Chapter 4

Experimental Results

Our algorithm, presented in Section 3, is implemented in the C language
and executed on a SUN Sparc Workstation. Several MCNC and ISCAS
benchmark circuits were tested to show the effectiveness of our algorithm.
The experiment is performed using the-gate type in mcnc.genlib of MCNC
general library. SPICE simulation.is performed for the gates using TSMC
spice model of 0.18 um techmnology. The-maximum current of one sleep
transistor is computed as 432uA under (%)Sleep ~ 10 to have only 5% degra-
dation in circuit performance. The input circuit is in gate level description.
After cell characterization, our algorithm was performed to the circuit and
produced an output of the clustered circuit.

Table 4.1 shows the statistics of our benchmark set. The column labeled

Gates stands for the number of gates of circuits. The column labeled In

and Out shows the numbers of inputs and outputs, respectively.

29

Table 4.1: Characteristics of benchmark

‘ Circuits H Gates ‘ In ‘ Out

x2 66 | 10 7
9symml 246 9 1
apex’ 268 | 49| 37
i4 270 1192 | 16
C432 287 | 36 7
XXX 287 | 36 7
example2 343 | 85| 66
C880 424 1 60 | 26
alu2 433 | 10 6
i5 4484 133 | 66
C499 5421 36 7
C1355 5900 41| 32
C1908 240738 25
rot 75214357 107
apex6 74135 | 99
alud 830~ 14 8
x3 1089 | 135 | 99
(3540 1426 | 50| 22
C6288 2353 | 32| 32
ChH315 2437 | 178 | 123

30

To understand how effective of our proposed algorithm, we compare our
design flow with functionality check to that with only topology check. Ta-
ble 4.2 shows the results. The column labeled T are the result of design flow
with only topology information. The column labeled T+F are the results
taking both topology and functionality into consideration. The column la-
beled # clique is the number of cliques after the step of clique partitioning
and the column labeled # sleep trans is the number of transistors after the
step of merge of cliques. The column labeled c_red is the reduction ratio in
terms of the number of cliques taking functionality into consideration and it

is computed by:

(#cliquer — #cliquer,)

1 (0)
#cliquer x 100%

cred =

Similarly, the column labeled s_redyis the reduction ratio in terms of the
number of sleep transistors taking functionality into consideration and it is

computed by:

(#sleep transy — #sleep transrir) x 100%

sred =
#sleep transy

The results show that the number of sleep transistors is over-constrained
if only topology is considered. It results in more sleep transistors. Taking
functionality into consideration, more gates can share one sleep transistor.

The reduction in terms of the number of sleep transistors can be as high as

31

Table 4.2: Results of design flow with and without functionality information

clique # sleep trans
Circuits T|T+F | caed(%) | T | T+F [sxred(%)
x2 21 19 9 8 7 12
9symml 91 87 41 28 26 7
apex7 82 79 41 32 29 9
i4 104 98 6| 33 31 6
C432 142 | 107 25 || 45 38 16
XXX 165 | 119 28 || 51 41 20
example2 || 111 | 101 9 42 37 12
C880 214 | 159 26 | 69 56 19
alu2 251 | 170 32| T4 57 23
i5 168 | 147 13| 56 50 11
€499 260 | 217 7.0 79 70 11
C1355 322 | =235 27|, ~93 74 21
C1908 462 | - 302 3571 139 | 101 27
rot 230 | 184 20-| 83 67 19
apex6 287 | 260 91110 | 101 8
alud 505 | 336 33| 148 | 111 25
x3 425 | 345 19 | 124 | 105 15
C3540 756 | 566 25 |1 249 | 202 19
C6288 1568 | 917 42 || 501 | 296 41
C5315 1125 | 882 22 || 358 | 252 30
Avg. - - 20 - - 18

32

41% (e.g., C6288). On the average, using our method, the number of cliques
is reduced about 20% and the number of sleep transistor is reduced about
18% as compared to the method without considering functionality.

Table 4.2 shows the ratio of gates with multiple fan-out to the total num-
ber of gates. From the table, we found that the low reduction ratio of sleep
transistor using our method are those circuits that have less percentage of
gates with multiple fan-out, i.e., circuits are more likely to have few recon-

verged paths (e.g., 9symml, i4).

33

Table 4.3: Ratio of gates with multiple fan-out

| Circuits || Gates | Gates (multi_fanout) | ratio(%) |

x2 66 10 15
9symml 246 22 9
apex’ 268 43 16
i4 270 4 1
C432 287 81 28
XXX 287 81 28
example2 343 48 14
C880 424 122 29
alu2 433 96 22
i5 448 67 15
C499 542 218 40
C1355 290 250 42
1908 724 281 39
rot 752 150 20
apex6 754 108 14
alud 830 236 28
x3 1089 7 7
C3540 1426 468 33
6288 2353 1393 29
Ch315 2437 692 28

34

