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Chapter 6. Boundary Refinement Based on a Score Predictive Model 

So far, we have demonstrated the performance of the proposed hybrid approach which 

effectively combines statistics-based and heuristic methods together to refine the boundaries. 

Although the overall segmentation accuracy is increased via the hybrid method, there is still 

room for further improvement. In fact, the proposed hybrid approach has two weaknesses: 

 

1) It is somewhat unnatural to have a binary decision for crisp classification. A soft or 

fuzzy classification might be more desirable since the degree of a boundary belonging 

to a certain class is represented by a continuous number between 0 and 1.  

2) A fixed search range used in the boundary refinement is inappropriate. This is 

because that the initial segmentation errors among all phonetic transition categories 

are usually diverse, i.e., using various search ranges for different phonetic transition 

categories should be more reasonable.   

 

According to the two viewpoints mentioned above, we shall address the use of soft 

classification based on the concept of the score predictive model (SPM). The principal 

advantage of the proposed SPM is its capability to predict the scores of candidate boundaries 

reliably. Under the framework of the SPM we need to set up a reasonable score function. For 

each phonetic transition category a set of candidate boundaries are collected in advance. 

These boundaries are transformed into a training set that contains acoustic features and 

desired scores. Here the acoustic features are the same 58-dimensional feature vectors used in 

the previous SKL boundary refinement. Finally, a reliable regression approach is employed to 

construct the SPM based on supervised learning. 
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In the process of boundary refinement, the scores of two initial boundaries identified by 

DTW and the HMM are computed via the SPM. The boundary with the higher score is 

preserved and the other is discarded. A dynamic search range is designed to determine the 

suitable candidate boundaries around the preserved boundary. Subsequently, the score of each 

candidate boundary is computed through the SPM. Finally, a boundary with the highest score 

will be selected as the refined boundary. The following subsections shall introduce the SPM 

in detail. 

 

6.1. Score Function 

The score function is used to specify the score of a boundary according to its distance 

from a true boundary. Intuitively, if a candidate boundary is closer to the true boundary it 

should receive a higher score. Based on this concept, the score function for the kth phonetic 

transition category is defined by a Gaussian-like function:  

2

2

100),( k

Cd

k edscore σσ
−

= ,
(6.1) 

 

where d  denotes the distance in ms between a true boundary and a candidate boundary. 

The value kσ  is set to the maximum segmentation error (in ms) of the kth phonetic transition 

category. However, we also set the upper bound of kσ  to four times the standard deviation 

of segmentation error in order to reduce the influence of possible outliers. The constant 

coefficient C is specified as 20 to set the score for the maximum segmentation error to 

approximate zero. The use of the continuous score function is intuitive and more reasonable 

than the crisp classification used in previous approaches since the concept is similar to a soft 
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or fuzzy classification. Fig. 1 shows the score function of the first phonetic transition 

category which is composed of the transition from the first FINAL type to the first INITIAL 

type with a maximum segmentation error of 227.9375 ms. So, if a candidate boundary is 28 

ms away from the true boundary, then the corresponding score is 
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Fig. 6.1. The score function of the first phonetic transition category. 

  

6.2. Candidate Boundaries for Training 

Once the score function is defined, a score predictive model (SPM) is subsequently 

constructed for each phonetic transition category. As documented in Chapter 5, the data of 

TTS-455 within ±50 ms segmentation error tolerance is approximately 96 percent while 

applying the HMM-based initial phonetic segmentation. As a result, given a true boundary, 

the candidate boundaries located within ±50 ms of this boundary are collected to form the 

training data. These candidate boundaries are collected through the following procedure: 
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1) Add a set of candidate boundaries 2 ms apart, located within ±10 ms of the true 

boundary. 

2) Add a set of candidate boundaries 5 ms apart, located within 10 ~ 50 ms and -10 ~ 

-50 ms around the true boundary.  

 

As a result, a total of 27 candidate boundaries (including the true boundary) can be 

collected for each true boundary, as shown in Fig. 6.2. This task of training data collection is 

repeated in order to obtain 54 sets of training data corresponding to the 54 possible phonetic 

transition categories. 
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Fig. 6.2. A typical example of the 27 candidate boundaries around a human-labeled true boundary. 

The content of this speech waveform was “將離” (“jiang-li2”). 
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On the other hand, the accuracy of SVS-1384 within ±200 ms segmentation error 

tolerance is approximately 97 percent using both the HMM-based and DTW-based initial 

phonetic segmentation. Hence the candidate boundaries located within ±200 ms of the true 

boundary are collected to form the training data through the following procedure: 

 

1) Add a set of candidate boundaries 4 ms apart, located within ±40 ms of the true 

boundary. 

2) Add a set of candidate boundaries 16 ms apart, located within 40 ~ 200 ms and -40 ~ 

-200 ms around the true boundary.  

 

As a result, a total of 41 candidate boundaries (including the true boundary) can be 

collected for each true boundary, as shown in Fig. 6.3. This task of training data collection is 

repeated in order to obtain 54 sets of training data corresponding to the 54 possible phonetic 

transition categories. 
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Fig. 6.3. A typical example of the 41 candidate boundaries around a human-labeled true boundary. 
The content of this singing voice waveform was “寧靜” (“ning2-jing4”). 

 

6.3. Regression Model by Using Support Vector Machine 

After collecting the training data, we need to adopt a regression approach to construct a 

SPM for each phonetic transition category. Generally speaking there are many approaches for 

regression, such as linear regression (LR), neural network (NN) [64], support vector machine 

(SVM) [65], etc. In this study, we chose SVM to construct SPMs by using the library 

provided by LIBSVM [67]. The following is a brief description of how SVM works on 

regression problems. 

The SVM algorithm is based on the statistical learning theory. For regression problems, 

the principal goal of the SVM is to construct a hyperplane that is close to as many of the data 
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points as possible. The two commonly used SVM methods for regression problems are the 

ε -support vector regression (ε -SVR) [68] and the ν -support vector regression (ν -SVR) 

[69]. Given a set of data points, ( ){ }k
iii y 1, =x , where nR∈ix  is an input vector and 1R∈iy  is 

a target output value, our objective is to find the coefficients of a hyperplane which can 

minimize an objective function consisting of the sum of the squared norm of the hyperplane’s 

coefficient and the total distances from the data points to the hyperplane using Vapnik’s 

ε -insensitive loss function. The ε -insensitive loss function is defined as: 
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The parameter ε  is determined by the user. The primal problem of ε -SVR is as 

follows: 
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Here training vectors ix  are mapped into a higher dimensional space through a kernel 

function φ . The inequality constraints embed Vapnik’s ε -insensitive loss function, which 

indicates that if ( )xw φT  is in the range of  [ ]εε +− yy ,  no loss is considered. Two slack 

variables iξ  and *
iξ  are introduced, one for exceeding the target value by more than ε , 

and the other for being more than ε  below the target. In addition, C denotes the penalty 

parameter; a larger C corresponds to a higher penalty being assigned to training errors. Fig. 
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6.4 shows an example of ε -SVR.  

 

 
Fig. 6.4. The regression function of ε -SVR is represented by a tube with radius ε  and slack 
variables iξ . The data points outside theε -insensitive zone are referred to as support vectors 
(black dots). 

 

Since it is difficult to find an appropriate value for ε , Schölkopf et al. [69] proposed 

ν -support vector regression using a parameter ν  which effectively controls the number of 

support vectors and training errors. The primal problem of ν -SVR is as follows: 

*
i, ,,,

minimize
iξξεw

( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++ ∑

=

k

i
ii

T

k
C

1

*1
2
1 ξξνεww

,
(6.5) 

subject to (6.4) and 0≥ε . They proved that ( ]1,0∈ν  is an upper bound of the fraction of 

margin errors and a lower bound of the fraction of support vectors. In our study, ν  was 

empirically set to 0.5 where it gave a satisfactory performance based on our observations. In 

the present study we employed ν -support vector regression and adopted the radial basis 

function (RBF) as its kernel function whose equation is shown as: 

*ξ

ξ
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In (6.5) and (6.6), there are two significant parameters, C, and γ, to be determined to 

construct a good regression model. A common approach is to adopt a grid search with n-fold 

cross validation. Here we adopt a two-phase grid search with five-fold cross validation to 

find the best (C, γ) pairs for the SPM of each phonetic transition category. The two-phase 

grid search is described as follows. 

 

1) Phase 1: A coarse grid search with five-fold cross validation is applied to find a 

reference point for the next finer grid search. That is, a set of parameters 

( { } { }111131131 2,...,2,2,2,...,2,2 −−−== γC ) are evaluated to find the best (C, γ) as the 

reference point that has the smallest root mean square error. 

2) Phase 2: In the neighborhood of the reference point identified in phase 1 we conduct a 

finer grid search with five-fold cross validation to find a refined point (C, γ).  

 

Fig. 6.5 shows the flowchart of the SPM construction for each of the 54 phonetic 

transition categories. 
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Fig. 6.5. The construction of 54 SPMs. 

 

6.4. Boundary Refinement by Using SPM 

As mentioned previously, the proposed SPM can take advantage of the results of the 

HMM and the DTW to obtain better segmentation, as shown in Fig. 6.6. The overall 

segmentation procedure for singing voice corpora is summarized as follows.  

 

1) For each phoneme boundary between two consecutive syllables, there are two initial 

estimates obtained from the HMM and the DTW. 

2) The corresponding SPM is used to predict the scores of two initial estimates by HMM 

and DTW. The boundary with a higher score is preserved and the other is discarded. 

3) A dynamic search range for refinement is determined according to the score of the 

preserved boundary. The size of the search range can be calculated via (6.7) which is 

derived from (6.1). 

SVM-based regression, with 
two-phase grid search for the 

best value of (C, γ) 

SPM-feature extraction 

Classification by 54 phonetic 
transition categories 

Definition of candidate 
boundaries with score information

All initial boundaries with the 
corresponding phonetic information

54 SPMs 
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In other words, a lower score requires a wider search range, while a higher score 

requires a narrower one. It should be noted that a wider search range does not always 

guarantee a better performance since outliers could be introduced which then would 

produce unpredictable results via the SPM. Since the score is obtained by the 

regression model in the SPM, its value could possibly be out of the range of [0, 100]. 

To avoid this, we limit the range of the score to be within [1, 100] in order to find a 

reasonable search region in (6.7). 

4) Finally, for the preserved boundary we select candidate boundaries 2 ms apart, within 

the search range at both sides of the preserved boundary. The candidate boundary that 

has the highest SPM score is selected as the final boundary. 

 

It should be noted that we ignore the DTW-based alignment while the proposed SPM 

boundary refinement is performed on TTS-455 due to the fact that it has no corresponding 

music score information. 
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Fig. 6.6. Boundary refinement using the proposed SPM. 

 

4. The scores of a set of candidate 
boundaries are evaluated by its 

corresponding SPM. 

2. Score estimation by the 
corresponding SPM 

Only the boundary with the higher score is kept 

For each of initial boundaries 
(DTW and HMM) 

A set of candidate boundaries are determined 
according to the range of the search area 

DTW-based recognizer 

Input sentences 
(Including phonetic transcriptions and melody information) 

1. 

Two initial boundaries (DTW and HMM) 
with the corresponding phonetic information

HMM-based recognizer 

3. A dynamic search range calculated by 
the score 

The highest-score boundary is the final boundary 



 

 
69

6.5. Performance Evaluation of SPM 

In the section, we conducted several experiments to validate the feasibility of the 

proposed SPM. At the beginning, we applied SVM regression to construct the 54 SPMs. The 

best parameters (C, γ) for the 54 SPMs were determined via the two-phase grid search with 

five-fold cross validation. Fig. 6.7 demonstrates the results of the boundary refinement based 

on the proposed SPM, where the top and bottom panels plot the result of the closed and the 

open tests, respectively. It should be noted that the configurations of this experiment are the 

same with those of the previous experiment by using the hybrid approach, i.e., we used 300 

sentences for the training set and 155 sentences for the test set for the performance evaluation 

of SPM on TTS-455. It can be seen from Fig. 6.7 that the results indicate that the proposed 

SPM is able to effectively improve the initial segmentation results obtained from the HMM.  
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Fig. 6.7. The performance of the proposed SPM approach. Top: closed test. Bottom: open test. 

(Evaluted data: TTS-455) 

 

On the other hand, we used the same procedure to evaluate the performance of the 

proposed SPM on SVS-1384. It can be seen from Fig. 6.8 that both the performance of DTW 

and the HMM are not satisfactory. In addition, the results indicate that the proposed SPM is 

able to effectively improve the initial segmentation results obtained from DTW and the 

HMM. For example, the percentage of the cases whose error range < 20 ms is increased from 

67.2% (DTW-based alignment) to 76.6% (HMM+DTW with SPM refinement) in the open 

test.  
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Fig. 6.8. The performance of the proposed SPM approach. Top: closed test. Bottom: open test. 

(Evaluted data: SVS-1384) 

 

6.6. Performance Comparison Using Three Regression Approaches 

In the previous experiments, although we have shown that SPMs constructed by SVM are 

able to obtain satisfactory results, it is still unknown whether other regression approaches 

will outperform SVM. In the study we tried two other common regression approaches, linear 

regression (LR) and neural network (NN), and compared them with SVM.  

For LR we applied the least-squares error criterion [70] for obtaining the corresponding 

SPMs. The major advantage of LR is its efficiency in computing the least-squares solution. 

The NN approach has a lot of parameters that must be determined, such as initialization 

of weights, number of neurons, learning rates, training methods, transfer functions, stopping 
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rules, number of training iterations, and so on. To find the optimum values of these 

parameters is quite time consuming. In this study, we chose the Levenberg-Marquardt 

method [71] for training the neural network of multilayer perceptrons (MLPs). The transfer 

function of the hidden layer was the hyperbolic tangent function. In the output layer the 

linear function was used. In theory, an NN with a single hidden layer can be proven to be a 

universal function approximator. However, more hidden layers may provide better 

performance through richer internal representation. In addition, the number of neurons also 

affects the overall performance. Therefore we chose several different configurations of NN, 

including a single hidden layer with 20, 40 and 60 neurons, and two hidden layers with 10, 

20 and 30 neurons each. Subsequently, we introduced the five-fold cross validation to find 

the most suitable settings for NN. In addition, in order to avoid premature convergence to 

local minima, we trained each NN 10 times starting from different sets of random weights. 

After a lengthy training process, each SPM had its regression model of NN with different 

optimum structures and parameters. 

In this dissertation, we conducted several experiments to compare the performance of 

different regression methods on two corpora, TTS-455 and SVS-1384. Fig. 6.9 demonstrates 

that both SVM and LR have better performance as compared with NN while refining the data 

of TTS-455. Fig. 6.10 shows that SVM has the optimal performance among the three 

regression methods while refining the data of SVS-1384. Consequently, we chose SVM 

instead of LR or NN to construct SPMs. Besides, there are some other reasons that make 

SVM a better choice than NN to construct SPMs, and they are: 
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1) An iterative procedure is used to reduce the possibility of premature convergence to 

local minima while training NN. However, the training problem of SVM is a convex 

optimization problem without local minima [72], and so there is no need to employ an 

additional iterative procedure for SVM. 

2) SVM has the advantage that it is able to deal efficiently with high dimensional input 

vectors. On the contrary, the number of weights for a NN is very high in cases with 

high dimensional input vectors. 
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Fig. 6.9. Performance comparison using different regression approaches. Top: closed test. Bottom: 

open test. (Evaluted data: TTS-455) 
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Fig. 6.10. Performance comparison using different regression approaches. Top: closed test. Bottom: 

open test. (Evaluted data: SVS-1384) 

 

6.7. Performance Comparison Using Different Boundary Refinement Methods 

In this section, a boundary refinement based on a hybrid approach was used for 

comparison with the proposed SPM. Fig. 6.11 and Fig. 6.12 present the performance 

comparison between the hybrid approach and the SPM approach. The evaluation data for the 

first experiment shown in Fig. 6.11 and the second experiment demonstrated in Fig. 6.12 are 

TTS-455 and SVS-1384, respectively. It can be seen from the open test in Fig. 6.11 that the 

performance of the proposed SPM approach is almost the same with that of the hybrid 

approach. However, the proposed SPM approach obviously outperforms the hybrid approach 

according to the experimental results demonstrated in Fig. 6.12. In other words, the 
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segmental results via the SPM approach are more reliable than those obtained by the previous 

hybrid approach. 
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Fig. 6.11. Performance comparison between two boundary refinement approaches. Top: closed test. 

Bottom: open test. (Evaluted data: TTS-455) 
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Fig. 6.12. Performance comparison between two boundary refinement approaches. Top: closed test. 

Bottom: open test. (Evaluted data: SVS-1384) 
 

6.8. Two Attempts Regarding Performance Improvement 

So far, we have conducted several experiments to demonstrate the feasibility of the 

proposed SPM. The experimental results indicate that the SPM indeed improves the 

segmentation accuracy. In fact, in this study we also tried two methods to observe whether 

the overall performance could be ameliorated further. The principal ideas of the two methods 

are described as follows. 

 

1) Utilize more acoustic features instead of single feature (ex. MFCCs alone) to 

construct the HMM-based recognizer for subsequent initial phonetic segmentation. 
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2) Apply an additional procedure to effectively reduce the training errors while using the 

regression model to construct each SPM. 

 

As for the above first method, we adopted the 58-dimensional feature vector used in the 

hybrid/SPM boundary refinement instead of 39-dimensional MFCCs to construct the 

HMM-based recognizer. For simplicity in the following performance comparison, we only 

construct a new speaker independent model by using TCC-300 corpus; other models in 

different types (ex. speaker dependent or speaker adapted) are not discussed in this 

dissertation. The newly trained model is used to perform the initial phonetic segmentation on 

both TTS-455 and SVS-1384.  
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Fig. 6.13. Performance comparison between two kinds of acoustic features. Top: closed test. Bottom: 

open test. (Evaluted data: TTS-455) 
  

From Fig. 6.13 and Fig. 6.14, the experimental results reveal that the new HMM-based 

recognizer reduces the segmentation accuracy greatly. This is probably caused by that the 

58-dimensional feature is not suitable for speech recognition as compared with the traditional 

39-dimensional MFCCs. For example, pitch is not an ideal feature for speech recognition 

since different syllables possibly have the same pitch. Based on most of experimental results, 

the low speech recognition rate usually accompanies low segmentation accuracy. 
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Fig. 6.14. Performance comparison between two kinds of acoustic features. Top: closed test. Bottom: 

open test. (Evaluted data: SVS-1384) 
 

As for the second method, we employ Lee’s method [29] to investigate the possibility of 

further performance improvement. Lee proposed a joint classification/training algorithm to 

find an optimum set of multilayer perceptrons (MLPs) for the optimum partition of phonetic 

transition categories. The algorithm involves the following steps. 

 

Step-0. Initialization: Given a training set and initial partitions, construct the initial MLP 

for each partition. (A partition is a set of phoneme-phoneme combinations.) 

Step-1. Classification: For the training data of each phoneme combination, find the index 

of the minimum-error MLP. 
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Step-2. Partitioning: The training data of each phoneme combination is partitioned 

according to the minimum-error MLP index obtained in Step-1. 

Step-3. Retraining MLPs: Each MLP is retrained for each partition (with updated phoneme 

combination and corresponding training data) for better performance.  

Step-4. Convergence test: Compute the overall error iE  at the ith retraining stage. If 

ε≤− −− 11 /)( iii EEE , stop; otherwise, replace i by i+1 and go to Step-1. 

 

In Lee’s study, only four phonetic transition categories were used based on the voicing 

status of the phoneme [25]. Then the algorithm iteratively updated the optimum set of MLPs 

and the partitioning for the four phonetic transition categories. In the study we adopted the 54 

phonetic transition categories mentioned previously and then iteratively updated the optimum 

set of SPMs for these categories by employing the joint classification/training algorithm. 

These SPMs were constructed by SVM instead of NN because of the advantages provided by 

SVM, which were addressed earlier in this dissertation. 

The experimental results are shown in Fig. 6.15 and Fig. 6.16, in which the addition of 

Lee’s algorithm gives slightly better performance for the closed test. However, the 

performance difference between SPM and SPM with Lee’s method is almost the same. These 

results were expected since the original phonetic transition categories are already close to the 

optimum partitioning because they were manually selected based on some acoustic 

properties.  

Although the two kinds of methods mentioned above fail in improving the overall 

performance effectively, they are probably useful if we combined other influential acoustic 

features (for the first method) or if the larger training data was available (for the second 
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Fig. 6.15. Performance comparison of SPM and SPM combined with Lee’s method. Top: closed test. 

Bottom: open test. (Evaluted data: TTS-455) 
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Fig. 6.16. Performance comparison of SPM and SPM combined with Lee’s method. Top: closed test. 

Bottom: open test. (Evaluted data: SVS-1384) 
 

 


