges (p, q) and (q, r), respec-

tively. However, the wire segments p and r are connected with immovable pins

indicated by black squares, and therefore p and r cannot be moved through wire

spreading. Now, if the vertical moving range for q (i.e., the range between the

bottom boundary of p and the top boundary of r) is not large enough to move q

to a location such that both edges (p, q) and (q, r) can be removed from the con-

flict graph, then simultaneously performing two odd face pairings in this graph

becomes impossible.

We next define another special edge set called orthogonal set.

Definition 2 (Orthogonal set): Given the conflict graphs corresponding to a lay-

out, an orthogonal set is a union of a collection of minimal merging sets and

satisfies the following two conditions:

1. In this set, edges belonging to different minimal merging sets do not share

any common face.

2. There exists at least a feasible wire spreading solution such that all the

16

edges in this set are no longer in the new conflict graphs. The cardinality

of an orthogonal set is defined to be the number of merging sets involved in

the set, which is also equal to half the amount of eliminated odd faces after

removing from the conflict graphs all the edges in the set.

Definition 3 (Deviation): The deviation induced by an orthogonal set is the min-

imum total amount of wire segment movement among all feasible wire spreading

solutions corresponding to this orthogonal set.

In this chapter, instead of solving the general wire spreading problem as de-

scribed at the beginning of this subsection, we only focus on the multi-layer odd

face pairing problem which asks to find an orthogonal set with maximum cardi-

nality and a corresponding wire spreading solution with the minimum deviation.

2.2 Algorithm

In this section, we first introduce another special edge set called candidate removal

set and show the relation between a candidate removal set and an orthogonal set.

We then derive an MILP model to find a candidate removal set (and thus an or-

thogonal set as well) and a corresponding wire spreading solution such that the

total cardinality and the total deviation are both optimized.

2.2.1 Candidate Removal Set

Candidate removal set is defined as follows:

17

Definition 4 (Candidate removal set): Assume that we are given n conflict graphs

Gi = (Vi, Ei)’s, 1 ≤ i ≤ n, corresponding to a n-layer layout. Let G = (V, E),

where V = V1

⋃
V2...

⋃
Vn, and E = E1

⋃
E2...

⋃
En. A candidate removal set

E ′ is a subset of E such that there exists at least a feasible wire spreading solution

to remove all the edges in E ′ from G. In addition, E ′ must satisfy the following

constraints:

1. For every odd face OF in G, either there is exactly one edge in E ′ which is

also in OF , or no edge in E ′ is also in OF .

2. For every even face EF in G, either there are exactly two edges in E ′ which

are also in EF , or no edge in E ′ is also in EF .

In the remaining subsection, we step-by-step explain the relation between a candi-

date removal set and an orthogonal set. We first have the following lemma which

can be proved based on Lemma 1, Definition 1 and the concept of graph duality.

Lemma 2 Given a conflict graph Gi and its dual graph Di, a set M of edges is a

minimal merging set in Gi if and only if the set M ∗ of the dual edges of M forms a

path in Di such that each of the two end nodes of the path corresponds to an odd

face in Gi and each of the other nodes in the path corresponds to an even face in

Gi.

We use Figure 2.5 to facilitate the understanding of the above lemma. Figure 2.5(a)

depicts a conflict graph which includes 8 nodes, 11 edges and 5 faces. The faces

18

are denoted by F1 to F5, where F1 and F2 are the only two odd faces. A mini-

mal merging set M to merge F1 and F2 into an even face consists of the edges

4, 6 and 11. Figure 2.5(b) illustrates the dual graph. The nodes N1 to N5 are the

corresponding nodes of faces F1 to F5, respectively. Same tag number is used for

each edge and its dual edge, except a superscript asterisk is used to distinguish a

dual-graph edge and a conflict-graph edge. The edges 4∗, 6∗ and 11∗ which are

dual edges of M form a path N1-N3-N4-N2 in the dual graph. The two end nodes

N1 and N2 correspond to the odd faces F1 and F2 while the other nodes N3 and

N4 correspond to the even faces F3 and F4.

Lemma 3 If two minimal merging sets of a conflict graph are involved in the same

orthogonal set, their corresponding paths in the dual graph are node-disjoint.

Proof. By Lemma 2, the dual edges of each minimal merging set form a path.

By Definition 2, the two minimal merging sets do not share any common face.

Thus, the corresponding paths of the two merging sets are node-disjoint in the

dual graph. �

Theorem 1 (Orthogonal set inclusion theorem): Any candidate removal set con-

tains an orthogonal set.

Proof. According to the concept of graph duality and the constraints (1) and (2)

imposed on a candidate removal set, the dual edges of a candidate removal set E ′

can only compose two kinds of connected components-paths and cycles. We can

further uniquely decompose E ′ into two disjoint edge sets P and C, and use P ∗

and C∗ to denote their dual edge sets, respectively, where P ∗ is composed of a set

19

of node-disjoint paths and C ∗ is composed of a set of cycles. Moreover, the two

end nodes of each path in P ∗ correspond to odd faces in G and the other nodes

in the path correspond to even faces in G. Therefore, according to Lemma 2 and

Lemma 3, P is a collection of minimal merging sets which do not share common

faces in G. Besides, if S is a feasible wire spreading solution for E ′, then S is

also a feasible wire spreading solution for P , according to Definitions 2 and 4.

As a result, P is an orthogonal set. �

It is not hard to see that in the proof of Theorem 1, the number of paths in P ∗

is half the number of odd-degree nodes in P ∗. Thus, the cardinality of P is half

the number of odd-degree nodes in P ∗. For convenience, we define the equivalent

cardinality of the candidate removal set E ′ to be the number of paths in P ∗. Based

on Theorem 1, the multi-layer odd face pairing problem will now be tackled by

solving the following problem.

Candidate removal set problem: Given an n-layer layout, this problem asks for

finding a candidate removal set and a corresponding feasible wire spreading solu-

tion such that the equivalent cardinality of the candidate removal set is maximized

and the induced deviation is minimized.

2.2.2 An MILP-Based Wire Spreading Algorithm

Table 2.1 lists the notations and the definitions of the variables to be used in the

description of our MILP based algorithm. First, we construct a conflict graph

Gi for the ith layer of the layout. Each node Ni,j is represented by a five tulpe

(x0,i,j, y0,i,j, x1,i,j , y1,i,j, wi,j) which records the geometric information of the wire

20

segment of Ni,j. Then, the candidate removal set problem is formulated as an

MILP model below.

Maximize β
n∑

i=1

oi∑
l=1

(fi,l|Fi,l is an odd face)−
n∑

i=1

mi∑
j=1

(σ0,i,j + σ1,i,j + ε0,i,j + ε1,i,j)

subject to

y0,i,j − wi,j ≥ 0, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m (2.1)

y0,i,j + wi,j ≤ H, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m (2.2)

y0,i,j = y∗
0,i,j, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, T0,i,j connects with a fixed pin (2.3)

y1,i,j = y∗
1,i,j, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ m, T1,i,j connects with a fixed pin (2.4)

y∗
0,i,j − movement ≤ y0,i,j ≤ y∗

0,i,j + movement, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi (2.5)

y∗
1,i,j − movement ≤ y1,i,j ≤ y∗

1,i,j + movement, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi (2.6)

y0,i,j = y0,i+1,j, ∀i, j, k : 1 ≤ i ≤ n − 1, 1 ≤ j ≤ mi, 1 ≤ k ≤ mi+1, T0,i,j connects T0,i+1,k (2.7)

y0,i,j − wi,j − wi,k − y1,i,k ≥ b, ∀i, j, k : 1 ≤ i ≤ n, 1 ≤ j ≤ mi, j < k ≤ mi, y0,i,j ≥ y1,i,k,

the horizontal spans of the bloated regions of Ni,j and Ni,k overlap (2.8)

y0,i,j − wi, j − wi,k − y1,i,k ≥ B, ∀i, j, k : 1 ≤ i ≤ n, 1 ≤ j ≤ mi,

j < k ≤ mi, Ei,j,k /∈ Gi, y
∗
0,i,j ≥ y∗

1,i,k (2.9)

y0,i,j = y1,i,j, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi, Ni,j is a horizontal wire segment (2.10)

21

y0,i,j − wi, j − wi,k − y1,i,k ≥ B × ei,j,k, ∀i, j, k : 1 ≤ i ≤ n, 1 ≤ j ≤ mi,

j < k ≤ mi, Ei,j,k ∈ Gi, y
∗
0,i,j ≥ y∗

1,i,k (2.11)

fi,l =

mi∑
j=1

mi∑
k=j

(ei,j,k|Ei,j,k ∈ Fi,l and Fi,l is an odd face)∀i, l : 1 ≤ i ≤ n, 1 ≤ l ≤ oi (2.12)

2 × fi,l =

mi∑
j=1

mi∑
k=j

(ei,j,k|Ei,j,k ∈ Fi,l and Fi,l is an even face)∀i, l : 1 ≤ i ≤ n, 1 ≤ l ≤ oi (2.13)

σ0,i,j ≥ 0, and y∗
0,i,j − y0,i,j + σ0,i,j ≥, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi (2.14)

ε0,i,j ≥ 0, and y0,i,j − y∗
0,i,j + ε0,i,j ≥, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi (2.15)

σ1,i,j ≥ 0, and y∗
1,i,j − y1,i,j + σ1,i,j ≥, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi (2.16)

ε1,i,j ≥ 0, and y1,i,j − y∗
1,i,j + ε1,i,j ≥ 0, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi (2.17)

x0,i,j , y0,i,j, x1,i,j, y1,i,j, σ0,i,j, σ1,i,j, ε0,i,j, ε1,i,j ∈ R, ∀i, j : 1 ≤ i ≤ n, 1 ≤ j ≤ mi (2.18)

ei,j,k ∈ {0, 1}, ∀i, j, k : 1 ≤ i ≤ n, 1 ≤ j ≤ mi, j ≤ k ≤ mi, Ei,j,k ∈ Gi (2.19)

fi,l ∈ {0, 1}, ∀i, l : 1 ≤ i ≤ n, 1 ≤ l ≤ oi (2.20)

The objective function can be decomposed into two terms. The first term is the

gain function which is equal to the reduction of number of odd faces; i.e. twice

the cardinality of a candidate removal set. The second term is the penalty func-

tion which is equal to the deviation induced by revising the layout. A constant

β is introduced to provide a tradeoff between these two terms. Constraints (1)

and (2) require wire segments to locate within a fixed die area. Constraints (3)

and (4) bind the ends of wire segments with fixed pins. Constraints (5) and (6)

confine wire segments to move within the given allowable range. Constraint (7)

22

maintains the connectivity among wire segments. To satisfy the minimum spacing

rule of altPSM and to keep the relative vertical order of wire segments, we have

constraint (8). To maintain the orientations of horizontal wire segments, we have

constraint (9). To preserve the graph simplicity constraint, we have constraint

(10). In constraint (11), we use a Boolean variable ei,j,k to determine whether

edge Ei,j,k is removed or not. If ei,j,k is assigned to 1, Ei,j,k is removed from the

corresponding conflict graph. As a consequence, the spacing between wire seg-

ments Ni,j and Ni,k must be greater than B. To satisfy the constraints imposed

on a candidate removal set, we have constraints (12) and (13). To calculate the

deviation of both ends of a wire segment, we apply a relaxation technique. With

constraints (14) and (15), the sum of σ0,i,j and ε0,i,j is exactly the absolute value

of difference between y0,i,j and y∗
0,i,j, when we minimize σ0,i,j and ε0,i,j. Similar

principles are applied to calculate the deviation of T1,i,j. Thus we have constraints

(16) and (17). Finally, the value ranges of all variables are given by constraints

(18), (19) and (20). In this MILP model, we introduce six real variables for each

node, one binary variable for each edge and one binary variable for each face.

Assume that the number of nodes, edges and faces are v, e and f , respectively.

The total number of variables is 6v + e+ f . In the given planar graphs, both e and

f are of the same order as v. Thus, the number of variables is O(v). Obviously

we can see that, except constraint (8) whose number grows with v2, the number

of the rest of the constraints linearly grows with v, e or f . Therefore, the number

of constraints is O(v2).

23

2.3 Experiment Results

Our algorithm was implemented in C++ and run on an Intel 1.6GHz Linux ma-

chine. We used CPLEX [9] to solve the MILP problems. The values of B and b

are 160nm and 80nm, respectively. We adopted randomly generated layouts with

the same minimum spacing and wire width to test the robustness and stability of

our algorithm. All the layouts use 4 metal layers. Table 2.2 shows the statistics of

each layout. The names of layouts are listed in the first column. The #node, #edge

and #odd face respectively show the numbers of nodes, edges and odd faces of

the conflict graphs before wire spreading. The number of nets for each layout is

indicated in the column #net. For general consideration, we assume that some

pins are immovable.

The experimental results are summarized in Table 2.3. Besides our algorithm,

we also present the results of two other algorithms (the adjacent pairing algorithm

and the aggressive algorithm) for comparison. The adjacent pairing algorithm re-

moves the odd faces by deleting edges which are shared by two abutted odd faces,

and the aggressive algorithm eliminates odd faces as many as possible without

considering the deviation. Both of these two algorithms are derived from our al-

gorithm by either modifying some constraints or the objective function. For each

layout, each algorithm performed one run of vertical wire spreading followed by

horizontal wire spreading. The columns #rof, deviation, %comp and runtime in

Table 2.3 show the number of remaining odd faces, the induced deviation (nm),

the reduction rate of odd faces, and the run time (sec), respectively. To make com-

24

parisons among these algorithms, we normalize the value of each column with

respect to the results of our algorithm. The adjacent pairing algorithm intuitively

solves the phase conflict problem using the observation of Lemma 1. Although

it is the fastest algorithm among the three algorithms, the solution space is only

a subset of the other two algorithms. Many odd faces which are surrounded by

even faces have no chance to merge with other odd faces. Therefore, there are

still many odd faces left after wire spreading. On the contrary, the aggressive al-

gorithm completely eliminates all odd faces and the runtime is shorter than our

algorithm. However, it induces a large amount of deviation, which may impact

the circuit timing. In order to emphasize the importance of deviation, we assigned

β a relatively small value in our algorithm. The results indicate that our algorithm

shows a good tradeoff among runtime, deviation, and completion rate of odd face

elimination. Our completion rate is only slightly lower than the aggressive al-

gorithm, and the deviation is significantly smaller than the aggressive algorithm.

In addition, the experimental results demonstrate that the runtime of our MILP

algorithm is reasonable.

2.4 Summary

In this chapter, we present an MILP-based wire spreading algorithm to solve the

phase conflict problem with minimal perturbation to the given layout. Different

from the previous works which ask for finding a minimum weighted edge set

or a minimal edge set whose removal makes the conflict graph 2-colorable, our

algorithm use the exact deviation of wire segments as cost. The experimental

25

results show the effectiveness of our algorithm; less than 2% of odd faces are left

in the modified layout and no area increase is needed for the modification. In

addition, the modification will not alter the lengths of the critical nets, if we add

linear constraints to control the critical wire lengths. The flexible MILP model

also allows integrating with a variety of practical issues such as redundant via

insertion [10].

26

Table 2.1: Notation list

H The height of the region
B The minimum spacing without applying altPSM
b The achievable minimum spacing of altPSM
movement Maximum allowable vertical movement of wire segments
n The number of layers
Gi The conflict graph of the ith layer
E a set of nets
mi The number of nodes in Gi

oi The number of faces in Gi

Ni,j The jth node in the conflict graph Gi

Ei,j,k The edge between Ni,j and Ni,k

T0,i,j If Ni,j is a horizontal wire segment, T0,i,j is the left end of the center line of Ni,j .
Otherwise, T0,i,j is the lower end of the center line of Ni,j .

T0,i,j If Ni,j is a horizontal wire segment, T0,i,j is the right end of the center line of Ni,j .
Otherwise, T0,i,j is the upper end of the center line of Ni,j .

ei,j,k A Boolean variable to control the deletion of edge Ei,j,k.
If ei,j,k is 1, edge Ei,j,k is removed from Gi.

fi,l A Boolean variable to determine the number of deleted edge(s) of face Fi,l.
If Fi,l is an odd face, we remove one edge from Fi,l when fi,l is 1.
If Fi,l is an even face, we remove two edges from Fi,l when fi,l is 1.
If fi,l is 0, no edge is removed from from Fi,l.

(x0,i,j , y0,i,j) The coordinate of T0,i,j after wire spreading.
(x1,i,j , y1,i,j) The coordinate of T1,i,j after wire spreading.
(x∗

0,i,j , y
∗
0,i,j) The original coordinate of T0,i,j .

(x∗
1,i,j , y

∗
1,i,j) The original coordinate of T1,i,j .

wi,j The half width of wire segmentNi,j .
σ0,i,j , σ1,i,j , ε0,i,j , ε1,i,j Four relaxation real variables to calculate the deviation of both ends of

wire segment Ni,j .

27

Table 2.2: Benchmark layout parameters.

#node #edge #odd face #net

C1 1009 436 14 254
C2 4984 2088 58 1702
C3 10974 6668 330 3514
C4 19642 12578 668 6175
C5 57182 36373 1908 17787

Table 2.3: The experimental results of layout modification.

Our algorithm Adjacent pairing algorithm Aggressive algorithm
#rof deviation %comp runtime #rof deviation %comp runtime #rof deviation %comp runtime

C1 0 629 100% 0.2 0 629 100% 0.2 0 677424 100% 0.2
C2 0 3667 100% 1.8 0 3503 100% 2.9 0 3504300 100% 1.3
C3 0 18691 99.39% 9.1 48 13599 85.45% 8.2 0 13756230 100% 8.6
C4 0 33967 98.88% 24.0 102 23339 84.73% 9.9 0 23933200 100% 22.1
C5 0 96535 98.43% 297.7 324 70711 83.02% 131.4 0 69980000 100% 140.8

normalized normalized normalized
#rof deviation %comp runtime #rof deviation %comp runtime #rof deviation %comp runtime

1 1 1 1 11.85 0.73 0.85 0.46 0 728.7 1.01 0.52

28

Chapter 3

Through-Silicon Via Planning in 3D
Floorplanning

Three dimensional integrated circuit (3D-IC) technology is a promising solution

for performance improvement. Compared to a traditional two-dimensional (2D)

IC design, which places all the devices on one single planar tier, a 3D-IC stacking

of multiple tiers allows more devices to be placed closely, hence substantially re-

ducing wirelength. It has been shown [11] that wirelength can be reduced by 15%

in a 3-tier 3D-IC, and 42% in a 4-tier 3D-IC. In addition to performance improve-

ment, 3D-ICs provide many benefits including high density, high bandwidth, and

low power [12].

Based on the stacking style, 3D integrations can be classified into three major

categories: face-to-face (F2F), face-to-back (F2B), and back-to-back (B2B) chip

stacking. A basic F2F stacking process only stacks two chips face-to-face. The

inter-chip connections directly go through the joined bonding pads in front sides of

both chips. For more than two tiers, F2B or B2B chip stacking is inevitable. F2B

chip stacking is the most commonly used multi-chip stacking process. The key to

29

realizing F2B chip stacking is through-silicon via (TSV) technology. A TSV is a

vertical metal channel that directly penetrates through the silicon substrate at any

feasible white space and connects an inter-chip net. In this chapter, we will focus

on the F2B chip stack.

In spite of tremendous benefits brought by the 3D integration, the 3D integra-

tion itself also bring extra burdens to a design. Since a TSV is much larger than

an ordinary via, the placement of a TSV is more restricted. It has been pointed out

that the bottleneck of net routing is related to signal TSVs [13]. The deployment

and feasibility of signal TSVs are crucial to a routing stage. Without considering

them in the early design stage, the performance of a design may degrade seriously,

or routing cannot even be completed. Therefore, floorplanning tools for 3D-ICs

must take signal TSV planning into account. Previous research is reviewed as

follows. He et al. [15] proposed a buffer and inter-layer via planning algorithm in

floorplanning. For each net, the algorithm identifies the bounding box of source

and sinks as a feasible region, and tries to place as many buffers and TSVs as

possible within the feasible region. However, the white space within the restricted

feasible region may not always be sufficient to accommodate buffers and TSVs.

Thus, their algorithm cannot guarantee completed routing. In fact, a preliminary

experimental result in the next section reveals that a large number of TSVs cannot

be put in the bounding boxes. Lu et al. [16] proposed a post-floorplan TSV place-

ment algorithm to improve the performance of designs. However, the optimality

of their results strongly depends on the given floorplan.

Another research category focusing on the thermal issue of 3D-ICs is intro-

30

duced as follows. Cong et al. [17] proposed a thermal-driven floorplanning algo-

rithm that simultaneously minimizes chip area, wirelength, number of TSVs and

temperature. In addition, a 2-stage floorplanning approach is proposed to reduce

the design complexity [18]. The first stage arranges modules into different tiers

to reduce the number of TSVs. Then, the second stage determines the floorplan

of each tier. Since TSV is a good medium for heat dissipation, a thermal TSV

planning scheme is integrated into their algorithm. To make the 3D floorplanning

more scalable, Zhou et al. also proposed a force directed algorithm to optimize

the area, wirelength and peak temperature of chips [19]. In addition, Li et al.

proposed a linear programming based algorithm to redistribute the white space

for thermal TSVs insertion [20]. To cope with the thermal problem, several plac-

ers [21–23] simultaneously optimize the temperature and the wirelength in the

placement stage. In addition, thermal-driven routers which place thermal TSVs

for temperature reduction are proposed in many papers [24] [25].

In this chapter, we will study floorplanning in 3D-IC. Although literature is

abundant on 3D-IC floorplanning, none of them consider the areas and positions

of signal TSVs. However, the stress induced by TSV impacts the performance

of neighboring device. Thus, a large keep out zone (KOZ) is conserved in the

neighboring area of a TSV and limits the size of TSV.In previous research, signal

TSVs are viewed only as points during floorplanning stage. Ignoring the areas,

positions and connections of signal TSVs, previous research estimates the wire-

length by measuring the bounding box of pins in a net only. Therefore, in this

chapter, we propose a 3D floorplaning algorithm that plans TSVs for wirelength

31

reduction.

The rest of the chapter is organized as follows. Section 3.1 presents the moti-

vation of this work. Section 3.2 describes details of the F2B stacking technology

and defines our problem. In Section 3.3, the details of our algorithm are illustrated

step by step. The experimental results are shown and discussed in Section 3.4. Fi-

nally, the summary of this chapter is presented in Section 3.5. Since we focus on

signal TSV planning, throughout the rest of this chapter, the term TSV refers to

signal TSV, unless otherwise stated.

3.1 Motivation

With the advance of 3D integration technology, TSV technology has become a

reliable technique for realizing inter-tier connections. However, previous research

on 3D-IC floorplanning does not consider the placement problem of signal TSVs

[17] [19]. Signal TSVs are viewed as points during floorplanning stage and placed

in white space after floorplanning is performed. However, even after applying

the leading-edge fabrication process, the size of TSV is still larger than that of

ordinary vias by two orders. Consider a TSV with a size of 10μm by 10μm, the

area of TSV is 80x larger than that of a basic cell (about 1.2μm2 [26]) in a 65nm

technology. In a 3D-IC, a thousand of TSVs will take up an area of 0.1mm2,

which is comparable to the size of a computation core. Thus, we cannot ignore

the size of TSV in the early design stage, and assume the signal TSVs can always

be arranged in any position in layouts.

According to our observations, the wirelength of a net changes significantly

32

with the positions of its TSVs. Figure 3.1 shows how the position of a TSV affects

the wirelength of a floorplanning result. For simplicity, we assume there are only

one net and five blocks on two tiers. The net is an inter-tier net that connects pins

S and T . By swapping blocks 1 and 2 of floorplan a, we produce floorplan b.

Without considering the positions of TSVs, one may directly estimate the wire-

length by measuring the half-perimeter length of the bounding box of its pins, S

and T . The bold rectangles in the figure indicate bounding boxes of the net pins

in two different floorplans. Since the bounding box in floorplan a is smaller than

that in floorplan b, floorplan a seems like a better solution. However, in floorplan

a, there is no white space within the bounding box. To connect this inter-tier net,

we have to place the TSV in a nearby white space on tier 2, thus the wirelength

significantly increases. On the other hand, in floorplan b, there is available white

space for a TSV within the bounding box. Therefore, the net can be routed by

the shortest path. As is shown, the HPWL (half-perimeter wirelength) without

considering TSVs underestimates the wirelength of 3D nets.

Next, we conducted a preliminary experiment to understand how the total

wirelength is underestimated when assuming signal TSVs are always put in the

white space within the bounding box of pins. We used ami33 in the MCNC bench-

mark suite as a study case. The size of TSV was set to be 20μm by 20μm [14],

and the number of tiers was 3. We modified a 2D floorplanner, Parquet [27], to a

3D floorplanner, and used the modified algorithm to generate some 3D floorplans.

Since previous researchers used 15% [27] [28] of white space for 2D fixed-outline

floorplanning problems, we also used 15% of white space in the experiment. Fig-

33

Figure 3.1: A demonstration of how TSV position affects wirelength.

34

ure 3.2(a) shows the statistical results of numbers of nets. The total nets shows

the total number of nets of the benchmark circuit. The inBox indicates the num-

ber of nets whose signal TSVs are totally placed into the white space within the

bounding box of net pins. The outBox is the number of nets with signal TSVs

outside the bounding box of net pins. As the results demonstrate, 29.3% of nets

possess TSVs that cannot be put into the white space within the bounding box of

pins. Figure 3.2(b) shows results of the wirelengths. The total HPWL is the sum

of net HPWLs that consider both pins and signal TSVs of nets. The pin HPWL

is the sum of HPWLs of net pins. The error shows the difference between wire-

lengths with and without considering TSV. It shows that the total wirelength is

underestimated by 26.8%.

With the above-mentioned observations, we find that it is important to consider

both the positions and the placement feasibility of signal TSVs in the floorplaning

stage. Although Li et al. [18] consider the the problem of TSV planning, they aim

to alleviate the thermal impact of 3D-ICs by planning thermal TSVs. Therefore,

the deployment of TSVs is not necessarily in favor of wirelength optimization.

To fully exploit 3D-IC technology, we must to develop a floorplanning algorithm

that plans the signal TSVs while taking into account wirelength minimization and

feasibility of TSV placement.

3.2 Problem Formulation and Modeling

In this section, we will first comment on the most commonly used 3D integration

technology, the F2B integration technology, in Section 3.2.1. Next, a list of nota-

35

80

100

120

140

0

20

40

60

80

100

120

140

total nets
123

inBox
87

outBox
36

(a) The numbers of nets which are put within/without the
bounding boxes of net pins

30,000

40,000

50,000

60,000

0

10,000

20,000

30,000

40,000

50,000

60,000

total HPWL
55,107um

pin HPWL
40,324um

error
14,783um

(b) Difference between HPWLs with and without consid-
ering signal TSVs

Figure 3.2: Statistical results of numbers of nets.

36

tions used throughout this chapter is presented in Table 3.1. Then, the wirelength

estimation method is described in Section 3.2.2. Finally, the problem formulation

is presented in Section 3.2.4. Though thermal issue is not the major discussion of

our work, it is still a problem worth to be concerned. Therefore, in the last of the

section, we briefly describe a fast thermal analysis which can be easily integrated

into our algorithm to cope with the thermal problem.

3.2.1 Face-to-Back Integration Technology

Figure 3.3 is an illustration of an F2B chip stacking with three tiers. Each tier

is fabricated individually and thinned down by a backside grinding process. The

chips are then precisely aligned and bound together by epoxy. Since the diameter

of TSVs can be smaller than the accuracy of alignment, a minor misalignment will

fail the connections among TSVs. To assure the connections, large landing pads

are designed on the top metal layer. The size of a landing pad is about the size of

TSV plus the alignment accuracy [29]. For example, if the size of a TSV is 5μm

and the alignment accuracy is also 5μm, the size of a landing pad would be 10μm.

As long as TSVs land on the corresponding landing pads, metallic bonding points

can form.

Consider a hypothetical signal that goes from pin p to pin q. An inter-tier net

must go through the device layer of tier 3 to the device layer of tier 1. Thus, one

signal TSV is required in tier 3 and one in tier 2. However, the signal does not

pass through the substrate of the lowest tier of this net. Hence, a TSV in tier 1 is

not required.

37

landing pad

TSV

Figure 3.3: Face-to-back chip stacking.

38

Table 3.1: Notation list

k the number of tiers
B a set of blocks
bi the i-th block of B
(xi, yi, zi) the coordinate of lower-left corner of

bi, where xi, yi are real numbers and
zi is an integer

E a set of nets
ei the i-th net of E
wi, hi the width and height of bi
wtier, htier the width and height of a tier
wTSV , hTSV , the width, height and area of a TSV
aTSV

τi,j the TSV of ei in the j-th tier
ωi,k the k-th TSV-block in the i-th tier
width(ωi,k), the width and height of ωi,k

height(ωi,k)
Ωi the set of the TSV-blocks in the i-th tier
area(ωi,k) the area of ωi,k

cap(ωi,k) the capacity of ωi,k

candidates(τi,j) the candidate TSV-blocks of τi,j

3.2.2 Wirelength Estimation

In the previous work [17–19], the bounding boxes of nets in 3D are used as a

metric for wirelength estimation. However, as mentioned in the last section, the

placement of TSVs greatly affects the wirelength of a 3D-IC. Ignoring the lo-

cations of TSVs, traditional HPWL metric fails in estimating the wirelength of

3D floorplans. To facilitate TSV placement, we cluster TSVs into TSV-blocks.

Consider an inter-tier net ei spans from tier u to tier v, where u < v. For each

tier j crossed by ei, we assign a TSV, τi,j, to an appropriate TSV block (where

39

TSV-block b

bounding box of pins and
centers of TSV-blocks

TSV-block a

pin q

pin p

tier 2

device layer of tier 1

substrate of tier 1

tier 3

Figure 3.4: Our wirelength estimation method

u + 1 ≤ j ≤ v, please see Section 3.2.1). We define the wirelength of net ei as

the sum of the width, height and depth of the bounding box of its pins and the

centers of all TSV blocks ωj,k’s that TSV τi,j’s are assigned to. Figure 3.4 shows

how we estimate the wirelength of a 3D net. To demonstrate the underlying pins

and TSV blocks clearly, we remove the substrates of tier 2 and 3, and only display

the substrate of tier 1. As can be seen, there is a two-pin net whose two terminals

p and q locate at tier 1 and tier 3, respectively. The TSVs of this net are placed in

TSV-blocks a and b whose centers are marked by cross marks. The dashed cube

is the 3D bounding box of all the pins and the centers of TSV-blocks of this net.

The wirelength is defined as the sum of w, h and d. For a 2D net, the wirelength

is defined as the half-perimeter length of the bounding box of pins.

40

3.2.3 Fixed-Outline Floorplan

Since TSVs must land precisely on corresponding landing pads (see Figure 3.3),

the die alignment process becomes crucial to the 3D integration. Different bond-

ing processes have different alignment accuracies and different requirements on

the sizes of stacked dies. Thus, in the following, we will classify the bonding

processes into two categories and discuss their requirements on sizes of stacked

dies. The first category is the wafer-to-wafer (W2W) bonding process. This pro-

cess first aligns the stacked wafers and bonds them together layer by layer, then

slices bonded wafers to individual 3D-ICs. The W2W bonding has a high align-

ment accuracy (� 1μm [14]). Therefore, it can achieve a high quality bonding.

However, the sizes of stacked dies must be identical. The second category is die-

to-die (D2D)/die-to-wafer (D2W) bonding. In these two processes, sliced dies are

aligned with their carrier dies/wafers and then bonded with the carrier dies/wafers

one by one. Although dies with different sizes are allowed to be stacked together,

large differences among die sizes will increase the difficulty of bonding. The

alignment accuracy (5 ∼ 15μm [14]) of D2D/D2W bonding is lower than that

of W2W bonding, which make the alignment sensitive to the differences of die

sizes. Additionally, in a chip stack, both width and height of a die on top cannot

be larger than those of an underlying die. Therefore, the shapes of dies cannot

change arbitrarily.

From the previous description, it is beneficial to define the shape before floor-

planning to take full advantage of 3D integration for yield enhancement. Hence,

in this chapter, we will focus on a fixed-outline floorplanning.

41

3.2.4 Problem Formulation

Given the following inputs: (1) a block set B, where each block bi in B has a

fixed width and height, wi and hi, (2) a netlist E, (3) the number of device tiers

k, (4) the width and height of a tier, wtier and htier, and (5) the width and height

of a TSV, wTSV and hTSV , our goal is to determine the values of the following

variables:

1. The coordinate (xi, yi, zi) of each block bi.

2. The coordinates and the sizes of all TSV-blocks.

3. For each TSV τi,j ,i.e., the TSV of ei on the j-th tier, a TSV-block ωj,k that

τi,j is assigned to.

Meanwhile, the wirelength is minimized, and the following constraints are satis-

fied.

1. 0 ≤ xi ≤ wtier − wi, 0 ≤ yi ≤ htier − hi and 1 ≤ zi ≤ k.

2. No two blocks overlap.

3. For each TSV-block ωi,k, the area of ωi,k is no less than the sum of the areas

of all TSVs assigned to ωi,k.

3.2.5 Thermal Analysis

Since we focus on the TSV planning issue, a fast thermal analysis is required in

our floorplanning algorithm. Thus, we adopt a simplified thermal model according

42

V

eff

eff

eff

b

Figure 3.5: Thermal model.

to the following practical assumptions. First, we only consider the functional

blocks as the heat sources of a 3D-IC, since most of heat comes from functional

blocks. Second, we assume the whole thermal system is in steady state, and the

power density of each block is uniform and time-invariant. Third, the top and

four sides of the 3D-IC are adiabatic, and the bottom is held isothermally at 25

◦C. Base on these assumptions, the resistive thermal network model is adopted

to analyze the temperature. The 3D-IC is meshed into stacks of tiles, as shown

in Figure 3.5. In this figure, each node represents a tile, and is connected with its

vertical neighbors through effective thermal resistors Reff . The heat generated by

each tile is formulated as an ideal current source. The bottom tiles are attached

to a common heat sink with thermal resistors Rb. In this thermal system, we can

compute the temperature of each node by solving linear equations.

43

3.3 Algorithm

We propose a two-stage approach to solve the problem formulated in Section 3.2.4.

The first stage is a simulated annealing based floorplanning algorithm. During this

stage, we simultaneously determine the coordinate of each block and plan TSVs

for minimizing wirelength under the fixed-outline constraint. The second stage

refines the TSV planning result produced in the first stage. The overall flow of our

algorithm is shown in Figure 3.6. First, an initial solution is randomly generated.

In the first stage, an array of sequence pairs [30] is used to represent a 3D floor-

plan. Each sequence pair in the array represents a floorplan of the corresponding

tier. Then, we perturb the solution by the operations proposed in Section 3.3.1.

Then, two different TSV planning strategies are conducted according to the an-

nealing temperature. The cost of a floorplan is given by the following equation:

cost = area + α · wirelength + β · AR penalty (3.1)

where area, wirelength, and AR penalty refer to the area, the total wirelength,

and the penalty of aspect ratio of a floorplan, respectively. Notice that, the wirelength

is estimated according to the positions of both TSVs and pins, and the area also

includes the area of TSVs. The linear cost function is used to determine whether

we accept the current floorplan or not. If the current floorplan is rejected, we

restore the floorplan to previous floorplan. Stage one ends when a stopping cri-

terion is met. Based on the floorplan produced by stage one, we formulate the

TSV re-assignment problem as a minimum cost maximum flow problem which

further minimizes the total wirelength. In the following, we will first give detailed

44

descriptions of step 1, perturbation of solution, and step 2, TSV planning of stage

one. Then, stage two will be discussed thoroughly.

3.3.1 Perturbation of Solution

To achieve better local search in the solution space, we adopt the slack-based

movements proposed by Adya et al. [27]. The horizontal and vertical spatial

slacks of each block are computed according to constraint graphs in a similar way

we compute timing slack in static timing analysis. Then the spatial slacks are used

to guide the selection of perturbations. We extend their perturbation operations to

3D floorplanning and design several new perturbation operations to improve suc-

cessful rate of satisfying the fixed outline constraint. The perturbations are listed

as follows:

1. Random inter-tier move/swap:

Randomly choose a block and move it away from the tier where it was

placed, or randomly swap the positions of two blocks.

2. Area balancing move:

The imbalance in area utilization among tiers results in a sparse floorplan

that has much white space. To facilitate the convergence and balance the

area utilization among tiers, we give a higher probability for blocks in a

congested tier to move them to a less congested tier.

3. Slack based inter-tier move/swap:

45

Stage II : TSV re-assignment

Generation of an initial floorplan

Perturbation of solution

TSV planning

Accept?

Restore floorplan

End

yes

no

no

yes

Stop?

Stage I:
TSV-aware floorplanning

Reduce
temperature

Figure 3.6: Overall flow.

46

Move a block with negative slack close to another block with positive slack,

or swap a block with negative slack with another block with positive slack.

3.3.2 TSV Planning

Based on the floorplan F produced by a perturbation described in the last sec-

tion, TSVs are then placed into appropriate TSV-blocks. We adopt the concept

used in buffer planning [31] and use two algorithm to plan TSVs at different an-

nealing temperature. Initially the annealing temperature is high. The difference

between the intermediate and the final floorplan is quite large. Using a precise

TSV planning scheme is time-consuming and less meaningful. Rather than a pre-

cise TSV planning, we use a simple and efficient algorithm (prob TSV planning)

which probabilistically estimates the distribution of TSVs. As the annealing tem-

perature cools down, the floorplan gradually converges. We use a detailed TSV

planning scheme (detailed TSV planning) to place TSVs such that wirelength can

be more accurately estimated. In the following, we will give descriptions of two

algorithms, prob TSV planning and detailed TSV planning.

Prob TSV planning

The flow chart of prob TSV planning is shown in Figure 3.7. In this procedure,

we do not assign TSVs to particular TSV-blocks precisely. Instead, we adopt the

idea of probabilistic analysis [31–33] and compute the probability of a TSV-block

that a TSV will be assigned to.

47

In the first step, we apply a line-sweeping-based algorithm to find the white

space of F . All white space blocks are TSV-blocks. Next, we compute the ca-

pacity used by a TSV by assigning a TSV to TSV-blocks in a probabilistic way.

For a net ei crossing the j-th tier, its bounding box of pins at the j-th tier may

cover several TSV-blocks. Let candidate(τi,j) = {ωj,k|ωj,k is a TSV-block whose

center falls in the bounding box of ei}. The TSV, τi,j, of ei in tier j can be as-

signed to any of these TSV-blocks, candidate(τi,j), without increasing the total

wirelength. We assume that the probabilities of τi,j assigned to a particular ωj,k

are the same. Then, for a TSV-block, ωj,k, of net ei, its used area is given by the

following equation:

used area =
aTSV

|candidte(τi,j)| (3.2)

We repeat the assignment procedure for all TSVs. In each iteration, the used ca-

pacity will be accumulated for a TSV-block. After the procedure of assigning

all TSVs to TSV-blocks is completed, we check for any TSV-blocks with exces-

sive assigned capacity. If there are, we expand their widths to accommodate all

assigned TSVs.

Since some TSV-blocks are expanded, some blocks may overlap. Thus, in the

last step, we adjust the floorplan to remove the overlaps.

Detailed TSV planning

The flow chart of detailed TSV planning is shown in Figure 3.8. First, we decide

the TSV-blocks by utilizing white space the same way as we do for prob TSV planning.

Next, for each τi,j, we find its candidate(τi,j) and compute the total area of

48

Decide TSV-blocks by
utilizing white space

Probabilistically estimate
the distribution of TSVs

Expand TSV-blocks

End

Update floorplan

yes

no

Any TSV-block
exceeds its capacity?

Figure 3.7: Flow chart of prob TSV planning.

candidate(τi,j). We sort TSVs, τi,js, by their total area of candidate(τi,j). The

smaller area, the higher the priority of the TSV. The heuristic is based on the ob-

servation that the tighter an area of TSV-blocks, the more diffcult it is to place a

TSV.

In the third step, we will place a TSV one by one based on its priority. For a

TSV, τi,j, we select a TSV-block from its candidate(τi,j) to place it. The TSV-

block in candidate(τi,j) that has the largest free capacity will be selected first. If

we can place a TSV in any of its candidate(τi,j) TSV-blocks, the wirelength of ei

will not increase. This is because all the TSV-blocks in candidate(τi,j) are in the

bounding box of ei’s pins. However, if all TSV-blocks in candidate(τi,j) are full,

we are not allowed to assign τi,j without increasing the wirelength of ei or the size

of a TSV-block. In this case, we will delay the assignment of τi,j and proceed to

the next TSV. The delayed TSV will be processed in the fine tune TSV planning

step. We continue to assign all TSVs until all TSVs are processed.

49

In the fourth step, fine tune TSV planning, we are to place those difficult-to-

place TSVs. For a TSV,τi,j, we can either increase the size of a TSV-block in

candidate(τi,j) or the wirelength by planning TSV outside the bounding box. We

will choose the one with the least cost (the cost function will be defined in the

following paragraph).

Consider the assignment of a TSV τ where all TSV-blocks in candidate(τ)

are all fully occupied, as shown in Figure 3.9(a). Let e be the net of τ and the

rectangle R be the bounding box of the pins of e. a is a candidate TSV-block

in R, and b is another TSV-block not in R. Without detouring net e, one may

expand the width of a by wTSV and then assign τ to a as shown in Figure 3.9(b).

Suppose there are three nets crossing through a. Expanding a will increase the

wirelength of these three nets by wTSV . In total, the wirelength is increased by

3wTSV . On the contrary, assigning this TSV to b will detour net e by 2wTSV

(assume hTSV = wTSV). Thus, in the fine tune TSV planning step, the cost of a

TSV-block is given by the following equation:

cost(τi,j, ωj,k) =

B · wTSV · congestion(ωj,k) + detour(τi,j, ωj,k) (3.3)

where τi,j is the TSV that we are going to place and ωj,k is the TSV-block τi,j

will be placed into. In this equation, B is 1 or 0, where 1 means ωj,k is ex-

panded and 0 otherwise. congestion(ωj,k) is the number of wires crossing ωj,k,

and detour(τi,j, ωj,k) is the detouring distance of ei. Note that if ωj,k is not ex-

panded, then the first term is zero. We compute cost(τi,j, ωj,k)’s for all ωj,k’s and

50

Sort priorities of TSVs

Greedy TSV planning

Fine tune TSV planning

All TSVs are placed?

yes

no

Decide TSV-blocks by
utilizing white space

Update floorplan

End

Figure 3.8: Flow chart of detailed TSV planning.

select the one with the least cost. If a TSV-block is expanded, the floorplan is

updated accordingly. The whole procedure ends when all TSVs are assigned.

3.3.3 TSV Re-Assignment

In the first stage, TSVs are placed one-by-one during floorplanning. The posi-

tions of TSVs are not globally optimal because TSVs are not considered simul-

taneously. For this reason, we will propose our stage two algorithm to improve

the result of TSV planning. Note that the wirelength is included in the cost func-

tion (Equation 3.1) used to select floorplan solution. The inaccurate estimation of

wirelength may degrade the optimality of the floorplan result.

Without altering the floorplan, stage two refines the TSV planning to further

reduce the total wirelength. Instead of replacing TSVs individually, stage two

simultaneously reassigns TSVs to all available TSV-blocks. Since positions of

all modules and TSV-blocks are all fixed in this stage, we can model the TSV

re-assignment as a minimum cost maximum flow problem.

51

TSV

b

a

2wTSV

wirelength increase

center of b

center of a

(a) Before expanding

(b) After expanding

Figure 3.9: Expansion and detouring.

52

First, we describe how to build the flow network. The flow network can be

represented by a directed graph G(V, E), where node set V = {s ∪ t ∪ D ∪ C}
and edge set E = {IE ∪ AE ∪ OE}. s and t denote the source node and sink

node. One node di,j ∈ D corresponds to one TSV τi,j , and one node ci,k ∈ C

corresponds to one TSV-block ωi,k. For clarity, we categorize edges into three

groups: incoming edges IE, assignment edges AE and outgoing edges OE. In-

coming edges are constructed from source s to nodes in D. Assignment edges are

constructed from D to C to depict all possible TSV assignment configurations.

Therefore, an edge from di,j to ci,k is built if τi,j can be assigned to ωi,k. Outgoing

edges are constructed from nodes in C to sink node t. Figure 3.10(a) is an illus-

tration of the flow network containing 4 TSVs and 3 TSV-blocks. The costs and

capacities of all edges are set as follows. For each incoming edge, the cost and

capacity are set to be 0 and 1, respectively. For each assignment edge (di,j, ci,k),

the cost is the amount of detour wirelength when TSV τi,j is placed in TSV-block

ωi,k, and its capacity is 1. Finally, the costs of all outgoing edges are 0, and the

capacity of outgoing edge (ci,k, t) is set as the capacity of TSV-block ωi,k.

Take the example in Figure 3.10(a) as a demonstration for computing the costs

of assignment edges. Let the physical locations of TSV-blocks, ω2,1 and ω2,2, and

pin bounding boxes be shown in Figure 3.10(b), and TSVs τ2,1 and τ2,2 in tier

two and their connecting pins in tier one and tier two. The dashed rectangles are

the pin bounding boxes of two nets. Circles and rhombuses indicate pins in tier

1 and tier 2, respectively. The solid rectangles are two TSV-blocks. If the TSV

τ2,2 is placed in TSV-block ω2,1, the wirelength of τ2,2’s net is unchanged. On the

53

d1,1

s t

d1,2

d2,1

c1,1

c2,1

c2,2d2,2

demanding nodes candidate nodes

assignment edges outgoing edgesincoming edges

sink7
3

4

0

tier 1

tier 2

2,1

2,2

bounding box of
2,1

bounding box of 2,2

3

4

3.5

3.5

source

(a)

(b)

Figure 3.10: A flow network and the corresponding placement.

54

contrary, placing τ2,2 in ω2,2 will widen its net bounding box by 4 units. Thus,

the costs of edges (d2,2, c2,1) and (d2,2, c2,2) are 0 and 4, respectively. Similarly,

the cost of edge (d2,1, c2,2) is 3. Note that assigning τ2,1 to ω2,1 not only increases

the width of bounding box by 3.5 units, but also increases the height by 3.5 units.

Therefore, the cost of edge (d2,1, c2,1) is 7. The costs of the assignment edges in

tier 2 are labeled above those edges in Figure 3.10(a).

The graph has a maximum flow only when each flow of incoming edge is

1. Since the entering flow is equal to the leaving flow at each node di,j in D,

there is one and only one of di,j’s assignment edges with flow of 1. It implies

one TSV will be assigned to one TSV-block. In addition, the entering flow of

each candidate node ci,k cannot exceed the capacity of the outgoing edge attached

to ci,k. Therefore, the number of TSVs placed in the corresponding TSV-block

will also not exceed its capacity. The minimum cost maximum flow problem can

be optimally solved in polynomial time. In our implementation, this problem is

solved with LEDA package [34]. The TSV planning result can then be obtained

by inspecting the assignment edges with a flow of 1. Since the TSV planning

solution of stage one is in the solution space of our TSV replanning problem , the

new solution is at least as good as the original solution in terms of wirelength.

3.4 Experiment Results

The proposed algorithm is implemented in C++ based on Parquet [35] and run on

an Intel 3.0GHz machine with Linux. The MCNC and GSRC benchmarks with 3

and 4 tiers of chip stacks were used to test our algorithm. The thickness of each

55

tier was set to 20μm [14]. The aspect ratio was 1. Normally, 15% [27] [28] of

white space is used for 2D fixed-outline floorplanning problem. However, for 3D

floorplanning problems, each tier contains much fewer blocks, and the number of

geometric combinations of blocks also decreases significantly. Thus, we use more

white space for multi-tier floorplans. Additionally, the more tiers a chip contains,

the more TSVs are required. Therefore, we used 15% and 20% white space for

3-tier and 4-tier floorplans, respectively. In MCNC benchmarks, the size of TSV

was set to 20μm by 20μm. Since the GSRC benchmarks are artificial circuits with

small blocks and more nets, we shrunk down the size of TSV to 3μm by 3μm such

that the ratios of TSV size to block size are compatible in both GSRC benchmarks

and MCNC benchmarks. In our thermal analysis, the power density of each block

was randomly assigned from 105W/m2 to 107W/m2, and the thermal resistance

per square meter was set to 1.57 × 10−6K/W .

To demonstrate the effectiveness of our two-stage algorithm, we will show the

experimental results of both stages in the following two subsections, individually.

All the reported data in our experiments are collected from 10 independent runs.

3.4.1 Results of TSV-Aware Floorplanning

First, we compared our algorithm (without TSV-reassignment) against another

TSV-aware algorithm proposed by He et al. [15]. Table 3.2 shows the results.

The two major columns labeled He’s and ours show the He’s results and ours,

respectively. The M65, M99, M147 and M198 are artificial test cases created by

He et al. In He’s work [15], the authors magnified both the width and height

56

of ami33, M65, M99 and M198 by 30 times, and ami49 and M147 by 5 times.

To make a fair comparison, we scaled down He’s floorplans to the original size.

The columns labeled WL are the total wirelengths estimated using HPWL. The

columns labeled area are the total areas of the floorplans. The column labeled

inBox indicates the percentages of nets whose signal TSVs are totally placed into

the white space within the bounding box of net pins. Finally, the columns labeled

runtime show the runtimes. As we can see from He’s results, their TSV-aware

algorithm cannot guarantee 100% of the TSVs being put in the bounding boxes

of nets. In the case of ami33, 26% of TSVs cannot be put in the bounding boxes.

Furthermore, our algorithm outperforms He’s algorithm by 68% and 9% in terms

of wirelength and area, respectively.

To analyze the benefit of TSV planning during floorplanning, we compared al-

gorithms with and without the consideration of TSV planning (i.e. TSV-aware and

TSV-unaware). The TSV-unaware algorithm minimizes wirelength under a fixed-

outline constraint. It uses a half-perimeter bounding box model to estimate wire-

length during the floorplan stage without considering the TSV planning problem.

After the floorplanning is done, we apply the detailed TSV planning algorithm

to plan TSVs. The reported wirelengths are computed by the model proposed in

Section 3.2.2 after the post-processing TSV planning.

Table 3.3 shows the results of successful rates and total wirelengths. The first

two columns give the numbers of tiers and the names of benchmark circuits. The

column labeled S.Rate shows the successful rates. Here, a floorplan is said to be

successful only if it meets the fixed-outline constraint. The average wirelengths

57

are reported in the column labeled avg WL. For the TSV-unaware algorithm, the

percentages of nets with signal TSVs completely placed within the bounding box

of net pins are also shown in the column labeled inBox. In addition, the wire-

length differences between the bounding boxes of nets with and without TSVs

are shown in the column labeled error. Here error is computed as the ratio of

wirelength differences to the wirelength considering signal TSVs. Finally, the

numbers of TSVs and runtimes are shown in the columns labeled TSV and run-

time, respectively. Since the test cases apte, xerox, and hp in MCNC benchmark

contain only a small number of blocks, they are not good examples for 3D-IC, and

are excluded in our benchmark set. The experimental results show that our stage

one (TSV-aware) algorithm outperforms the TSV-unaware algorithm in successful

rate by 57%. Note that our stage one algorithm and TSV-unaware use the same

algorithm to plan TSVs. The only difference between these two algorithms is that

the former plans TSV in the flooplanning stage, while the latter plans TSV after

the floorplanning stage. In addition, all the floorplans produced by TSV-unaware

algorithm meet the fixed-outline constraint before planning TSVs. During the

post-process TSV planning, the successful rate is reduced to 42%, the reason be-

ing given as follows. Since the TSV-unaware algorithm does not consider the TSV

planning during floorplanning, the distribution of white space is inconsistent with

the requirement of TSVs. Up to 49.9% of signal TSVs cannot be placed within

the bounding boxes. Therefore, many white spaces need to be expanded to ac-

commodate those TSVs during the post-processing TSV planning. As a result,

the floorplans are likely to violate the fixed-outline constraint. Compared to the

58

Table 3.2: Comparison between algorithm proposed in [15] and our algorithm.

He’s ours
#tier circuit WL area(mm2) inBox runtime(s) WL area(mm2) runtime(s)

4 ami33 63773 1.44 73.71 % 75.97 45179 1.37 42.46
4 ami49 1127330 45.10 87.54 % 144.88 585804 41.71 184.63
4 M65 129394 2.89 98.28 % 192.53 79857 2.64 209.38
4 M99 181608 4.48 100.00 % 380.11 108528 3.95 544.93
4 M147 3557120 132.19 100.00 % 764.34 1718420 121.09 2633.63
4 M198 314953 8.66 100.00 % 1417.50 180042 7.92 2945.89

avg 1.68 1.09 93.26 % 0.83 1 1.00 1.00

TSV-unaware algorithm, the average wirelength and the number of TSVs of our

result are reduced by 22.3% and 15.0%, respectively.

To prove that our signal TSV-aware floorplanner can readily cope with the

thermal issue, we modified our algorithm to consider temperature by integrating

the thermal analysis step described in Section 3.2.5 and compare the results of the

modified algorithm with that of the floorplanner without thermal consideration.

The experimental results are shown in Table 3.4. The column labeled thermal-

aware and thermal-unaware show the results with and without thermal consid-

eration, respectively. Compared to the thermal-unaware algorithm, our thermal-

aware algorithm effectively reduces the peak temperature by 37.0% at the expense

of a 3.9% increase in wirelength. The promising result guarantees that our algo-

rithm is extendable to thermal optimization as well.

59

Table 3.3: Comparison between TSV-aware and TSV-unware algorithms.

TSV-aware TSV-unaware
#tier circuit S.Rate avg WL TSV runtime(s) S.Rate avg WL inBox error TSV runtime(s)

3 ami33 100% 47731 97.2 41.17 30% 60438 58.0% 31.0% 132.5 1.82
3 ami49 100% 690825 361.2 172.92 90% 890588 50.1% 30.2% 443.5 5.51
3 n100 100% 160825 833.2 1195.51 80% 157480 73.5% 14.8% 888.8 22.68
3 n200 100% 310924 1509.1 7720.45 0% 339768 66.9% 26.9% 1689.5 87.38
3 n300 100% 424585 1899.7 21155.10 0% 440954 83.7% 16.5% 2019.3 159.02

4 ami33 100% 45179 141.0 42.46 50% 60772 56.6% 39.2% 174.7 2.00
4 ami49 90% 585804 435.6 184.63 70% 773076 59.0% 21.4% 505.4 4.80
4 n100 100% 148748 1171.4 1306.39 90% 165940 69.9% 18.7% 1290.5 23.38
4 n200 100% 291091 2179.0 8237.10 0% 367602 60.5% 34.1% 2431.5 94.45
4 n300 100% 391694 2730.6 21450.50 10% 448905 80.9% 19.0% 2865.0 234.12

avg 0.99 1 1 0.42 1.223 0.659 0.252 1.15

Table 3.4: Comparison between algorithm with and without thermal considera-
tion.

thermal-unaware thermal-aware
#tier circuit S.Rate avg WL maxT S.Rate avg WL maxT

3 ami33 100% 47731 76.0 100% 51859 59.4
3 ami49 100% 690825 59.5 100% 694622 48.1
3 n100 100% 160825 85.3 100% 164975 47.8
3 n200 100% 310924 93.6 100% 314450 68.1
3 n300 100% 424585 90.3 100% 435885 50.5

4 ami33 100% 45179 85.2 100% 49934 67.4
4 ami49 90% 585804 76.6 80% 610077 60.2
4 n100 100% 148748 130.3 100% 155780 49.8
4 n200 100% 291091 114.6 100% 298025 58.7
4 n300 100% 391694 132.1 100% 396262 52.0

avg 0.98 1 1 0.95 1.039 0.630

60

Table 3.5: The total wirelength improvement rate of TSV re-assignment.

#tier circuit avg imprv. min imprv. max imprv. runtime(s)

3 ami33 4.33% 1.31% 8.61% < 1
3 ami49 0.26% 0.01% 1.02% < 1
3 n100 1.67% 0.78% 2.86% < 1
3 n200 4.54% 2.80% 7.13% < 1
3 n300 2.40% 1.41% 4.94% < 1
4 ami33 2.93% 0.94% 5.68% < 1
4 ami49 1.35% 0.00% 3.56% < 1
4 n100 5.16% 1.63% 7.16% < 1
4 n200 6.68% 2.71% 11.39% < 1
4 n300 5.17% 3.61% 8.45% < 1

avg 3.45% — —

3.4.2 Results of TSV Re-Assignment

To understand how effective our TSV re-assignment is, we compared the experi-

mental results of stage two with those of stage one. The experimental results are

presented in Table 3.5. The columns, in order, give numbers of tiers, the names of

benchmarks, average improvement rates, minimum improvement rates and max-

imum improvement rates. Note that stage two only re-assigns TSVs to existing

TSV-blocks, and does not change the floorplan results at all. As is shown, stage

two further reduces the wirelength by 3.45% without increasing area.

3.4.3 Sensitivity Analysis on Size of TSVs

Since the size of TSV depends on different 3D technologies, we also explore

how the size of TSV affects wirelengths of floorplans. We performed our TSV-

aware floorplaning algorithm (i.e., stage one algorithm) with different sizes of

61

TSVs for 4-tier cases, and compared the results with those of the TSV-unaware

algorithm used in Section 3.4.1. Note that the TSV planning algorithms used in

both the TSV-aware and TSV-unaware algorithms are exactly the same. The only

difference between these two floorplaning algorithms is that the TSV-aware one

simultaneously plans blocks as well as TSVs while the TSV-unaware one plans

TSVs after the floorplaning stage.

In this experiment, we set the size of TSV from 1μm to 30μm. For all the

cases, the white space ratios are set to 20%, except the case of ami33 with TSV

size of 30μm × 30μm. In this exceptional case, TSVs consume more than 10%

of the block area and the large TSVs cannot be put into fragmental white space.

Therefore, we set the white space ratio to 25%. Figure 3.11 shows the experimen-

tal results. Each node represents an average wirelength of 10 independent runs.

As we can see from these curves, when the TSV size is small, the difference be-

tween the TSV-aware and TSV-unaware algorithm is insignificant. However, as

the size grows, the wirelength of the TSV-unaware algorithm increases rapidly.

On the other hand, the wirelength of TSV-aware algorithm increases less signifi-

cantly. Thus, the wirelength difference increases with the increasing size of TSVs.

Obviously, planning TSVs in floorplaning stage is important when large TSVs are

used.

3.5 Summary

In this chapter, we have studied the signal TSV planning for 3D-IC. Convention-

ally, the placement of modules is first determined in a floorplan stage. Then, TSVs

62

40000

50000

60000

70000

80000

20000

30000

40000

50000

60000

70000

80000

1 1 5 5 10 10 20 20 25 25 30 30

TSV aware TSV unware

(a) ami33

500000

600000

700000

800000

900000

1000000

400000

500000

600000

700000

800000

900000

1000000

1 1 5 5 10 10 20 20 25 25 30 30

TSV aware TSV unaware

(b) ami49

Figure 3.11: Average wirelengths with different TSV sizes.

63

are deployed within the white space. Lacking the information of TSVs, a floor-

planner estimates the wirelength of a net by the half-perimeter of the bounding box

of the net pins only. However, the white space distribution may be inconsistent

with the requirement of TSV deployment, which in turn increases the wirelength.

To cope with this problem, we have proposed a 3D fixed-outline floorplanning

algorithm to simultaneously place modules and plan TSVs for wirelength reduc-

tion. Experimental results show that our algorithm achieves a high successful

rate. Compared to the average wirelength of a post-processing TSV placement

algorithm, our result is shorter by 22.3%. In addition, we have also proposed a

TSV re-assignment algorithm to refine a TSV planning result. Experimental re-

sults show that the wirelength can be reduced up to 11.39% without area overhead.

Furthermore, we also show that our algorithm can readily cope with the thermal

issue by integrating thermal analysis.

64

Chapter 4

An Evaluation of Trade-off among
Wirelength, Number of
Through-Silicon Via and Placement
in 3D-ICs

Recently, 3D-IC has drawn much attention and been studied from many perspec-

tives including fabrication processes [36,37], production cost [38], yield rate [39],

and thermal issues [17–19]. Prior research found that interconnects are signifi-

cantly reduced with the existence of vertical connections. However, in the rudi-

mentary analysis, the authors [21, 22, 40–42] viewed the vertical connections as

volumeless objects and did not consider achievable size of TSV in present tech-

nology. Therefore, the result is over-optimistic. Although TSV is able to provide

the highest density of inter-chip connections, area occupied by TSVs still can-

not be ignored. In reality, applying too many TSVs significantly increases the

chip size and extends the lengths of interconnects. Therefore, using more TSVs

does not necessarily favor the performance of a design. On the contrary, min-

65

imizing the number of TSVs diminishes the benefit brought by TSV. Recently,

there is plenty of literature discussing how wirelengths varies with the number of

TSVs. Most of their conclusions are drawn without considering the area of TSVs.

Among them, only D. H. Kim et al. [43, 44] have studied the impact of TSV area

on 3D-IC. However, they only consider single TSV size. In fact, the impact of

TSV on a design depends on the technology being used. Different technologies

often have different TSV sizes. For example, the size of TSV can range from

10μm by 10μm [14] in a via-first technology to 200μm by 200μm [37] in a via-

last technology. Therefore, it is crucial to explore how different TSV technologies

affect designs of 3D-ICs. Additionally, D. H. Kim et al. [43] only analyzed the

relationship between wirelength and number of TSVs focusing on wirelengths of

minimum spanning trees (MSTs) and routing trees with least number TSVs. To

make a comprehensive study, it is also important to study the trade-off between

these two extreme routing topologies.

In this chapter we will study the trade-off among wirelength, number of TSVs,

and size of TSV. Moreover, we propose a parameterized partition algorithm to

study the trade-off between different placement and the number of TSVs.

The rest of the chapter is organized as follows. Section 4.1 presents the mo-

tivation of this work. Section 4.2 describes flow of our analysis and the detail of

our evaluation algorithm. The experimental results are shown and discussed in

Section 4.3. Finally, Section 4.4 summarizes this chapter.

66

4.1 Motivation

Previous research [21, 22, 40–42] has shown the benefit of transforming designs

from 2D to 3D and examined the tradeoffs between wirelengths and number of

TSVs in several 3D placement approaches. Without considering the area overhead

of TSVs, the wirelength of 3D IC reduces substantially with the increase in the

number TSVs. In an experiment [22], more than 6,000 TSVs were used in a design

with 0.06mm2 of core area. Suppose that the size of the applied TSV is 10μm ×
10μm. The TSVs will occupy an area as large as the core. To accommodate these

TSVs, the die size must expand twice. Consequently, the cells are forced to spread

more sparsely and the interconnects are also extended significantly. Therefore,

using excess TSVs will pose a negative effect to a 3D design.

To investigate the impact of TSVs, we performed an analysis based on the

experimental result conducted by J. Cong et al. [22]. The area of each die is com-

puted as the sum of both the cell area and the TSV area, and the wirelengths is

scaled with the die size. Table 4.1 shows the usage of TSVs. The row labeled strat-

egy indicates different 3D placement methods used in [22]. The average numbers

of TSVs are normalized and presented in the row labeled TSV usage. Figure 4.1

shows how the average wirelengths vary with different size of TSVs. To make a

fair comparison, all the wirelengths of 3D placements are normalized with that of

2D placements. Each point in the figure represents an average of 10 placement

results. The curve labeled original indicates the normalized average wirelengths

reported in the previous work. Without considering the area overhead of TSVs,

67

Table 4.1: Benchmarks

strategy 2D Folding-2 Folding-4 LST(8x8) LST(10%)
TSV usage NA 1.00 1.79 4.8 13.92

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
original

scaled 1x1

scaled 2x2

scaled 3x3

scaled 5x5

scaled 10x10

2D 2- fold 4- fold LST(8x8) LST(10%)

Figure 4.1: The impact of TSV on wirelength of IBM-PLACE2 benchmarks [45].

the average wirelength decreases with increase in the number of TSVs used in

placements [22]. Up to 44% of wirelength reduction is obtained in the result of

LST(10%) [22]. However, with the size of TSV growing shown in Figure 4.1, the

wirelength gradually increases due to the increase in die size. When the size of

TSV is 3μm× 3μm, the benefit of TSV on wirelength reduction is virtually com-

pensated by the area overhead. Beyond this size, the wirelengths are even longer

than that of 2D placements.

As shown in the aforementioned analysis, the wirelength of a design varies

with the number of TSVs as well as the size of TSV. To fully utilize the advantage

68

of TSV technology, we should explore the 3D design space with different TSV

parameters. Therefore, in this chapter, we will investigate the trade-offs among

wirelength, number of TSVs and size of TSV.

4.2 Evaluation of TSV and Wirelength

As discussed in the previous section, there is a trade-off between wirelength and

number of TSVs. Therefore, it is important to understand how much benefit we

can obtain over a wide range of TSV numbers. Since different net topologies al-

ways lead to different wirelengths and different numbers of TSVs, it is our interest

to analyze the wirelength of 3-D net with different net topology. Therefore, in this

chapter, we will describe three wirelength analyses with different net topologies

and illustrate our evaluation algorithms individually. For clarity, the notation used

in the following section is given in Table 4.2.

Table 4.2: Notation list

k the number of tiers
ni the i-th net
gci the complete graph of ni

ei,j the j-th edge in gci

Nei,j the number of TSVs of ei,j

NMST (ni) the number of TSVs in minimum spanning tree of ni

NLTT (ni) the number of TSVs in the least-TSV tree of ni

69

Nmax = 0;
Nmin = 0;
total wirelength = 0;
total TSV = 0;
for (i = 1 to number of nets) {

Nmax = Nmax + NMST (ni);
Nmin = Nmin + NLTT (ni);
primorial treei = MST of ni;
derived treei = replace edge(primorial treei);
incrementi = length(derived treei) − length(primordial treei);

// length(T) returns ∞ if T does not exist.
total wirelength = total wirelength + length(primorial treei);
total TSV = total TSV + number of TSV (primorial treei);

}

for(p = Nmax to Nmin) {
min increment = ∞;
for(j = 1 to number of nets)

if(min increment > increment j)
min increment = increment j;
k = j;

}
total wirelength = total wirelength + incrementk;
total TSV = total TSV − 1;
primorial treek = derived treek;
derived treek = replace edge(primorial treek);
incrementk = length(derived treek) − length(routing treek);

}

Figure 4.2: Pseudo code of spanning tree construction

70

4.2.1 Wirelength of 3-D Spanning Tree

Compared to a 2D-IC, TSV provides one more dimension in the z-axis for rout-

ing. Therefore, the routing topology is more flexible and the wirelength of a 3-D

net can be potentially reduced when more TSVs are used. To investigate how the

wirelengths of 3-D spanning trees change with number of TSVs in a fixed 3-D

placement, we formulate the problem of our first experiment as follows.

Experiment I:

Given (1) a set of net pins and their positions; (2) a netlist (3) the size of TSV; (4)

the die size of the 3D-IC; (5) the low bound, Nmin, and the upper bound, Nmax,

of number of TSVs, our objective is to understand the relationship between mini-

mum total wirelength and the number of total TSVs, ranging from Nmin to Nmax.

Evaluation Algorithm I:

To solve problem I, the first thing is to find Nmin and Nmax. Assume we have a

3-D net spanning from tier a to b, where a < b. Since we need at least one TSV

to link the interconnect in adjacent tiers, the 3-D net requires at least b − a TSVs.

Therefore, Nmin is the sum of least TSV numbers of all nets. For convenience, we

refer the net topology with least TSVs as LTT (least-TSV topology). Since our

interest is to analyze the wirelengths of spanning trees, we set Nmax to the sum of

TSV numbers required by MSTs of all nets.

71

Since a real design often contains considerable number of nets, finding a set

of spanning trees with least total wirelength for every single number of TSVs is

time-consuming. Therefore, we propose a divide-and-conquer heuristic to solve

problem I. Before we present out heuristic algorithm, we define a derived tree DT

of spanning tree T as a spanning tree which has only one edge different with T .

Tree T is called primordial tree of the derived tree DT .

We begin with investigating the wirelength of a single net ni. We construct the

complete graph gci of ni’s net pins, assign the weight of each edge as the length

between the two terminals of the edge, and then find the MST of ni using Prim’s

algorithm. Since MST of ni is the routing tree of ni with the shortest wirelength

but the maximum number of TSVs, we use it as a starting primordial tree to find

derived trees with less number of TSVs.

By the definition of MST, if we can find an edge in gci to replace an edge

in the primordial MST, the replacement edge must be no shorter than the edge

being replaced. To find a derived tree with short wirelength, we first decompose a

primordial tree into two subtrees by removing the shortest edge ei,j that contains

TSVs. Then we find the shortest replacement edge ei,k that connects the two

subtrees and possesses Nei,j - 1 TSVs. In this way, we can obtain a derived tree

with n − 1 TSVs by modifying a primordial tree with n TSVs. Now given the

derived tree with n−1 TSVs as a new primordial tree, the same edge replacement

can be applied to find a derived tree with n − 2 TSVs. We repeat the same edge

replacement procedure starting with a primordial tree with NMST (ni) TSVs to

NLTT (ni) + 1 TSVs. We can obtain NMST (ni) − NLTT (ni) derived trees.

72

Our objective is to observe the minimum total wirelengths for all nets within

bounded TSV numbers. Initially, MST of each net is computed, and the total

wirelength is the sum of wirelength of all MSTs. Then, we compute the wire-

length increment of each net ni using the edge replacement algorithm described

above. To compute the minimum wirelength after removing one TSV, we select

the net nj which induces the least amount of wirelength increment. Figure 4.2

shows the pseudo code to construct spanning trees with TSV numbers ranging

from NMST (ni) to NLTT (ni).

Our wirelength evaluation is accurate only when TSVs are viewed as infinites-

imal objects. However, in reality, the area of TSV cannot be ignored. To consider

the area of TSVs, we assume TSVs are evenly distributed in a 3D-IC, and insert-

ing TSVs into a 3D-IC will not alter the relative positions of cells. Therefore, we

can compute the wirelengths in the x−y plane by directly scaling the wirelengths.

Suppose we have a 3D-IC with NTSV TSVs. The area of a TSV is ATSV and the

total area of the 3D-IC is A3D−IC . The scaling factor f is given as follows:

f =

√
1 +

NTSV ATSV

A3D−IC
(4.1)

4.2.2 TSV Impact on Longest Paths

Since critical path delay determines the performance of a design, it is crucial to

analyze how TSV impacts the timing of a 3D design. For simplicity, we use

the length of longest paths to estimate critical delay and analyze how lengths of

longest paths change with number of TSVs and size of TSV. Therefore, the prob-

73

w1

w2

P1

P2

P0

L R

Figure 4.3: The exact net model.

lem of the second experiment is formulated as follows:

Experiment II:

Given (1) a set of net pins and their positions; (2) a set of paths; (3) the size of

TSV; (4) the die size of the 3D-IC, our objective is to observe the relationship

between lengths of longest paths and the number of total TSVs.

Evaluation Algorithm II:

To solve problem II, we initially route each net with MST. Then, we gradually

replace net edges with substitutive edges that have less TSVs and increase least

amount of net lengths of longest paths. The edge replacing move continues until

no edge has a substitutive edge.

74

Since a path goes through many nets, directly finding a substitutive edge

among all nets of the paths is difficult. Therefore, we adopt a similar divide-

and-conquer approach as used in problem I. We first find derived trees of each net

and obtain the wirelength and the number of TSVs of each derived tree. Then, in

each edge replacing move, we select the derived tree that increases least amount

of length of longest paths and find the derived tree of the selected derived tree.

We repeat this procedure and record the lengths of longest paths until no derived

tree exists.

4.2.3 Wirelength of Different 3-D Placements

Previous section shows how we analyze the wirelengths with different routing

topologies under a fixed placement result. Since the wirelength and number of

TSVs change with different placements, it is also our interest to exam how place-

ments affect TSV numbers. However, changing the placement induces one more

dimension in our analysis space and significantly increases the complexity of our

analysis. Therefore, we focus on the LTT routing trees in our second analysis.

The problem of the third experiment is formulated as follows.

Experiment III:

Given (1) a set of blocks; (2) the size of each block; (3) a netlist (4) the size of

TSV, our objective is to observe how the number of total TSVs changes with dif-

ferent placements.

75

Evaluation Algorithm III:

Since our major interest is to fast investigate the TSV number over a wide range

of placements, analyzing 3D-placement results produced by a specific tool is less

representative. Therefore, we propose a generic partition-based algorithm to ana-

lyze the trend of wirelength variation in a 3D-design.

Our algorithm recursively divides a circuit into two subgroups by utilizing

a min-cut objective. Initially, we put all the blocks at the center of the 3D-IC.

Then, we recursively divides the circuit into two subgroups by a top-down manner.

Different from conventional placers [21, 46] that only minimize the number of

cuts between two subgroups, we adopt an exact net model (see Section 4.2.3) and

minimize the wirelength. Moreover, since some groups possess nets connecting

to the external region, we also use bounding box terminal propagation [47, 48]

to guide the bisecting process. The cutting plane can be orthogonal to x, y or

z axis, and the detail of choosing cutting plane will be given in Section 4.2.3.

After the bisecting, we put the cells to the center of their subgroups accordingly.

The bisecting process is continued until group contains one block only. Although

the algorithm only produces global placement result, it can generate a series of

placements in a short time. Therefore the algorithm is suitable for analyzing the

wirelength of 3-D placements.

Exact Net Model

To obtain a better placement result, it is necessary to use an efficient and effective

model to estimate the wirelength of nets. Therefore, we use the exact net model

76

[28] to estimate the wirelength of hyper nets. Figure 4.3 shows the exact net

model. Consider a group has a hyper net with three pins p0, p1, p2, where p1

and p2 are two points outside the region of the group. The bold rectangle shows

the region of the group being partitioned. The dash line shows border of two

subgroups. The fine rectangle shows the bounding box of the external pins. The

nodes L and R indicate the centers of left and right subgroups, respectively. If p0

is put in the left subgroup, the wirelength of the hyper net will be w1; otherwise the

wirelength will be w2. Therefore we create an edge between p0 and the subgroup

center which is closer to the center of the bounding box, and set the cost of the

edge as |w1−w2|. Before each partitioning, we set the weight of each net by using

the exact net model. Then, we find the min-cut partition and divide the original

group into two subgroups with minimum wirelength.

Cutting Scenario

The sequence of cutting directions in a placer significantly influences the wire-

length of a 3D-IC and the number of TSVs. In some papers [18, 19], the number

of TSVs is the objective being minimized; some other papers [40–42] show that

the wirelength reduces when more TSVs are used. Therefore, in the following we

will first illustrate two extreme cutting scenarios, z-cut first and z-cut last scenar-

ios, then derive a parameterized cutting scenario used in our algorithm.

The z-cut first scenario first divides a circuit into vertical groups, where each

group corresponds to a tier in the chip stack. Since the wirelength in z-axis is

proportion to the number of TSVs, finding minimum z-cut partitions actually min-

77

imizes the usage of TSVs. On the other hand, z-cut last partition first performs

x-cuts and y-cuts, and delays z-cuts to the last. Therefore, the z-cut last is actually

performing 2-D placement first, then arrange blocks into different tiers vertically.

Since the z-cut last scenario first performs x and y cuts, it mainly reduces the

wirelength in x-y plane and produces more TSVs.

To analyze the wirelength of 3D-IC, we should investigate the placement be-

tween the two extreme scenarios. Therefore, we propose a parameterized partition

scenario which can gradually change between these two extreme scenarios and

produce placements with different number of TSVs. Assume we attempt to place

a design with nblock cells to k tiers. The circuit will be partitioned recursively by

log2(nblock) times with log2(k) z-cuts. Let the first z-cut appear at the b-th position

of the bisecting sequence, and the interval between two z-cuts be p. Then, b and p

are given in the following equations.

b = (log2(nblock) − log2(k))α + 1 (4.2)

p = (log2(nblock)/log2(k) − 1) × (1 − |2α − 1|) (4.3)

where α is a real number between 0 and 1. After we decide the first z-cut position

and the interval of z-cut, all other positions of the sequence are filled with x-cut

and y-cut interleavingly. For example, if nblock = 64, k = 4 and α = 0 the

sequence of partitioning would be ”z-z-x-y-x-y” which is the z-cut first partition.

If α = 1, the sequence would be ”x-y-x-y-z-z” which corresponds to the z-cut

78

last. If α = 0.5, the sequence would be ”x-y-z-x-y-z” which behaves between

z-cut first and z-cut last partitions.

4.3 Experiment Results

The proposed evaluation algorithms are implemented in C++ with hMetis [49]

for partitioning and run on an Intel 3.0GHz machine with Linux. The IBM-

PLACE2 [50] benchmarks with 4 tiers of chip stacks were used to test our al-

gorithm. The thickness of each tier was set to 20μm. All cells in the benchmarks

are matched to cells in TSMC 180nm standard-cell library (from Artisan Inc.).

In the following we will present the results of our evaluations described in the

previous section.

4.3.1 Results of Spanning Trees

In this experiment, we aim to demonstrate how total wirelength of 3-D spanning

trees varies with TSV size and number of TSV under given placement results. For

clarity, we first demonstrate the trade-off of a single case IBM01 using a fixed

TSV size (5μm by 5μm). Figure 4.4 shows the result. To show how much benefit

we can obtain from 3-D spanning trees, all wirelengths presented are normalized

to the wirelenth using the least number of TSV. The curve ideal in-plane shows

the ideal wirelength in x − y plane without considering the overhead of TSVs.

The curve factor shows the scaling factor of wirelength due to the expansion in

die size. The evaluated wirelength in x/y plane is computed as the product of

factor and ideal in-plane and is shown by the cure real in-plane. Finally, the

79

3D wirelength indicated by curve real 3D is computed as the sum of wirelength

in x − y plane and in z axis. As shown in the figure, without considering TSV

area, the ideal in-plane curve monotonically decreases with the increase in TSV

number. Therefore, using MSTs is in favor of reducing wirelength. However,

when TSV size is 5μm by 5μm, the wirelength curve becomes convex and has

an optimal point. Before this optimal point, using more TSVs helps the design

reducing wirelength. Beyond the optimal point, the penalty of TSV area overhead

overtakes the benefit of 3-D spanning trees. Therefore, using excess TSVs only

increases wirelength. Next, Figure 4.5 shows how the size of TSV affects the

wirelength of IBM01. The optimal points are highlighted by the circles. As shown,

when the size of TSV grows, the area overhead of TSV gradually increases. Thus,

the optimal points shift toward the region with less TSV number. The arrows

indicate the movement of optimal points. The same results were observed for

other benchmark cases. The existence of optimal point on the wirelength curves

indicates that neither LTT tree nor MST is the best topology of 3-D routing tree.

Next, we want to understand how optimal wirelength changes with the size of

TSV. We change the size of TSV from 0μm by 0μm to 50μm by 50μm, and

find the optimal wirelength for all test cases. To make a fair comparison, for

each case, the optimal wirelength is normalized to the total wirelength of LTT

spanning trees. The result is presented in Figure 4.6. As shown in the figure,

when the size of TSV is smaller than 20μm by 20μm, the normalized optimal

wirelengths are relatively small. When the size of TSV increases, the normalized

optimal wirelengths begin to level off and approach to 1. It implies that when

80

Figure 4.4: The trade-off between wirelength and number of TSV under fixed
TSV size in IBM01.

TSV size is smaller than 20μm by 20μm, the best routing topology falls between

the LTT spanning tree and MST. Beyond this size, we should use LTT spanning

tree for routing to achieve the minimum wirelength.

4.3.2 Results of TSV Impact on Lengths of Longest Paths

To study how TSV impacts on the lengths of longest paths of given placements,

we observe the lengths of longest paths under different total TSV numbers. In

this experiment, we choose the top 10% of the longest paths as the longest paths.

Since the lengths of longest paths and number of TSVs changes from case to case,

we normalized the lengths of longest paths with respect to that of ideal situation

in which TSV does not occupy area. Similarly, we also normalized total TSV

number to number of TSVs required by the LTT trees.

Figure 4.7(a) plots the average length of longest paths versus normalized num-

ber of TSVs under different TSV sizes (0μm × 0μm, 3μm× 3μm, 5μm × 5μm,

81

10μm × 10μm, 15μm × 15μm). Figure 4.7(b) shows the ratio of TSV area to

cell area in different TSV numbers. First, we study the path length under ideal

situation (0μm × 0μm). Initially, adding TSVs provides shorter vertical links for

longest paths, hence the length of longest paths drops with the increase of TSV

number. However, when the normalized TSV number excesses 1.4, virtually all

longest paths cannot be further shortened. Adding more TSV only helps the wire-

length reduction of non-longest paths. Therefore, the curve starts to level off.

When larger TSVs are used, using too many TSVs significantly increases the die

size and the length of interconnection. Therefore, a trade-off among the penalty

and benefit of TSVs appears. As shown in the figure, the triangles indicate the op-

timal points of longest path length. Beyond an optimal TSV number, the penalty

of TSV area overhead overtakes the benefit of wirelength reduction brought by

TSVs. Therefore, path length increases after the optimal point. As shown in the

figure, when 10μm × 10μm TSVs are used, an optimal point appears when nor-

malized TSV number equals to 1.34. When TSV size grows to 15μm×15μm, the

penalty of TSVs is even larger and pushes the optimal normalized TSV number

forward to 1.28.

This experimental result implies that we only need to route the longest paths

with MSTs to reduce the length of longest paths, and route non-longest paths with

least amount of TSVs to reduce the area overhead.

82

2.8

2.4

2.6

2.8

2

2.2

2.4

2.6

2.8

1.8

2

2.2

2.4

2.6

2.8

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3300 3800 4300 4800 5300

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3300 3800 4300 4800 5300

Figure 4.5: The trade-off between wirelength and size of TSV in IBM01.

4.3.3 Results of Different Placements

Although previous experiment has shown the trade-offs among wirelength, TSV

size, and number of TSVs, the analysis is conducted with given 3-D placements.

To make a comprehensive study, it is necessary to understand how placement

affects the number of TSVs with a fixed routing tree topology. In the following,

we will present the result of the evaluation described in Section 4.2.3 with 4-tier

placements. Since we use parameterized cutting scenario to control our placer

to produce different placement results, we first show how the number of TSVs

changes with the parameter α. Figure 4.8 plots the TSV numbers versus α. Since

the number of TSVs changes from test case to test case, we normalized it to the

maximum number of TSVs required by the test case. When α changes from 0 to

1.0, our cutting scenario gradually changes from z-cut first to z-cut last. Therefore,

we can use parameter α to control the number of TSVs required by a placement.

83

Next, we demonstrate how wirelength changes with parameter α and the size

of TSV. To demonstrate how much benefit we can obtain from 3D technology,

we normalize the 3-D wirelengths to the wirelengths of 2D placements which are

produced by the same algorithm we proposed. For clarity, first we show the result

of a single test case IBM10 in Figure 4.9. In the figure, the curves labeled 0× 0,

5 × 5, 10 × 10 and 15 × 15 show the wirelengths using TSV sizes of 0μm by

0μm, 5μm by 5μm , 10μm by 10μm, and 15μm by 15μm, respectively. The

circles indicate the optimal wirelengths. As shown, when the TSV size is 0μm by

0μm, up to 23.0% of wirelength reduction can be gained with α = 0.4. Therefore,

when small TSV are used, z-cut last partitioning is beneficial for 3-D placement.

It implies that a placer should defer the decision of vertical positions of cells when

small TSV is applied. On the contrary, when large TSV is used, the optimal point

shifts to z-cut first region with less value of α. It indicates that the 3-D design

prefers to reduce the TSV overhead by first determining the tier which each cell

belongs to.

Finally, we are interested in how much space we should reserve for TSVs.

Assume the size of TSV is s. From the aforementioned analysis, we know that for

each TSV size s, there is an optimal placement PLopt(s) with least wirelength. If

the normalized wirelength of PL(kopt)(s) is greater than 1, the wirelength of 3-D

placement using a TSV size of s is no less than that of the 2-D placement. Also, we

know that, the wirelength only increases with the increase of TSV size. Therefore,

there must exist a threshold TSV size sT such that when size of TSV s > sT the

normalized wirelength of PL(kopt)(s) is greater than one. We find the threshold

84

1

0.99

1

IBM01

IBM02

0.98

0.99

1

IBM01

IBM02

IBM07

IBM08

0 96

0.97

0.98

0.99

1

IBM01

IBM02

IBM07

IBM08

IBM09

IBM10

0.95

0.96

0.97

0.98

0.99

1

IBM01

IBM02

IBM07

IBM08

IBM09

IBM10

IBM11

IBM12

0.94

0.95

0.96

0.97

0.98

0.99

1

0 10 20 30 40 50

IBM01

IBM02

IBM07

IBM08

IBM09

IBM10

IBM11

IBM12

0.94

0.95

0.96

0.97

0.98

0.99

1

0 10 20 30 40 50

IBM01

IBM02

IBM07

IBM08

IBM09

IBM10

IBM11

IBM12

0.94

0.95

0.96

0.97

0.98

0.99

1

0 10 20 30 40 50

IBM01

IBM02

IBM07

IBM08

IBM09

IBM10

IBM11

IBM12

Figure 4.6: Normalized optimal wirelengths of all test cases.

size sT for all cases and compute the total TSV area of PLopt(st) by changing

value of α from 0 to 1. The experimental results is given in Table 4.3. The columns

labeled circuit and TSV area show the names of test cases and the maximum ratios

of total TSV areas to the total cell areas, respectively. As the result shown, in our

study cases, the average maximum TSV area should not excess 25.30% of the cell

area; otherwise the wirelength will be longer than that of 2-D placements.

4.4 Summary

Although there is plenty of research discussing how wirelengths of 3D-ICs varies

with the number of TSVs, most of their analyses are conducted without consider-

ing the TSV size or using only a single TSV size. In this chapter, we have studied

how wirelengths of 3-D spanning trees change with number of TSVs under dif-

ferent TSV sizes. The analysis result reveals that, the optimal topologies of 3-D

spanning trees is determined by the size of TSV. When the size of TSV is small,

85

1.1

1.15

1.2

1.25

1.3

0x0

3x3

5x5

10x10

15x15

1

1.05

1.1

1.15

1.2

1.25

1.3

1 1.2 1.4 1.6 1.8

0x0

3x3

5x5

10x10

15x15

(a) Length of longest path versus number of TSVs

0.2

0.3

0.4

0.5

0.6

0.7

0x0

3x3

5x5

10x10

15 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 1.2 1.4 1.6 1.8

0x0

3x3

5x5

10x10

15x15

(b) TSV area versus number of TSVs

Figure 4.7: TSV impact on longest paths.

86

Figure 4.8: Number of TSVs and parameter α in our cutting scenario.

Figure 4.9: Normalized wirelength versus parameter α.

87

Table 4.3: Maximum TSV area ratio

circuit TSV area circuit TSV area

IBM01 15.77% IBM09 19.56%
IBM02 5.11% IBM10 36.16%
IBM07 49.89% IBM11 25.31%
IBM08 26.37% IBM12 24.25%

avg TSV area 25.30%

the using MSTs is beneficial for wirelength reduction. However, when large TSV

is applied, a design prefers using spanning trees with least number of TSVs to

minimize the total wirelength. Between these two extremes, a trade-off exists

between wirelength and the number of TSVs. Moreover, we have also proposed

a parameterized cutting scenario for partition-based placement and investigated

how placement affects a 3-D design. Our experimental result shows that, the best

partition scheme for placement depends on the TSV technology being applied.

When large TSV are used, it is favorable to first partition circuit for assigning

blocks to different tiers. On the contrary, the best placement is obtained by first

determining the positions of blocks on the x-y plane and then performing tier as-

signment for blocks. Also, from our experimental result, we derived an upper

bound for maximum total area of TSVs. Beyond this upper bound, virtually no

wirelength reduction can be obtained. In our study cases, the average maximum

ratio of total TSV area to total block area is 25.30%.

88

Chapter 5

Conclusion

In this dissertation, we have presented optimization methods for PSM and 3D

integration technologies. First, we have proposed MILP-based wire spreading

algorithms to modify layouts for PSM rules compliance. Different from the pre-

vious works which ask for finding a minimum weighted edge set or a minimal

edge set whose removal makes the conflict graph 2-colorable, our algorithm use

the exact deviation of wire segments as cost. The experimental results show the

effectiveness of our algorithm; less than 2% of odd faces are left in the modified

layout and no area increase is needed for the layout modification.

Second, we have proposed a 3D fixed-outline floorplanning algorithm to si-

multaneously place modules and plan TSVs for wirelength reduction. Compared

to the average wirelength of a post-processing TSV placement algorithm, our re-

sult is shorter by 22.3%.In addition, we have also proposed a TSV re-assignment

algorithm to refine a TSV planning result. Experimental results show that the

wirelength can be reduced up to 11.39% without area overhead.

Third, we have studied how wirelengths of 3-D spanning trees change with

89

number of TSVs under different TSV sizes. Moreover, we have also proposed

a parameterized cutting scenario for partition-based placement and investigated

how placement affects a 3-D design. Our experimental result shows that, the best

partition scheme for placement depends on the TSV technology being applied.

Although we have developed an MILP-based algorithm to modify the layout

for PSM compliance, the runtime of the algorithm grows rapidly with the increase

of problem size. Therefore, in the future, we are going to develop a heuristic algo-

rithm based on divide-and-conquer approach to speedup the layout modification

process. Furthermore, inspired by our evaluation results of 3D-IC, we also plane

to develop an 3D placer which considers the TSV overhead and automatically de-

cides the best number of TSVs for optimizing wirelength, timing or bandwidth of

3D-ICs.

fi

90

Bibliography

[1] http://www.reed-electronics.com/semiconductor/article/CA6356254

[2] Kevin McCullen, “Phase Correct Routing for Alternating Phase Shift

Masks,” Proceedings of Design Automation Conference, pp 317-320, 2004.

[3] P. Berman, A. B. Kahng, S. Mantik, I. L. Markov, and A. Ze-

likovsky,“Optimal Phase Conflict Removal for Layout of Dark Field Alter-

nating Phase Shifting Masks,”IEEE Transactions on CAD, pp 1265-1278,

1999.

[4] K. Cao, J. Hu, and M. Cheng, “Layout Modification for Library Cell Alt-

PSM Composablility,” Proceeding of International Society for Optical En-

gineering, 2004.

[5] C. Chiang, A. B. Kahng S. Sinha and X. Xu, “Fast and Efficient Phase Con-

flict Detection and Correction in Standard-Cell Layouts,” Proceedings in In-

ternational Conference on Computer Aided Design, pp. 149-155, 2005.

91

[6] M. Chi and D.Z. Pan, “BoxRouter: A new Global Router Based on Box

Expansion and Progressive ILP,” Proceedings of Design Automation Con-

ference, pp. 373-378, 2006.

[7] http://www.silvaco.com

[8] D. Kral and H.-J. Vosss, “Edge-Disjoint Odd Cycle in Planar Graphs,” Jour-

nal of Combinatorial Theory, Series B, Vol 90, Issue 1, pp. 107-120, 2007.

[9] http://www.ilog.com

[10] K. McCullen, “Redundant Via Insertion in Restricted Topology Layouts,”

International Symposium on Quality Electronic Design, pp. 821-828, 2007

[11] J. Cong, C. Liu, and G. Luo, “Quantitative Studies of Impact of 3D IC De-

sign on Repeater Usage,” Proceedings of International VLSI/ULSI Multilevel

Interconnection Conference, pp. 344-348, 2008.

[12] J. Burns, L. Mcllrath, C. Keast, et al., “Three-Dimensional Integrated Circuit

for Low Power, High-Bandwidth Systems on a Chip,” International Solid

State Circuits Conference, pp. 268-269, 2001.

[13] Y-J. Lee, Y. J. Kim, G. Huang, M. Bakir, Y. Joshi, A. Fedorov, and S. K.

Lim, “Co-design of signal, power, and thermal distribution networks for 3D

ICs,” Design Automation & Test in Europe Conference, pp.610-615, 2009.

92

[14] P. Garrou, C. Bower, and P. Ramm, “Handbook of 3D Integration: Tech-

nology an Applications of 3D Integrated Circuits,” John Wiley, New York,

2008.

[15] X. He, S. Dong, Y. Man, and X. Hong, “Simultaneous Buffer and Interlayer

Via Planning for 3D Floorplanning,” International Symposium on Quality

Electronic Design, pp. 740-745, 2009.

[16] J. Lu, S. Chen and T. Yoshimura, “Performance Maximized Interlayer Via

Planning for 3D ICs,” Proceedings of International Conference on ASIC, pp.

1096-1099 2007.

[17] J. Cong, W. Jie, and Y. Zhang, “A Thermal-Driven Floorplan for 3D-

ICs,” Proceedings in International Conference on Computer Aided Design,

pp.306-313, 2004.

[18] Z. Li, X-L. Hong, Q. Zhou, S. Zeng, H. Yang, V. Pitchumani, and C-K.

Cheng, “Integrating Dynamic Thermal Via Planning with 3D Floorplan-

ning Algorithm,” International Symposium on Physical Design, pp.178-185,

2006.

[19] P-Q. Zhou, Y-C. Ma, Z-Y Li, R.P. Dick, S. Li, H. Zhou, X-L. Hong, and Q.

Zhou, “3D-STAF: scalable temperature and leakage aware floorplanning for

three-dimensional integrated circuits,” Proceedings of International Confer-

ence on Computer-Aided Design, pp.590-597, 2007.

93

[20] X. Li, Y. Ma, X. Hong, S. Dong, and J. Cong, “LP based white space re-

distribution for thermal via planning and performance optimization in 3D

ICs,” Proceedings of Asia and South Pacific Design Automation Conference,

pp.209-212, 2008.

[21] B. Goplen, and S. Sapatnekar, “Placement of 3D ICs with Thermal and Inter-

layer Via Considerations,” Proceedings of Design Automation Conference,

pp. 626-631, 2007.

[22] J. Cong, G-J. Luo, J Wei, and Y. Zhang, “Thermal-Aware 3D IC Placement

Via Transformation,” Proceedings of Asia and South Pacific Design Automa-

tion Conference, pp.780-785, 2007.

[23] J. Li, and H. Miyashita, “Post-placement Thermal Via Planning for 3D In-

tegrated Circuit,” Asia Pacific Conference on Circuits and Systems, pp.808-

811, 2006.

[24] J. Cong, and Y. Zhang, “Thermal Via Planning for 3-D ICs,” Proceedings of

International Conference on Computer-Aided Design, pp. 745-752, 2005.

[25] T. Zhang, Y. Zhan, and S. Sapatnekar, “Temperature-Aware Routing in 3D

ICs,” Proceedings of Asia and South Pacific Design Automation Conference,

pp.308-314, 2006.

[26] http://www.magma-da.com/

94

[27] S.N. Adya, and I.L. Markov, “Fixed-Outline Floorplanning: Enabling Hier-

archical Design,” IEEE Transactions on Very Large Scale Integration Sys-

tems, vol.11, no.6, pp. 1120-1135, 2003.

[28] T-C. Chen, Y-W. Chang, S-C. Lin, “IMF: Interconnect-Driven Multilevel

Floorplanning for Large-Scale Building-Module Designs,” Proceedings of

International Conference on Computer-Aided Design, pp.159-164, 2005.

[29] C. Chiang, S. Sinha, “The road to 3D EDA tool readiness, ” Proceedings of

Asia and South Pacific Design Automation Conference, pp.429-436, 2009.

[30] H. Murata, K. Fujiyoshi, S. Nakatake, and Y. Kajitani, “Rectangle Pack-

ing Based Module Placement,” Proceedings of International Conference on

Computer-Aided Design, pp. 472-479, 1995.

[31] C-W. Sham, and E. F. Y. Young, “Routablility Driven Floorplanner with

Buffer Block Planning,” IEEE Transcation on Computer-Aided Design of

Integrated Circuits and Systems, Vol. 22, Issue 4, pp 470-480, 2003.

[32] K. W. C. Wong, and E. F. Y. Young, “Fast Buffer Planning and Congestion

Optimization in Interconnect-Driven Floorplanning,” Proceedings of Asia

and South Pacific Design Automation Conference, pp 411-416, 2003.

[33] P. Sarkar, and C-K. Koh, “Routability-Driven Repeater Block Planning for

Interconnect-Centric Floorplanning,” IEEE Transcation on Computer-Aided

Design of Integrated Circuits and Systems, Vol. 20, Issue 5, pp 660-671,

2001.

95

[34] http://www.algorithmic-solutions.com/leda/

[35] http://vlsicad.eecs.umich.edu/BK/parquet/

[36] P.S. Andry et al., “A CMOS-compatible Process for Fabricating Electrical

Through-vias in Silicon,” Proceedings of Electronic Components and Tech-

nology Conference, 2006, pp. 831-837

[37] S. Spiesshoefer, Z. Rahman, G. Vangara, S. Polamreddy, S. Burkett, and L.

Schaper, “Process Integration for Through-Silicon Vias,” Journal of Vacuum

Science & Technology A: Vacuum, Surfaces, and Films, vol 23, issue 4, pp.

824-829, 2005.

[38] K. Takahashi and M. Sekiguchi, “Through Silicon Via and 3-D Wafer/Chip

Stacking Technology,” Symposium on VLSI Circuits Digest of Technical Pa-

pers, 2006.

[39] I. Loi, S. Mitra, T. H. Lee, S. Fujita, and L. Benini, “A Low-Overhead Fault

Tolerance Scheme for TSV-Based 3D Network on Chip Links,” Proceedings

of International Conference on Computer-Aided Design, pp.598-602, 2008.

[40] J. A. Davis, V. K. De, and J. D. Meindl, “A Stochastic Wire-Length Distribu-

tion for Gigascale Integration (GSI)-Part I: Derivation and Validation,” IEEE

Transcation on Electron Devices, vol. 45, no. 3, pp. 580-589, 1998.

[41] J. W. Joyner, P. Zarkesh-Ha, J. A. Davis, and J. D. Meindl, “A Three-

Dimensional Stochastic Wire-Length Distribution for Variable Separation of

Strata,” Proceedings of Interconnect Technology Conference, 2000.

96

[42] R. Zhang, K. Roy, C.-K. Koh, and D. B. Janes, “Stochastic Wire-Length

and Delay Distributions of 3-Dimensional Circuits,” Proceedings of Inter-

national Conference on Computer-Aided Design, 2000.

[43] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A Study of Through-Silicon-

Via Impact on the 3D Stacked IC Layout,” International Conference on Com-

puter Aided Design, pp 674-680, 2009.

[44] M. Pathak, Y-J. Lee, T. Moon, S. K. Lim, “Through-Silicon-Via Manage-

ment during 3D Physical Deign: When to Add and How Many?” Interna-

tional Conference on Computer Aided Design, pp 387-394, 2010.

[45] http://er.cs.ucla.edu/benchmarks/ibm-place/

[46] J. A. Roy, D. A. Papa, S. N. Adya, H. H. Chan, A. N. Ng, J. F. Lu, and

I. L. Markov, “Capo: robust and scalable open-source min-cut floorplacer,”

Proceedings of International Symposium on Physical Design, 2005.

[47] N. Selvakkumaran and G. Karypis. Theto, “A Fast and High-Quality Pari-

tioning Driven Global Placer,” Technical Report 03-46, Department of Com-

puter Science and Engineering, Univeristy of Minnesota, Novemver 2003.

[48] N. Selvakkumaran and G. Karypis. Theto, “A Fast and High-Quality Pari-

tioning Driven Placement Tool,” Technical Report 04-40, Department of

Computer Science and Engineering, Univeristy of Minnesota, October 2004.

[49] http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download

97

[50] http://er.cs.ucla.edu/benchmarks/ibm-place2/

98

