4.

（a）
$P(X>20)=\int_{20}^{\infty} \frac{10}{x^{2}} d x=\frac{1}{2}$
（b）
$F(y)=\int_{10}^{y} \frac{10}{x^{2}} d x=1-\frac{10}{y} \quad$ if $y>10$
$F(y)=0 \quad$ if $y \leq 10$
（c）
$P(X>15)=1-F(15)=1-\left(1-\frac{10}{15}\right)=\frac{2}{3} \equiv p_{1}$
則
$Z: 6$ 個裝置能運作超過 15 小時的個數 $\sim \operatorname{Bin}\left(n=6, p_{1}\right)$
$P(Z \geq 3)=1-P(Z \leq 2)=1-\sum_{z=0}^{2} C_{z}^{6}\left(\frac{2}{3}\right)^{z}\left(\frac{1}{3}\right)^{6-z}=0.8999$
Assumptions：每個裝置運作超過15個小時爲獨立進行。
7.
$\int_{0}^{1} a+b x^{2} d x=1 \Rightarrow\left(a x+\frac{b}{3} x^{3}\right)_{x=0}^{x=1}=1 \Rightarrow a+\frac{b}{3}=1$
$\int_{0}^{1} x\left(a+b x^{2}\right) d x=\frac{3}{5} \Rightarrow\left(\frac{a x^{2}}{2}+\frac{b}{4} x^{4}\right)_{x=0}^{x=1}=\frac{3}{5} \Rightarrow \frac{a}{2}+\frac{b}{4}=\frac{3}{5}$
$\Rightarrow a=\frac{3}{5}, b=\frac{6}{5}$
10.
（a）
X ：旅客在 7 點與 8 點間到站的時間～Unif $(0,60)$
$P($ Goes to destination $A)$
$=P(5<X<15$ or $20<X<30$ or $35<X<45$ or $50<X<60)$
$=\int_{5}^{15} \frac{1}{60} d x+\int_{20}^{30} \frac{1}{60} d x+\int_{35}^{45} \frac{1}{60} d x+\int_{50}^{60} \frac{1}{60} d x=\frac{2}{3}$
（b）
Y ：旅客在 7 點 10 分與 8 點10分間到站的時間 $\sim \operatorname{Unif}(10,70)$
$P($ Goes to destination $A)$
$=P(10<Y<15$ or $20<Y<30$ or $35<Y<45$ or $50<Y<60$ or $65<Y<70)$
$=\int_{10}^{15} \frac{1}{60} d y+\int_{20}^{30} \frac{1}{60} d y+\int_{35}^{45} \frac{1}{60} d y+\int_{50}^{60} \frac{1}{60} d y+\int_{65}^{70} \frac{1}{60} d y=\frac{2}{3}$
11.
X ：在長度爲 L 的線段上，任選一點到某一端點的距離 $\sim \operatorname{Unif}(0, L)$
Case1：$X>L-X$
$P\left(\frac{L-X}{X}<\frac{1}{4}\right)=P\left(X>\frac{4}{5} L\right)=\int_{\frac{4}{5} L}^{L} \frac{1}{L} d x=\frac{1}{5}$
Case 2：$X<L-X$
$P\left(\frac{X}{L-X}<\frac{1}{4}\right)=P\left(X<\frac{1}{5} L\right)=\int_{0}^{\frac{1}{5} L} \frac{1}{L} d x=\frac{1}{5}$
\Rightarrow
$P\left(\right.$ The raito of the shorter to the longer segment is less than $\left.\frac{1}{4}\right)=\frac{2}{5}$
40.
$X \sim \operatorname{Unif}(0,1)$
$f(x)=1 \quad 0<x<1$
$Y=e^{X} \Rightarrow X=\ln Y$
$|J|=\frac{1}{y}$
$h(y)=f(\ln y) \cdot|J|=\frac{1}{y} \quad 1<y<e$
41.
$\theta \sim \operatorname{Unif}\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
$f(\theta)=\frac{1}{\pi} \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}$
$R=A \sin \theta \Rightarrow \theta=\sin ^{-1}\left(\frac{R}{A}\right)$
$|J|=\frac{1}{A \cdot \sqrt{1-\left(\frac{R}{A}\right)^{2}}}$
$h(r)=f\left(\sin ^{-1}\left(\frac{r}{A}\right)\right) \cdot|J|=\frac{1}{\pi \cdot A \cdot \sqrt{1-\left(\frac{R}{A}\right)^{2}}} \quad-A<r<A$

Theoretical Exercise

2.

$$
\begin{aligned}
E(Y)=\int_{-\infty}^{\infty} y \cdot f(y) d y & =\int_{0}^{\infty} y \cdot f(y) d y+\int_{-\infty}^{0} y \cdot f(y) d y \\
& =\int_{0}^{\infty} \int_{0}^{y} d x f(y) d y-\int_{-\infty}^{0-y} \int_{0}^{\infty} d x f(y) d y \\
& =\int_{0}^{\infty} \int_{x}^{\infty} f(y) d y d x-\int_{0}^{\infty} \int_{-\infty}^{\infty} f(y) d y d x \\
& =\int_{0}^{\infty} P(Y>x) d x-\int_{0}^{\infty} P(Y<-x) d x \\
& =\int_{0}^{\infty} P(Y>y) d y-\int_{0}^{\infty} P(Y<-y) d y
\end{aligned}
$$

3.

$E[g(X)]=\int_{0}^{\infty} P(g(X)>y) d y-\int_{0}^{\infty} P(g(X)<-y) d y$
其中
假設 g^{-1} 存在

$$
\begin{aligned}
& \int_{0}^{\infty} P\{g(X)>y\} d y=\int_{0}^{\infty} P\left\{X>g^{-1}(y)\right\} d y=\int_{0}^{\infty} \int_{g^{-1}(y)}^{\infty} f(x) d x d y \\
&=\int_{0}^{\infty} \int_{0}^{g(x)} f(x) d y d x=\int_{0}^{\infty} g(x) f(x) d x \\
& \begin{aligned}
\int_{0}^{\infty} P\{g(X)<-y\} d y & =\int_{0}^{\infty} P\left\{X<g^{-1}(-y)\right\} d y=\int_{0}^{\infty} \int_{-\infty}^{g^{-1}(-y)} f(x) d x d y \\
& =\int_{-\infty}^{0-g(x)} \int_{0}^{0} f(x) d y d x=\int_{-\infty}^{0}-g(x) f(x) d x
\end{aligned}
\end{aligned}
$$

Hence

$$
\begin{aligned}
E[g(X)] & =\int_{0}^{\infty} g(x) f(x) d x-\int_{-\infty}^{0}-g(x) f(x) d x \\
& =\int_{0}^{\infty} g(x) f(x) d x+\int_{-\infty}^{0} g(x) f(x) d x \\
& =\int_{-\infty}^{\infty} g(x) f(x) d x
\end{aligned}
$$

