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Chapter 1. Introduction 

Corpus-based speech synthesis is an important approach to text-to-speech (TTS) due to 

its high degree of fluency and the natural feel of the generated speech. There are numerous 

studies on corpus-based TTS [1]-[5] during the past few years. The essence of corpus-based 

TTS is to employ an effective unit selection scheme to pick up the suitable synthesis units 

directly from the corpus as the desired output. These units are usually non-uniform, such as 

a diphone, a syllable, a word, and a sentence. In addition, the prosodic modification is 

probably needed for corpus-based TTS due to the limited speech corpus. Recently, the 

corpus-based approach has also been applied to the singing voice synthesis (SVS) [6][7]. 

Generally speaking, the better synthetic quality can be achieved if a larger corpus is 

available. In other words, collecting a very large corpus for corpus-based TTS/SVS systems 

seems to be a tendency for current speech/singing voice synthesis research. These 

corpus-based systems require a large amount of efforts in several essential preprocessing 

tasks, such as corpus design/collection/recording, pitch estimation/marking, phonetic 

transcription/segmentation, etc. Fig. 1.1 demonstrates these preprocessing tasks of 

corpus-based TTS/SVS. 

Here we briefly introduce these tasks shown in Fig. 1.1. Initially, we collect a 

speech/singing voice corpus based on a corpus design method. After the corpus was design, 

each text sentence was recorded very carefully by a professional recordist to ensure the 

consistency of volume or speaking rate among whole data. Once the corpus is prepared, we 

can apply the forced alignment of the Viterbi search using a hidden Markov model (HMM) 

or a word segmentation algorithm to obtain the phonetic transcription. Subsequently, we 
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perform the automatic phonetic segmentation to acquire the position of each phoneme. 

 

 
Fig. 1.1. The preprocessing tasks of corpus-based TTS/SVS 

 

Correct pitch estimation is very significant to corpus-based TTS/SVS systems. It is 

necessary to utilize pitch and other acoustic information to measure the prosody difference 

between target units and source units when processing the unit selection procedure or 
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before carrying out the pitch-scale modification. Various pitch estimation methods have 

been proposed in the literature. These methods include the autocorrelation factor [8], 

pattern recognition [9], least-square fitting [10], etc. Nevertheless, the manual checking to 

ensure the correctness of pitch estimation results is needed no matter which methods we 

adopted.  

Normally, in order to obtain the better speech quality with efficient computing, altering 

pitch contours usually relies on time-domain pitch synchronous overlap and add 

(TD-PSOLA) algorithm [11] instead of other methods, such as sinusoidal modeling [12], 

harmonic noise modeling [13], and so on. An essential part of TD-PSOLA is pitch marking, 

which tries to find the glottal closure instant (GCI) in order to perform synchronous 

analysis. If the result of pitch marking is not good enough, TD-PSOLA will produce 

low-quality speech. Moulines et al. [14] proposed a pitch marking method to detect abrupt 

changes at GCI. In one of our prior studies [15], we proposed an effective pitch marking 

algorithm based on a two-phase pitch marking concept. Although the method has 

satisfactory performance on labeling pitch marks, the manual checking/revisions were 

processed further in order to ensure the correctness of all pitch marks.  

On the other hand, we also gathered statistics of corpus data which includes several 

types of information concerning the corpus; they are phonetic, linguistic, and acoustic 

information. For phonetic information, we analyze the distribution of tones, vowels or 

consonants. For linguistic information, we extract part-of-speech (POS), word length, 

sentence length, etc. For acoustic information, we calculate the duration, energy, pause, etc. 

These statistics are usually essential for speech/singing voice synthesis. 

The phonetic segmentation plays a significant role among these fundamental tasks 
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mentioned above. If the boundary information of each phone/syllable is not accurate 

enough, the statistics of acoustic information or the results of pitch estimation/marking will 

be also unreliable. In other words, we will require a lot of manual efforts to revise these 

errors. In view of this, effective phonetic segmentation is practical to the developments of 

corpus-based TTS/SVS. In this dissertation, we will focus on the issues of phonetic 

segmentation. 

Admittedly, for speech/singing voice synthesis the precise phonetic segmentation is 

significant because that a small segmentation error may cause an audible error in the 

synthetic sound. In order to obtain high-quality synthetic speech, the phonetic segmentation 

usually relies on large amounts of manual efforts in the past. However, the task is 

extremely labor intensive and time consuming especially when the corpus size is very large. 

Moreover, to develop TTS/SVS systems with different languages and voices quickly, using 

automatic phonetic segmentation techniques are usually necessary. Generally speaking, 

methods for automatic phonetic segmentation involve two essential steps. First we perform 

a rough phonetic segmentation by forced alignment of the Viterbi search using a HMM 

with Mel frequency cepstral coefficients (MFCCs) [16]. Then we apply a boundary 

refinement procedure as a post-processor to fine-tune the results obtained by the HMM.  

In theory, for speech recognition the use of HMMs does not rely on manual phonetic 

segmentation. An initial segmentation (ex. flat segmentation) is used directly to train the 

HMMs since HMM training is an averaging process that tends to smooth segmentation 

errors. Nevertheless, some studies point out that speech recognition can benefit from more 

precise initial segmentation in training [17][18]. The HMM-based recognizers can be 

categorized in various ways. For example, some use context-dependent HMM, while others 
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use context-independent HMM [19]. Also, there are various types of HMM training 

methods, including speaker-dependent, speaker-independent and speaker-adapted models. 

Although the HMM-based speech recognizer using MFCCs is well known for its excellent 

speech recognition ability, its use of automatic phonetic segmentation does not always 

produce precise and satisfactory results for the development of TTS/SVS. That is the 

reason why a boundary refinement procedure is usually employed to refine the results 

obtained by the HMM.  

Several studies [20]-[27] have focused on the boundary refinement in the past few years. 

For example, Jan P. H. van Santen et al. [20] adopted broad-band and narrow-band edge 

detection. Bonafonte et al. [21] took Gaussian probability density distribution as a 

similarity measure. Toledano et al. [22] tried to mimic human labeling using a set of fuzzy 

rules. In [23], Chou et al. proposed a speaker-dependent HMM model plus simple boundary 

correction rules for Mandarin Chinese. Wang et al. [24] proposed a post-refining method 

with fine contextual-dependent Gaussian mixture models (GMMs) and employed 

classification and regression tree (CART) to cluster acoustically similar GMMs. A 

multilayer-perceptron (MLP) was also applied to achieve an improved accuracy of 

segmentation [25][26][27]. Drawbacks of some of the representative approaches are 

summarized as follows: 

 

1) Toledano et al. [22]  adopted multiple features based on manually tuned subject 

rules for each category of phonetic transition. This approach is labor intensive and 

not easily scaled up because different phonetic sets have different rules to be 

identified. 
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2) Wang et al. [24] proposed the use of MFCCs alone to refine the boundaries of all 

categories of phonetic transitions. This is too assertive. For example, if a boundary 

is of the case “silence + fricative”, other simple features, such as energy, may well 

outperform MFCCs. 

3) Constructing the system proposed by Chou et al. [23] is time consuming because of 

the iterative procedure used for forced alignment, the correction rules and, 

re-training. In addition, it becomes particularly inefficient if the speech corpus is 

updated incrementally and regularly, such as by adding one hour of speech data per 

week.  

4) In particular, most methods mentioned above do not elaborate the issue of error 

analysis, as what categories of phonetic transitions tend to be more error-prone and 

how to deal with these transitions. 

 

In theory, it should be better if a boundary refinement is constructed by using multiple 

acoustic features rather than single feature alone (e.g. MFCCs). Moreover, using 

statistics-based methods to refine boundaries are more reliable than using rule-based 

methods in general. In addition, refining boundaries would be more effective if we can 

adopt different acoustic features for different phonetic transition categories. 

According to these viewpoints mentioned above, initially we propose an effective 

boundary refinement approach to refine the boundaries according to various phonetic 

transition categories. For each phonetic transition category, a set of training data is 

collected and split into two classes, “correct” and “wrong” according to the distance to a 

true, manually labeled, boundary. Subsequently, we adopt statistical pattern recognition 
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(sequential forward selection, k-nearest neighbor rule and leave-one-out error) to identify 

those most valuable features for each phonetic category. Eventually, a fixed search range is 

used in the boundary refinement procedure. As a matter of fact, this statistical approach 

does not necessarily work well for all phonetic categories; we thus apply a heuristic method 

additionally to refine the boundaries in some phonetic transition categories which tend to 

be more error-prone. Since the proposed approach combines statistics and heuristic 

concepts, we refer to it as a hybrid approach. 

In addition, we also proposed another refinement method which is based on a score 

prediction concept. Each candidate boundary can be evaluated via the proposed score 

predictive model (SPM). If the predicted score of a candidate boundary is higher, its 

location will be possibly closer to the true boundary. The detailed description of the two 

methods (hybrid and SPM) shall be elaborated in Chapter 5 and Chapter 6. The flowchart 

of automatic phonetic segmentation on speech corpora is depicted in Fig. 1.2. 
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Fig. 1.2. The flowchart of automatic phonetic segmentation on speech corpora. 

 

Similarly, employing the same phonetic segmentation methods on singing voice 

corpora should be also feasible. Unfortunately, the performance of HMM-based 

segmentation on singing voice corpora is not as satisfactory as that on speech corpora. This 
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speech. For example, the pitch range variation of a singing voice is much wider than that of 
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Initial estimates obtained by HMM

Speech Corpora

HMM-based Alignment

Boundary Refinement 
Approaches: Hybrid/SPM 

Final Segmentation Results 

Phonetic Transcription

Phonetic Segmentation 



 

 
9

designed for singing voices. 

In fact, if the initial segmentation identified by HMM is not satisfactory, then the 

corresponding post-processing will not be able to refine the boundaries effectively. Related 

experiments conducted by Park et al. [27] indicated that it is very difficult to cope with the 

problem of large segmentation errors using a boundary refinement post-processor. 

Therefore, there is a need to improve the results of the HMM-based recognizer for phonetic 

segmentation. Unfortunately, this seems to be a difficult task according to the literature. For 

instance, Kawai and Toda [28] found that only a slight improvement in segmentation was 

obtained by using various acoustic model structures (such as changing numbers of states in 

a model, or numbers of Gaussian mixtures in a state) and acoustic model units (such as 

moving from monophones to biphones, triphones, and so on). Moreover, in a similar study 

[29], Lee showed that the automatic segmentation performance is slightly degraded when 

an embedded-reestimation procedure is employed that uses an utterance and its 

transcription for sentence-based training. 

Based on the above mentioned viewpoints, it is difficult to significantly improve the 

performance of the HMM-based recognizer. Fortunately, the recording artist was required 

to sing a song by following the corresponding melody information, from a music score, 

when the singing voice corpus was collected. Consequently, we could perform phonetic 

segmentation by aligning the singer’s pitch information with the corresponding melody 

information based on dynamic time warping (DTW). In past studies, DTW has been 

adopted successfully in melody recognition [30][31]. In particular, we have used DTW to 

perform note segmentation with good performance in our previous study on automatic 

singing voice rectification [32]. Hence, we can use DTW with pitch features as an 
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alternative for tackling the problem of phonetic segmentation. However, our experiments 

demonstrated that the performance of DTW is not as high as anticipated. One of the reasons 

is that if two neighboring syllables have the same pitch it is quite difficult to identify the 

boundary via DTW. On the other hand, it turns out that this situation can be handled by the 

HMM with MFCCs features, as long as the two syllables have a different pronunciation. 

Similarly, co-articulation between two syllables usually poses a difficult problem for HMM, 

but it is never a problem for DTW as long as they have different pitch. In other words, the 

two initial estimates identified by HMM and DTW seem to be complementary to each other 

and should be integrated for better performance. Hence in this study we try to use the 

proposed hybrid/SPM approaches to integrate the two initial estimates obtained by HMM 

and DTW. Fig. 1.3 displays the flowchart of the automatic phonetic segmentation on speech 

corpora. 

This dissertation is organized as follows. Chapter 2 introduces the related work 

concerning the automatic phonetic segmentation. Chapter 3 describes the preprocessing of 

corpus-based TTS/SVS systems. Chapter 4 explains the construction of the HMM-based 

and DTW-based alignment. Chapter 5 elaborates the boundary refinement based on a 

hybrid approach. Chapter 6 introduces the boundary refinement based on a score predictive 

model concept. Chapter 7 presents conclusions and discusses future work. 
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Fig. 1.3. The flowchart of automatic phonetic segmentation on singing voices. 
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