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ABSTRACT

We introduce a semi-supervised method for the extraction of instances of a
certain type from a Chinese text under a domain. In our approach, a machine learning
model for extraction is trained on an automatically collected and tagged corpus,
aiming at eliminating the limiting factor of human annotation on current supervised
systems. The method involves selecting seed data of target instances from
off-the-shelf general purpose thesauri, using seeds to automatically collect a corpus
from the Web, automatically tagging the corpus by seed data and training a machine
learning model on the corpus. At run time, a natural language text is segmented into
words, and the trained model is applied on.the words to make the best tagging
decisions, from which we extract target instances. The evaluation of exact match on a
set of annotated test data shows that.the method successfully extracts target instances
at the precision rate of 78%. Our methodology accomplishes the elimination of human
annotation on training data by small amount of seed data, and the method is highly

portable to other domains.

Keywords: Information extraction (IE), Name Entity Recognition (NER), Web corpus,

Maximum Entropy model (ME), automatically tagging
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Chapter 1 Introduction

Information extraction (IE) aims at automatically extracting structured
information from unstructured machine-readable documents (e.g. a restaurant, or an
electronic product). Every day, many natural language documents (e.g. blog articles)
are created to the World Wide Web (WWW), and the fast growing amount of
information on the Web make IE ever more important because the techniques of IE
provide a shallow form of text understanding that extracts substrings about
pre-specified types of entities or relationships from documents and web pages, in
order to cope with such huge amount of data efficiently. Extracting instances of a
specific type is one of the tasks of IE since the set of instances from the same category
can be arranged in a structured format. An important part of instances of a certain type
is named entities, which are the real things or instances in the world that are
themselves natural and notable class members of subject concepts. For example, in
the furniture, there are members like “# ¢ /5 b 2% £ or “fr% £ ” that are named
entities.

Many systems that deal with the extraction of named entities such as Libra
(libra.msra.cn) focus on very restricted pre-defined entity classes. Names of “persons”,
“locations”, *“organizations” are the three most popular types in the field of named
entity recognition mainly for the reason that there are plenty available annotated
corpora prepared by some competitional conferences, which we will discuss in the
next section. The systems built upon the large annotated training data can achieve
very high accuracy on the pre-defined classes. However, in the real world, people are
interested in a variety of named entities that fall outside these pre-defined classes,

especially for application of accessing information on WWW. Current pre-defined


http://en.wikipedia.org/wiki/Machine-readable

classes cannot be applied to a wide range of domains in the WWW and it is a
time-consuming task to annotate a large corpus for training. These application
systems could be built up more efficiently if there is a way of using unannotated data
for development.

Consider the situation of developing a NER system for a new domain,
restaurants where it is important to identify dishes (e.g. “4z % = ¢ fg 4% % ). The best
training process for the domain are probably not through the preparation of annotated
data, which are very costly and time-consuming, but rather by crawling and automatic
tagging a domain-specific corpus collected from the Web. A good way to collect and
tag a corpus could be using a set of seed data, such as {“% & & % 3 B &7, “4 £
FUREFLT VAR YA g BT YT AR, e, B %’Z‘} Seeds can be sent
to a search engine (e.g. Google) to colleet-documents and recombined into regular
expressions to identify the positions of.domain-specific instances in the corpus based
on the nature of named entities -as combination-of words. If seed data is segmented
intowords as {“& & § 7“3 5 7 R AT, T TTT 7 )T AR, M T e g M T
F- I A= S A1 %f‘} the instance “# g 2. 5} %) 4<” can be matched by
applying the regular expression /(% & # @ 517 |* f |T 4 [$g 4= ¥F) (2 & 7] 44|
Wy ||| B R 2 R |de 4| B %*C‘)‘Ll (a4 = %*3‘)*)/. Intuitively, by applying the regular
expression of seed data, we can identify most of instances in the given type because
the components (words) in each instance are actually exchangeable to form another
name. With an automatically tagged corpus, we can apply machine learning for the
extraction of instances of a certain type.

We present a semi-supervised method that can automatically collect and tag a
corpus from the Web expected to develop a named entity recognition (NER) system
based on machine learning, such as hidden Markov model (HMM), maximum entropy

hidden Markov model (MEMM), support vector machine (SVM), conditional random
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Extract Instances of a Certain Type

Input Article
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Tagging result
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Figure 1. An example applying.our. approach-to extract foods from an article

field (CRF). In this paper, we choose to use MEMM as the machine learning model.
An example session where the proposed method extracts instances of food from an
article based on the MEMM model trained from automatic tagged corpus is show in
Figure 1. The results are produced by an MEMM model trained on automatically
constructed tagged corpus. We apply a heuristic method to tag each token as B-x
(begin), 1-x (inside), E-x (end), or O (outside), where x indicates the category. More
specifically, during the learning process, the corpus is obtained from the Web and
segmented to produce a sequence of tokens. Then, the regular expression of seed data

s

(eg. (&5 B|g 57

21T A F) (A R |8%] 2 R

4§ |ig 4

ij],?)+| (fa4 | = ’-P*C‘)*)/) matches the strings of domain-specific instances. We assign




each token one of BIEO tags based on its position in the matched strings. For example,
the passage “®& vy 2 p 3. F W47, segmented as “& | & | A | v | 2R
25 | Y47, and tagged as {O O O B-food I-food E-food}. Based on the tagged
corpus, a machine learning model is trained to automatically learn the features of
target instances. We describe the training process in more detail in Chapter 3.

At run-time, our method starts with a natural language article submitted by the
user, as the input article in Figure 1. The article is then segmented into words using a
Chinese segmentation parser and each word is assigned one of BIEO tags based on
the machine learning model trained specifically for the type that an user wants to
extract. In our prototype, our method presents the extracted instances of a given type
for the user (see Figure 1); alternatively, the instances extracted by our method can be
used to build the index of a vertical-search engine, the answers of a question
answering system, or other systems that require the information in a certain category.

The rest of the thesis is organized as follows. We review the related work in the
next chapter. Chapter 3 presents the proposed-method for automatic tagging strategy
and training process. Chapter 4 describes experimental setting and discusses the
results of the experiment. Chapter 5 concludes and points out future research

directions.

10



Chapter 2 Related Work

Information extraction (IE) has been an area of active research. Recently,
information explosion intensifies the need for developing IE systems that help people
to cope with the enormous amount of data available on the Web because the goal of
IE is to produce structured data from natural language text, which refers to categorize
contextually and semantically well-defined data in a certain domain (Manning et al.,
2009). In our work, we address an aspect of information extraction that focus on
extracting instances of a certain type in a domain. We not only identify general terms
(e.g., “table” for furniture) but also named entities (e.g., “Taipei beef noodles” for
food). General terms can often be looked up-in.a dictionary. On the other hand, named
entities are newly created and hence not included- in dictionaries; however, named
entities usually carry the major information in a text (e.g., consider the situation of
“dishes of a restaurant”)

More specifically, we focus on the named entity recognition (NER), also known
as entity extraction or entity identification, namely, seeking to locate and classify
names, which often show up as multi-words units, into a certain category. NER has
long been an active topic of information extraction. In the expression “Named Entity”,
the word “Named”, defined by S. Kripke (1982), aims to restrict the task to only those
entities for which one or many rigid designators stands for the referent. Rigid
designators include proper names as well as certain natural kind terms like biological
species and substances. For instance, the automotive company created by Henry Ford
in 1903 is referred to as Ford or Ford Motor Company (Nadeau & Sekine, 2007). One
of the first research papers in the field presented by Rau (1991) describes a system to

extract and recognize company names by heuristics and handcrafted rules. In general,
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early works on NER mainly take the rule-based approach and rely on manually
constructed patterns to achieve high precision, but the approach lacks robustness and
portability. In contrast, we take the machine learning approach. Machine learning is
more attractive because it is more portable and less expensive to maintain.

Since 1996 when Message Understanding Conference 6 (MUC-6) introduced the
task of NER on the seven types: names of “persons”, “locations”, “organizations”,
“dates”, “times”, and “percentage”, the amount of NER researches accelerate,
especially for the recognition of “persons”, “locations”, “organizations”. A number of
conferences based on common tasks such as MUC-6 has seen organized to encourage
NER research, including IREC (Sekine & Isahara, 2000), CONLL (Tjong et al., 2003).
Based on large-scale annotated corpora, machine learning approaches are widely
adopted. Borthwick et al. (1998) describe a.system that integrates the results of
systems based on handcrafted rules ‘or: statistic 'methods into on the basis of the
maximum entropy (ME) model and.obtained:a high accuracy. Uchimoto et al. (2000)
introduce a NER method based on the-ME model, and report that the optimal number
of preceding/subsequent contexts to be incorporated in the model is two morphemes
to both left and right from the current position. Bender et al. (2003) present a set of
features which are easily obtainable for almost any language in ME models, such as
lexicons, dictionary features. Similarly, our work also choose ME as our machine
learning model, for the reason that as above authors remark, ME is a flexible statistic
model that enable researchers to concentrate on finding features that characterize the
problem. In contrast, although we adopt some of the features in above works, we also
discover other effective features, which will be described in detail in Chapter 3.

Chinese named entity recognition is more difficult because the Chinese text lack

word boundary, morphological variety, and capital letters to denote proper names and

sentence breaks. Additionally, the flexibility of Chinese syntax structures makes
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Chinese NER more complex than the English case. Recently, researchers on Chinese
NER tend to use hybrid models to cope with the complexity in Chinese text; that is,
they either incorporate rules into machine learning models or perform post-processing
to improve the accuracy. Tsai et al. (2004) present a hybrid model that incorporate
rule-based knowledge and templates into a ME framework. Zhang and Zhang (2007)
present a hybrid model for automatic Chinese person name and location name
recognition based on the ME model and post-processing. These previous works of
supervised machine learning achieve high performance of NER are all based on the
manually prepared large annotated training data and are limited to pre-defined classes
(e.g., persons, organizations, locations). However, very few NER systems have been
developed to handle online text with the requirements of low cost, flexibility, and ease
of adaptation to new domains, in order-to deal with huge amount of data on the WEB.
The preparation of corpora is expensive -and time-consuming. In contrast to previous
work, we aim at developing a strategy’ of automatically collecting and tagging a
corpus to cope with the problem.

Recently, some researchers have recognized the problem of restricted domains
on supervised machine learning system. Sekine et al. (2002) extend named entity
hierarchy to include about 150 NE types which may cover most of the entities which
appear in usual newspaper articles. Zhao and Liu (2008) present a system that
recognize Chinese product NER such as “ZF/LZE77 V8088 7742 Ff#° (Motorola
V8088 clamshell cell phone) by applying hierarchical hidden Markov model on an
annotated corpus. However, it is time-consuming for them to prepare an annotated
corpus because of the lack of training data for product NER.

In the NER study closer to our work, the surface pattern approach involves
semi-supervised learning using a small set of seeds and bootstrapping process. Hearst

(1992) pioneered the surface pattern approach using three handcrafted rules and
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bootstrapping for the automatic acquisition of the hyponym lexical (is-a) relation from
unrestricted texts. Riloff and Jones (1999) introduce a mutual bootstrapping technique
that uses a handful of seed words for a category and unannotated training texts. Their
goal is to learn two dictionaries for NER: a dictionary of semantic lexicons and a
dictionary of extraction patterns for the domain. Similar to our work, the surface
patterns approaches do not need annotated corpora. Instead, a small set of seeds are
used to find more NE instances in a large-scale corpus.

Recent work on the surface pattern approach has been applied on the Web corpus.
Brin (1998) uses lexical features represented in regular expressions in order to
generate lists of book titles paired with book authors from the World Wide Web
(WWW). Patwarhan and Riloff (2006) collect a domain-specific corpus from the Web
by handcrafted queries and bootstrap-to—learn domain-specific surface patterns.
Similarly, our method also collects a domain-specific corpus from the Web for the
purpose of collecting a corpus, but we do not-use handcrafted queries. Instead, we
take the seeds from general purpose thesaurus (e.g. Wordnet) and directly use them as
queries, to avoid too much human intervention. Previous work on surface patterns
perform well based on highly accurate rules produced mainly by outer context
information, meaning fixed patterns made by strings, and thus lack of flexibility. They
achieve high precision at the expense of low recall. Therefore, surface patterns are
most successful to discover named entities instead of identifying entities. Beside
purely surface patterns, Downey et al. (2007) locate complex named entities in Web
text by computing Pointwise Mutual Information and Information Retrieval (PMI-IR),
developed by Turney (2001), based on the features like Web page counts and capital
words. Downey’s approach can work on the named entities beside the pre-defined
classes (e.g. names of person, organization, location); however, it is used to create

large lists of named entities, not designed for resolving ambiguity in a given
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document; additionally, the useful feature of capitalization in English in Downey’s
work cannot apply in Chinese case.

In a study more closely related to our work, Nadeau et al. (2006) propose a NER
system that combines named entity extraction based on HTML surface patterns with a
simple form of named entity; that is, they first start with a set of seeds to learn HTML
patterns for the extraction of more entities, and then a list formed by the extracted
entities is heuristically used to disambiguate entities in a document, such the list
lookup strategy, and multi words units with capital words. In contrast, our method
obtains training data from the Web and use machine learning to train a NER system,
instead of using heuristic rules. Shinzato et al. (2006) describe an automatic dictionary
construction method for NER for a specific domain such as restaurant guides. Their
dictionary construction method exploits-the-co-occurrence strength of two expressions
in HTML itemizations calculated fromaverage mutual information. Then, the
dictionary entries are used as features to train:a NER system based on Support Vector
Machine (SVM). Similarly, we also apply machine learning strategy to build a NER
system. However, their method still needs a small annotated corpus, while our
approach applies automatic tagging.

In contrast to the previous research in NER, we present a method that can
identify named entity, instances, of a certain type with the goal of reducing the degree
of human intervention and enhancing the portability from one domain to another. We
exploit the semi-supervised procedure by collecting a corpus from the Web with the
seed data from general purpose thesaurus, and automatically tagging the corpus to

produce training data for machine learning.
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Chapter 3 Method

Most named entity recognition (NER) research focus on several predefined
classes (e.g., persons, organizations, locations) and rely on annotated corpora. These
supervised machine learning can achieve high accuracy, but at the same time, the
human labor is the limiting factor. Unfortunately, predefined classes and annotated
corpora can not cope with the wide range of domain-specific instances on the Web. In
the real world, these named entities falling outside of the predefined classes are most
interesting and carry much information in a domain (e.g. dishes of a restaurant,
products of a furniture store). Such useful information may be costly to extract based
on supervised machine learning methods. To reduce the effort of human annotation,
which is the major limiting factor -of machine ‘learning, we propose a promising
approach for automatically collecting and-tagging training data in a format that allow
the machine learning approaches to train a-model expected to identify instances of a

certain type in a domain.

3.1 Problem Statement

We focus on the extraction of instances of a certain type in a domain: extracting from
a natural language text a set of instances of a certain type in a domain. The extracted
instances can be examined by a human user directly, or passed on to a vertical search
engine as index. Thus, it is crucial that the instances of a certain type, including
general terms and named entities, can be extracted. At the same time, the quality of
extracted instances should meet a certain degree of accuracy. Therefore, our goal is to
extract a set of instances in a certain type of domain that at the same time should not

contain too many false positive results. We now formally state the problem that
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(1) Collect a domain-specific corpus from the Web (Section 3.2.1)
(2) Tag automatically a corpus to constitute training data (Section 3.2.2)
(3) Select the features for machine learning (Section 3.2.3)

(4) Train a machine learning model

Figure 2: Outline of the training processes

we are addressing.

Problem Statement: We are given a natural langue text Txt that contains
instances of a certain type in a domain and a set of seed data S. Our goal is to extract a
set of instances Ins of the type from Txt. For this, we use S and information from
general purpose thesaurus (e.g. Wordnet) to collect a corpus C and use heuristics to
automatically tag C such that a machine learning approach can be applied to train a
model for extracting Ins.

In the rest of this section, we describe our: solution to this problem. First, we
define a strategy for automatically collecting and tagging a domain-specific corpus
(Section 3.2). This strategy relies on a set of seed data, derived from general purpose
thesauri (which we will describe in detail in Section 4.1). In this section, we also
describe how to annotate raw training data and how a machine learning approach is
used to train a model. Finally, we show how our method extracts target instances at

run-time based on the machine learning model (Section 3.3).

3.2 Training a machine learning model for extraction

We attempt to collect a domain-specific corpus from the Web and automatically tag it
with heuristics to constitute data to train a machine learning model for the extraction

of instances of a certain type in a domain. Our learning process is shown in Figure 2.
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3.2.1 Data Collection

In the first stage of the learning process (Step (1) in Figure 2), we collect from the
Web a domain-specific corpus in which most of sentences contain target instances.
For example, to collect a corpus for information extraction related to foods, the
sentences should look like % 5 8 %) & i 2400 5 7% & & % 5 f) 4458 7”7 which
contains the target instance “% & # % 5 # 4 ”. This kind of sentences can be
retrieved by using a set of seeds to query a search engine (e.g., Google). By using a

T

seed “% & # 13k 147, we are likely to retrieve such the sentences in returned
snippets, and sentences with other target instances may also be retrieved in the same
snippet based on the empirical experience that similar instances usually show up
nearby.

The input of this stage is a set of seeds-of a certain type. These seeds are sent as
queries to a search engine to retrieve texts to build a corpus for training purpose. As
we will describe in Section 4.1, 'general purpose thesauri (e.g., Wordnet) contain
synonymy and antonyms, defining different kinds of terms and relationships; thus,
instances of a certain type in the domains of interest can be found in a thesaurus. For
instances, we can select instances foods from Wordnet as seed data. For seed data, we
use a number of seeds numSeeds with length longer than minQLength characters as
queries for a search engine because short instances are more likely to be a part of
another instance in a sentence, which may introduce noise into the data and create
problem for the subsequent stage of automatic tagging. For example, if a short
instance “ 3t retrieves a sentence “i% it £ i & iE 2400 o chE d F 2 5F B4
%5 27, in which “2 7 is as a part of the long instance “% & # % 3} ] 44", the
program may wrongly treat the words except “ 2. ;¥ ” as outside of a target instance.

The output of this stage is a set of snippets that contain queried seeds returned by

a search engine (e.g., Google). Some sample queried seeds and retrieved snippets are
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seed snippet

i e e £ iE 2400 F B F B LK HAE 2 ERPN EE VL TP B
N A BFE S CREURTRINHELEILT T 8200 5 BRI
&4 ~ 2000 73 end ) B ?u z .

PO RRR I RARE K F2 A JERTRRA T g A e
BORKRE-B EANRTRIANM CHPMI R RF AR
51

Table 1: Examples of retrieved snippets by a seed

shown in Table 1, in which the bold characters present the target instances foods.
Note that in the examples of Table 1, the retrieved sentences not only contain seeds
but also other foods, such as “2. g 44” and “4 ») & %‘C‘ We will describe in the
next section the automatic tagging procedure of the sentences in the returned snippets
to produce training data.

Although there are other ways to prepare'a-corpus, our method uses small
amount of seed data obtained from off-the-shelf knowledge sources to expand training
data quickly. This procedure costs- relatively less human effort and are language

independent.

3.2.2 Tag automatically a corpus

In the second stage of training, we automatically tag the corpus collected from
previous stage, to produce training data for machine learning (Step (2) in Figure 2). In
other words, given a corpus, we assign to each token (word) one of B, I, E and O tags.
In this scheme, the beginning token of an instance is tagged as B. Subsequent tokens
within the instance are tagged as I. The ending token of an instance is tagged as E. All
other tokens are tagged O. The B, | and E tags are suffixed with the type of the

instances, such as B-type, I-type, E-type. For example, if the sentence “ 1% s & ! &

i 2400 f ch&k & B 3 5F B 458 77 is segmented as “ ix

il R | B
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Procedure AutoTagCorpus(Corpus, Seed)
TagResult = []
1) RE = GenerateRegularExpression(Seed)
For each snippet; in Corpus
2) SegmentedSnippet = ApplyChineseSegmenter(snippet;)
3) MatchedResult = ApplyREFindAll(SegmentedSnippet, RE)
4) TagResult[i]= a list of “0” with the same size of SegmentedSnippet
For each MatchedString in MatchedResult

For each word; in MatchedString

5a) IT word; = the first word of MatchedString
TagResult[i][]] = “B”

5b) Else if word; = the last word of MatchedString
TagResult[i][]] = “E”

5¢) Else
TagResult[i]1[]] = “I”

Figure 3: Automatically‘tagging the corpus

2400 | | e | & & B | XK & [7=5 J27, we assign a tagging sequence as
{0,0,0,0,0,0, O, B-Food, I-Food, E-Food, O, O}. Assigning tags has become the
standard way to identify the boundaries of specific types of word sequences as the
example above. The procedure of our automatically tagging is shown in Figure 3.This
procedure takes the corpus and seed data acquired from the last stage as input.

In Step (1) of the algorithm, we use seed data, selected from general purpose
thesauri for collecting a corpus in the last stage, to generate a regular expression RE
for the tagging function. Recall that we assume the components (words) of each
instance are exchangeable to form another instance. For example, the components of
the instances {"% @ & X 3k B 487, "2 27, Y0 FLT VAT, CA B, MT 4
i R 1 %5‘} can be used to form another name “£ g 3. 3¢ % 4<”. For

this, all the seed data are segmented into words (tokens), where first words of each
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seed are selected as beginning tokens Btoken, the subsequent tokens as inside tokens
lotken and the last tokens as ending tokens Etoken. When an instance is only
composed by one word, its token is additionally selected as single tokens Stoken. As
the example above that seed data segmented as {“& & # 7 “% " “F 4", "5 7179 7
A S S A R A T K R %’:‘} then
Btoken={"%& & #”, “d 517 7, “2 g 7 “7 {7} ltoken={"2 7, “¥;”, “u&”, &},
Etoken={"7#} &”, “&", “B ", “£ ¢ "}, and Stoken={"#g 4", “ & %’3‘}

After the segmentation and simple classification of tokens according to their
position in an instance, RE is produced in the form as / ((Btoken|Stoken)
(Itoken|Etoken|Stoken)™) | (Stoken)® /. There are two parts in RE. The first part
((Btoken|Stoken) (Itoken|Etoken|Stoken)®) contains two subparts. The first subpart
(Btoken|Stoken) contains the prefixes on-singles or the instances (e.g., “%& & # ", “fa
£4"). The second subpart contains Itoken, Etoken and Stoken, for the reason that in
Chinese instances, Itoken and Etoken are usually interchangeable. However, Btoken
are not part of this second subpart because- most of the times, Btoken are as
pre-modifiers instead of repetitive, interchangeable words for the type. For example,
“% @ # ” does not mean a kind of foods when not connected to “ % £ ”. Furthermore,
Btoken often represent the left boundary of an instance, so it is necessary to put
Btoken in the first position. In addition, single tokens, since they are composed by
only one word, is necessarily head token for the type, such as “#g 44 ”; therefore, in the
principle of exchangeability, Stoken are put into the second portion with Itoken and
Etoken. In Chinese syntax, two word of the same type can be connected together, so
Stoken is also allowed to be in the first portion with Btoken, making this rule a little
bit loose to match more instances. Note that the first part of RE only considers
instances of two words or longer, namely one Btoken or Stoken plus at least one

Itoken or Etoken or Stoken since the major components in this part are derived from
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Ui i £ E 2400 K hE T R A P AR P EFRN FE VL ED TP R
Z
4

original _ ) L , .
_ AL B EBREALRT R R HAREAF 0 8200 5 @ 2K 4~ 2000
snippet
Fpeng vy g §F LA
oA B £ 2400 F e TR 3 7 4 s 0
segmented | #® P EEY 2o S Fp BN A % FE
result R EA R X B BE F£F 07 8200 5 0B
EN fq & 2000 m 4 W ¥ oz

Table 2: An example of segmented snippet

instances of multi-words. The second part of RE (Stoken)®, which is much simpler,
matches one or more Stoken because Stoken surely belong to the target type as the
discussion above, and the Chinese syntax structures allow corresponding concepts
freely combined to express combinational meaning. By using the example in the
previous paragraph, RE looks like /(& @ B |4 |8 517 |2 ¢ |T 3 |fa4| = %‘f‘) E
7 15 |4l B IR = B 412 ) |(he il ).

Once RE is produced using the seed data, for each snippet in the corpus, we
begin our procedure of automatically tagging. First, we initialize TagResult to store
the tagging result of the whole corpus. In Step (2) of Figure 3, a snippet snippet; is
segmented, separating each word by a blank, as the example in Table 2. In Step (3),
RE, generated in Step (1), is applied to SegmentedSnippet to obtain all the matched
strings.

After applying RE, we begin to automatically tag the snippet. In Step (4), we
initialize TagResult[i] to a list of “O” to store the tags of all the word in snippet;. In
Step (5a) to (5c), we examine each MatchedString in MatchedResult, in order to
assign B, |, or E tags to each word word;. Note that j corresponds to the position of
current word in snippet;; therefore, TagResult[i][j] stores the value of tag of current

word word;. In Step (5a), the first word of current MatchedString is tagged as “B”, the
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A B R 2400 K ngF B 2 A B S 2 EF RPN EE VL ED TP B
original snippet | M iEAL. HE - CHEA ST B LA HARELT 1 8200 B 1K
&~ 2000 e vy 2 A LR

ho@ R EiE 2400 F 0 EFR I A HE 2
0O 0O O 0] O O O B-food I-food E-food O O
FR pEEY 2 OFE G iTp BN A L R WE

O 0] O 0 oo O 0o O0o0oo0o oo

Tp B3 EFR 2 HA A 4% 78200 5 B

) O B-food I-food E-food O O O O O O
x4 & - 2000 B oih % W B mE o
B-food E-food O O O O B-food I-food E-food O O

tagging result

Table 3: The tagging result of the sample snippet in Table 2

last word as “E” (Step (5b)), and the rest of words as “I”” (Step (5c)). A sample tagging
result of the snippet in Table 2 is:shown-in Table 3, in which words in bold represent
MatchedString.

By using the simple procedure of regular expression described above, the result
of this training stage is a set of training data, automatically tagged by assigning each

token one of BIEO tags to produce valid data for machine learning.

3.2.3 Apply machine learning on tagged data
In the third and final stage of training, given a tagged corpus, we apply a machine
learning strategy to learn features of each BIEO tags for the computation of
conditional probability of a word with a tag. We choose Maximum Entropy model
(ME) as our machine learning strategy.

ME is a flexible statistical model that offers a clean way to combine diverse
pieces of linguistic contextual evidence in order to estimate the probability of an

outcome occurring with a certain linguistic context history. In our method, outcome
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space is comprised of BIEO tags for an ME formulation of extraction of instances.
ME computes the probability p(o|h) for any o from the space of all possible outcomes
O, and for every h from the space of all possible histories H. A history is all the
conditional data that enable one to assign probabilities to the space of outcomes. In
our problem, history could be viewed as all information derivable from the test corpus
relative to the current token. The computation of p(olh) in ME depends on a set of
binary-value features, which are helpful in making a prediction about the outcome.
For instance, one of our features is: when current token is a known ending token of
food, it is likely to be tagged as “E-food”. More formally, we can represent this

feature as:

1: if End_Char_Of_food(h) = true and o = E — food
0: else

f(ho) ={ (1)
In this formula, End_Char_Of_Food(h).isa binary function that returns the value true
if the current word of the history h is in-the-list. of known ending tokens. For example,
if the list of ending tokens contains {*&<” “#g”, “£:”, “/#”} and the current word is
“/#7, the value of this feature of “;#” with the tag “E-food” is 1, or in other words,
active.

Given a set of features and a training corpus, the ME estimation procedure

generates a model where every feature f; has associated with its weighting parameter

ai. This allows us to compute the conditional probability as follows:

p(olh) = ;o5 exp(Siy o fi(h, 0) (2)

where p(olh) denotes the conditional probability of predicting an outcome o with a

history h, o is the outcomes BIEO tags, h is all the conditional information derived

from current word, % is the normalization factor, f; is a binary feature function, «;

is the weight of f;. Intuitively, the probability is the multiplication of weights of active

features, meaning those fi(h,0)=1. The weight «; is estimated by a procedure called

24



Generalized lIterative Scaling (GIS), which is an iterative method that improves the
estimation of the weights at each iteration, in order to maximize the model’s
log-likelihood. The ME estimation technique guarantees that for every feature f;, the
expected value of a; equals the empirical expectation of «; in the training data.

As many researchers have remarked, the major advantage of ME is that it allows
the modeler to concentrate on finding the features that characterize the problem while
letting the ME estimation systematically deal with assigning relative weights to the
features (Borthwick, 1998). In addition, ME has the ability to incorporate any
binary-valued features from different knowledge sources and can handle more
features than other approaches, such as hidden Markov Model (HMM), Conditional
Random Field (CRF), because ME does not require enumeration of the space of all
possible observations, by which ME computation has less limitation on computer
memory (Wu et al., 2006). Therefore, we:choose ME as the machine learning strategy
in this thesis.

To build a ME model, we need-to identify features that best characterize the
problem of extracting instances of a certain type. In the following, we discuss each
feature we used in turn:

1. Word-class features:

Word-class feature is the most important feature we use. Based on the spirit
of the regular expression of BIEO tags, we categorize words into three classes of
BIE in advance and use list lookup strategy to select the word class as features of
a word. Seed data acquired from the data collection stage is segmented into words.
Each word according to its position in its original instance is categorized into the
corresponding class. First words of each seed are put into a list BtokenList, last
words into EtokenList, and the rest words into ItokenList. Single tokens, derived

from instances composed only by one word which is thus sure to be in the target
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seed data BORIONEA, 5319 VA, AP B, T AEAR, B4, BT
TRk | R, 4 R 2P, a7 | 9| &
AR IETIE TAe

segmented data

e

-4

Table 4: Examples of seed data and its segmented result

List Example

Btoken &Sﬁ,é,ﬁfzﬁ,iﬁ,zzﬁ,ﬁéﬁ,i%ﬁ

Itoken AL R, Y, % R, RS, 2

Etoken B4, A B, AR, RE, B F

Bchar F;;,ﬁ‘,—?:,zﬁ,ﬁ‘,fl,‘?,i,l’i,l,é,ﬁ,&},E',%’Z"

Ichar 2,08, B, % R, B 8, 2, F

Echar B4, & @ 2k, R, H B, F

LastChar | &, 4%, i#, p, 4, F

Bigram ETRIK, AR, TFLT Y, WA, L, %, TR, B

Table 5: Sample lists of word-class, character-class, last characters and bigram features, derived

from.datain;Table 4.

concept, are put into all three lists since the Chinese syntax structures allow
corresponding concepts freely combined to express combinational meaning. Table
4 shows the example seed data and its segmented result. Table 5 shows the sample
lists derived from seed data in Table 4. In Table 5, segmented seed data and lists of
word-class are as below:

(1) Segmented seed data: {"% @ # 7“2 7 “F AT, CH T R L 27, "8 5L

A T s e M R S A LA

(2) BtokenList: {“& & 8", “A ", “a L7 ", “L g " “T 7, “fgs" "B %*C‘"}

(3) ItokenList: {3 5t 7, “g7, “W)”, T “fgAET, B %?}

(4) EtokenList: {" &7, “2 &7, “e&7 “FT A BT g ET, M B %*3‘"}
For example, “ 2 3£ ” will have an active feature denoting its existence in
ItokenList. All other words, such as “/# 7 ”, are considered not belonging to any
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word class. Note that one token (word) could be in multiple classes, as “= ¢ ” in
both BtokenList and EtokenList, which means it could be the beginning or ending
word of an target instance. In this case, ME model will adjust its probabilities of
“B-food” and “E-food” according to other features, such as features from its
previous word, which we will describe later.

The benefit of word-class features is that it allows us to incorporate data from
different knowledge sources. Intuitively, we directly use seed data from the first
stage, but in practice, we can expand the word classes at will by adding other

name lists, which will be discussed in Chapter 4.

2. Character-class features:

We extend the idea of word-classfeatures by taking characters of each word
in a class to form a character class. As.in Table 5, EtokenList has {* ) &7, “4x”,
CET, AR “ReRT “B %’3‘} and then we take its characters to make a
EcharList as {“f}”, “&”, “& MF?, 47 “p v tggr, “E”7 Y87, %’Z‘ :
Assigning a class to each character in a token can help to cope with the problem
of data sparseness. In the creation of a Chinese word in a certain type, some
fundamental elements, as head words, are often used in combination of unseen
characters (e.g, “#&” in “## 4.”). In the reality, it is also these head characters that
let people realize which category a new word belong to. For example, “7& 4.” is a
kind of fish because of the character “ 4.”. In Chinese words, general characters
that indicate certain categories tend to locate near the end of a word, as the
previous example in which “4.” is the last character. In contrast, although the
word “;# 7 ” has a general character “#” which is often used in words of the
category “food”, it is not a dish but a kind of household utensil. People can
understand that “;¥ 7 ” does not indicate a dish mostly because “#” does not
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show up as the last character of the word, and the last character “ 3 ” is a common
element of utensils.

To characterize this nature, when classifying a character, we assign a number
from the end of the word. For example, the Char-1 of “fj 44 is “44” and its
Char-2 is “%) . As the EcharList in Table 5, “J} # " will have two active features,
one for denoting Char-1 in EcharList and the other for Char-2 in EcharList. For
another example of ;& J 7, its Char-1 will have an active feature denoting it is not
in any character lists in Table 5. Note that we assign numbers from back to front,
so the meaning of each number with regard to its position will not be confused by
different length of words. In addition, to prevent using too rare elements, which

are often such unique that does not indicate common characteristics of a type, we

only select the characters over a threshold.of counts minCharCount into lists.

3. Ending character features:

We take the last characters of each instance in seed data to form a list of
ending characters. Note that in the character-class feature, we directly take
characters of tokens in a class; therefore, EcharList not only contain ending
characters but also other elements that show up in ending tokens, such as “f}”
and “£”, which is not the ending characters, in EcharList of Table 5. In the
examples of Table 5, we can form a list LastCharList {“&”, “4<”, “#”, “pg 7
AR, %’Z‘} “k & " will have a feature indicating its existence in LastCharList,
while “;# 9 ” will have a feature indicating its nonexistence in LastCharList. Last
character features mainly identify the ending token of an instance. Intuitively, in
Chinese, last characters are most characteristic of the semantic category. For
example, typically dishes end with characters such as “#” or “4<”, while
furniture names typically end with “ & or “Jg”.
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4. Bigram features:

Tokens from seed data are combined into bigrams to form a list BigramList,
for the benefit that bigrams can present more specific information of a category
than single tokens. Note that instances of single tokens can not form bigrams
since they do not have combinational information inside their own instances. We
check if bigrams of current token with its previous as well as next token are in

oz

BigramList. As in Table 5, if seed data are segmented as {“ % & #” “% 7 "]
BT SR pET L A WG DT g g g G g g g g g g
B, “dg4R”, “2 47}, BigramList={“% & B 147 “3 K BT, 4T g2
PG TLT T AR A kg g BT T AT 2 ) For example,
“¥} 447 and its previous token is “ ;' has an active feature indicating the
bigram is in BigramList, while “j} 4% and its next token as “v%” has an active
feature for the nonexistence of this bigram in BigramList.

Intuitively, the above four Kind of features directly use the seed data to form
lists. Furthermore, we can enrich these lists by adding other name lists, which can

be easily gathered from the Web or dictionaries. We will examine this idea in the

experiment.

5. Part-of-Speech features:

The part-of-speech of current token offered by a Chinese segmenter is
directly used as a feature because part-of-speech presents syntactic information of
a token. For example, the part-of-speech of current token “= g ”, as a common

noun (Na), is directly taken as a feature.
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6. Semantic label features:

The semantic labels of Chinese thesaurus provided by CKIP of Academia
Sinica are also taken directly as features because semantic labels offer basic
concept categories of a word. For example, “meals”, as the semantic label of “=

¢ is taken directly as a feature.

7. Preceding and subsequent features:

As Uchimoto et al. (2000), we also take all the features from previous and
following tokens within a certain window size windowSize, to provide
surrounding information for the improvement of accuracy. For instance, at a
window size of two, we take all the active features from two tokens on the left

and two tokens on the right for currenttoken.

8. Previous state features:

We take the previous tag as a feature to estimate transition probability in the
model, for Viterbi search at run-time. This transition feature is for the procedure
of Maximum Entropy Markov model (MEMM), which is the combination of ME
and HMM to estimate state transition probability, in order to find better tagging
sequence at run-time (McCallum et al., 2000). For example, if the previous tag of
current token is “O”, then it has an active feature “Current-PreTag-I1s-O”. At
run-time, this feature will be dynamically changed according to which previous
node we are computing (McCallum et al., 2000). The detail of MEMM procedure
will be described in Section 3.3.

By selecting these features, we train a ME model for the extraction of target

instances. The run-time procedure of which will be described in Section 3.3.
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3.3 Run-time extraction of target instances

Procedure Extractlnstance(Article, MEmodel)
(1) segment = ChineseSegmenter(Article)
queue=[]
for each <word;, pos;> in segment
@) history;=FindActiveFeature(word;, pos;)

Append <word;, history;> to queue

DPtable=[]
BackTrackTable=[]

For each <word;, history;> in queue

HISTORY=[]

For t =1 to 4
(D) HISTORY .append(currentHistory)
(4a) Append “Current-PreTag-1s-B” to HISTORY[1]
(4b) Append “Current-PreTag-Is-1"” to HISTORY[2]
(4c) Append “Current-PreTag-I1s-E” to HISTORY[3]
(4d) Append “Current-PreTag-1s-0"” to HISTORY[4]

DPtable[i]=L[]
BackTrackTable[i]=[1
For each tag; in BIEOtags
tmpProbArr=[]
For each <tag¢, preProb.> in DPtable[i-1]

(5b) Append <MEMMprob, tags> to tmpProbArr

(5¢) <curProb,curPreTag>=CetMaxProbAndPreNode (tmpProbArr)
Append <word;, tagj, curProb> to DPtable[i]
Append <curPreTag> to BackTrackTable[i]

(6) TagSequence=ViterbiSearch(BackTrackTable)
(7) Results=ExtractlInstance(TagSequence)

A currentHistory=AddSurroundingHistory(history;, WindownSize)

(5a) MEMMprob= preProb*ComputeMEprob(HISTORY, tag;, MEmodel)

Figure 4: Extracting target instances at run-time

31



Once the machine learning model is trained for a certain type of instances, the
model is used to find the best tagging sequence of an article, in order to extract the
target instances. At run-time, we apply Maximum Entropy Markov model (MEMM)
proposed by McCallum et al. (2000). Basically, MEMM is still a ME framework, but
incorporates state-transition of HMM as one of features into the model, to  substitute
for the transition probability in HMM. It is shown that MEMM can find better tagging
sequence than pure ME approaches (McCallum, 2000). Therefore, we choose MEMM
at run-time to find the best tagging sequence. The procedure of run-time extraction is
shown in Figure 4. The input of procedure is an article and a ME model trained for a
certain domain, such as food.

In Step (1), an article is segmented into words by a Chinese segmenter as “?f:}»;%
¥ | & A" | | 37" In Step(2),-we extract the active features of each
word, as the example that for the target instances food, the word “; % will have
active features denoting its existence in BtokenList, its characters in BcharList and so
on. For each word word;, we store its active features into hisotry;, which is a variable
containing all the observations of word; for the estimation of ME probability.

We use DPtable a two-dimensional array for storing the conditional probabilities
of each word with its four BIEO tags respectively, in order to implement Viterbi
search. Let a sentence has n words, and then DPtable has a size of 4*n. In DPtable, a
node means a word with one of BIEO tags; therefore, each word has 4 nodes that
store their MEMM probability. BackTrackTable is also a two-dimensional array, to
store the best path of each node to its previous node for the principle of Viterbi search.
The benefit of using Viterbi algorithm is that it let ME model decide all the
conditional probabilities, and among these, it can find the globally optional tagging
sequence of a sentence without trapping in local maximal solutions.

For each word word; and its history; in queue, we begin to compute their
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probability for dynamic programming. In Step (3), preceding and subsequent features
at a certain WindowsSize are selected and stored with history; into currentHistory. In
order to apply MEMM, in Step (4), before computing conditional probability by
currentHistory, we need to make a one-dimensional array HISTORY in which each
record represents the history of word; with a different previous state feature. Step
(4a-d) add features of previous state as “B”, “I”, “E” or “O” respectively to each
record of HISTORY. Making this array is in the spirit of dynamic programming of
MEMM that each node needs to find its best path from previous node for state
transition, so each node needs to compute the probabilities by four different
observations in HISTORY respectively, and pick up the highest one as its probability.
After the preparation of HISTORY, we begin to compute conditional probability
of each node; in other words, word; needsto.compute four different probabilities of
BIEO tags tagj. tmpProbArr is to store the probabilities of four different previous
state features of word; with tag;. In\MEMM,; the probability of current node needs to
be multiplied by that of previous nede inferred by the previous state feature of
HISTORY;, so we go through each probability of previous word preProb;, meaning the
probabilities of word;.; with IOBE tags respectively. tag: means the tag of the node
having preProb; for word;;. In Step (5a), HISTORY;, which has the previous tag
feature of tagy, is taken to compute the probability of word; with tag; by the trained
MEmodel described in Section 3.2. For example, if current tag; is “B”, then HISTORY;
should have an active feature “Current-PreTag-Is-B”. Then, the computed probability
is multiplied by preProb; as in the principle of MEMM. MEMMprob and tag; as the
current previous node are stored in tmpProbArr (Step (5b)). After the probabilities of
four different observation sets are computed, in Step (5c¢), we select the highest
probability as the probability of current node curProb, and at the same time get the

previous node that owns the best path curPreTag. Then, we store the probability of
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?ff?#%—? L. i [

o) ()

Figure 5: The DPtable of “%f?#%—?{;‘é #2122 7 in which each node is connected to its best previous

node and the bold lines are the best tagging sequence by Viterbi search

current node into DPtable. More formally, we can state the process of MEMM
computation as:

MMpTyorg; (tagy) = maxi=y MMptysra;, (tage) * MEDTyora,(tag)|HISTORY)

®3)
where  Viyorg,(tag)) is  the MEMM  probability —of current node,
Pyorq;(tagi|HISTORY;) is the ME probability of current word word; with current
observation set HISTORY:, V,,orq,_,(tagy) means preProb; in the algorithm of
Figure 4. For curPreTag, we can state the process formally as below:
MMpryorq;(tagy) = argmax, MMptyopq, , (tage) * MEpt,,orq,(tagi|HISTORY,) (4)
where t corresponds to curPreTag. curPreTag is store into BackTrackTable.

Once DPtable has stored the conditional probabilities of all the words and
BackTrackTable has connected each node to its best previous node, we can decode a
best tagging sequence backward by Viterbi search in Step (6). An example of finished
BackTrackTable is shown in Figure 5, in which each node is connected to its best

previous node and the bold lines indicate the best tagging sequence. Then, the target
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instances can be extracted by the rules of BIEO chunks, as Figure 5 in which the
target instances “;# 4= & 7 ” can be extracted. An example of tagging sequence and

extraction for an article on our working prototype is shown in Figure 1.
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Chapter 4 Experiment Setting and Result

We carried out experiments to extract from a natural language text a set of
instances in a more fine-grained type of a domain that lacks annotated data. As such, a
machine learning model will be trained on an automatically tagged corpus and
evaluated over a set of natural language texts containing target instances. Furthermore,
we evaluate our method on the level of exact match; that is, a target instance must be
exactly the same as the answer to be considered correct. In this chapter, we first
present the setup of our training and test procedure for the evaluation (Section4.1).
Then, Section 4.2 lists the systems that we developed for the comparison. The
evaluation metrics for the performance of- developed systems are introduced in
Section 4.3. Finally, Section 4.4 reports and discusses the results of the evaluation

using the methodology described in previous sections.

4.1 Experimental Setting

We select foods as our training and test type in the evaluation; that is, our
experiment is for the extraction of eatable things as the target instances, such as dishes,
drinks (e.g., “2 ¥ fFa 487, “4F A Aketerz”). A set of 4,557 instances are selected as
seeds to automatically collect and tag a corpus for training, obtained from three
off-the-shelf thesauri, Chinese-English bilingual Wordnet, TonYiCi CiLin (F 3 #3
#k), and Chinese thesaurus provided by CKIP group of Academia Sinicia, all of which
contain instances in various domains and categories. For Wordnet, we select the
instances labeled as <noun.food>, indicating that an instance belongs to the food

category. For TonYiCi CiLin, we select the food categories of BrOland Br03 to Brl2.
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Thesauri Category Number Total Total
Chinese Wordnet | noun.food 2461 2461
Brol (# %) 53
Br03 (& #) 15
Bro4 (4%, 5, 4°) 33
Br05 ($§ &) 50
Br06 (% %) 157
TonYiCi CiLin Bro7 (3% vk &) 26 694 3195
Bro8 (i, #, ¥, ff, #) 79
Br09 (gk) 80
Bri0 (%) 23
Bril (&4, &=, px+) 32
Bri2 (44, 5“fL) 146
Table 6: The number of instances in the selected categories of two thesauri
Thesaurus Semantic labels | Examples Number | Total
food %@ 72
meals kA, 2 519
drinks B dmy | 144
Chinese spices K R 89
thesaurus fruits e e 171 1402
birds g, g 192
plants <9 ¥ 38
marine A, FRME 177

Table 7: The number of instances with selected semantic labels from Chinese thesaurus provided

The category Br02 contains instances of feed for domestic animals, so it is not
selected. The number of instances in two thesauri is shown in Table 6. For Chinese
thesaurus, we selected 1402 instances with the semantic labels indicating foods. The
manual selection process required can be done in a few minutes. The details of

selected labels and examples are listed in Table 7. More samples of the seed data used

by CKIP group of Academia Sinicia

for evaluation are listed in appendix.
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Parameter Value | Description

minQLength 4 Minimum length of a seed for querying a search engine

numSeeds 1000 Number of seeds used to query a search engine for data collection
minCharCount | 2 Minimum frequency for generating character-class lists

windowsSize 2 The window size for preceding and subsequent features in the ME model

Table 8: Training parameters

Our experiments used a number of parameters in the training process. We
performed some experimentation with the different values of these parameters
resulting in the parameters shown in Table 8. We did not test parameters exhaustively
and further fine-tuning may improve the performance of the system. As shown in
Table 8, we randomly selected 1,000 instances with at least four characters and sent
them to a search engine to collect data. We chese Google as the search engine because
of its well known effective performance. Anumber of 40,535 snippets were retrieved
and segmented into 1,994,222 weords. The.Chinese segmenter was done using an
in-house segmentation system.

In the development stage of our method, we had a set of developing data,
including ten articles of about 500 words. From the observation of developing data,
we found, by checking part-of-speech of each word of seed data, some words usually
do not belong to our target instances and thus should be excluded during the
automatically tagging process; otherwise, they may create noise. For example, in the
Chinese instances of food, quantifiers usually show up near the end of an instances,
such as “#g # (Na) #(Nf)” or “# (Nf) &%(Na) * (Nf)”, where “¥”, “# ” and “¥%”
are quantifiers (Abbreviations inside parentheses are part-of-speech tags provided by
our Chinese segmenter). However, when quantifiers show up in front of food

instances, most of the time they indicate the amount of a noun and thus do not belong
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Part-of-speech

Examples

Quantifier (Nf)

“g5 ¢ (Na) #(N)”, “# (Nf) 4(Na) % (Nf)”

Conjunction (CA, CB, CC)

“# (bb) #(CC) *(Db) #FF FH(Na)” ,

“3e.(VH) f=(CA) ¥ (Na)”

Expletive (T)

“2(bb) % (bb) ¥ (Te) # % F(Na)”

Alphabet

Italien

Adverb (Da, Db)

“2(Da) % (Na) 4 3z(Na)", “s5(bb) ¥ (Db) 4i(Na) #(bb)"

Table 9: Inappropriate words for the regular expression in automatic tagging

Part-of-speech Example
Alphabet (Fw) X0

Number (Fw) 1,2,3
Punctuation (?X) .7

Adverb (Da, Db) 2, R, gE
Conjunction (CA, CB, CC) e, &

Postposition (NG)

Expletive (T) B, HE, s
Location (LG) o R
(DE) 2 A U 1
(VQ)

(VX) ¥
(VHEcDaDF) 5

(NfDE) 1y

(NfNd) )P

Table 10: The part-of-speech filtered out in post-process

to our target instances, such as “- ¥4 & ” or “— & 432", Therefore, we restrict

that quantifiers cannot be Btoken but they can be in Itoken or Etoken. English words

are also not considered because our method is designed for identifying Chinese NER.

Other words that are not part of any named entity include conjunction (CA, CB, CC),

expletive (T) and some adverbs (Da, Db). All the words are excluded using regular

expression and the examples are listed in Table 9.

From the developing data, we also found that in the test procedure, additional
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post-processing can be applied by checking part-of-speech of each word to filter out
the tokens that are often wrongly tagged as parts of our target instances, maybe for the
reason that their preceding or subcequent features elevate the probability as part of
target instances. Recall that preceding and subsequent features are to include all the
word-class, character-class, last character, bigram, part-of-speech, and semantic label
features from the surrounding tokens at a certain window size into current token (In
the experiment, the window size is two, as in Table 8). All the filtered part-of-speech
are listed in Table 10 and applied in the experiment.

Testing data were obtained from 30 blog articles about users experiences of
dining in some restaurants. We randomly selected these articles from food forum in
the PTT bulletin board system (BBS). PTT, as the biggest BBS in Taiwan, contains
various forums on diverse topics. There-are approximately 100,000 users at any time
on PTT. Food forum at PTT is an_active -area for users to discuss and share their
experiences with restaurants; therefore;. it is easy for us to obtain articles containing
our target instances. Human annotation was done on these articles for the evaluation

of exact match. Criteria of annotation will be described in Section 4.3.

4.2 Systems for comparison

Our experimental evaluation focuses on how a trained ME model can improve
accuracy of extraction of target instances. We compare the result with a baseline
evaluation, the data-driven system, which is the automatic tagging approach in the
training process, to see if we can improve the performance. Then, we train the ME
model using the methodology described in Chapter 3 for the extraction of food
instances. Recall that in the ME model, we use word-class, character-class, last

character, bigram, part-of-speech, semantic labels, preceding and subsequent, and
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previous state features. The parameters for these features are listed in Table 8. Now,

we state the systems evaluated as follow:

- Data-driven: The method of automatic tagging using the regular expression of
seed data described in Section 4.1.

- ME using thesauri: Using the seed data (described in Section 4.1), the trained ME
model and MEMM procedure (described in Chapter 3) to extract target instances.
Recall that in Section 3.2.2, we discuss the benefit of the word-class,

character-class, last character and bigram feature lists is that they allow us to

incorporate different knowledge sources to expand the amount of data in lists.

Therefore, we expand these feature lists of ME using thesauri system by adding

instances obtained from a web forum called “2t- = = 4 -2 ” (Unique Discovery)

(http://www.ustv.com.tw/viewforum.php?f=33), which is a forum of a TV show in

Unique Satellite TV Channel (2t % 4R &) introducing delicacies found in Taiwan.

In the Unique Discovery Forum, the discussions-from 2005/12/31 to 2008/08/17 were

selected and compiled into a list of instances UDList mainly about Taiwanese food.

We gathered more seed data from this Web forum with the goal of showing the

simplicity and effectiveness of our training procedure since collecting seeds from the

Web is much easier than the preparation of annotated corpus. We will compare the

performances about different amount of UDList added in the feature lists. We also

compare the performances with and without word-class as well as character-class
features to observe whether they help cope with data sparseness and improve
performance. Additionally, the preceding and subsequent features (Uchimoto et al.,

2000) are also examined for effectiveness.
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4.3 Evaluation Metrics and Annotation on Test Data

Recall that our approach starts with a natural language text created by a user, and
reduces the text into a tagging sequence of BIEO. The output of our approach is a set
of instances of a certain type in a domain, which can either be shown to the user
directly, or used as the index of a vertical search engine, the answers of a question
answering system. It is crucial that a system can extract fully correct instances, so the
index or answers will be meaningful for users. Therefore, our evaluation is a simple
scoring protocol the same as IREX and CONLL, “exact-match evaluation”.

Information extraction systems are usually compared based on the quality of the
extracted instances. This quality is traditionally quantified using three metrics,
precision, recall, and F-measure. Precision is calculated as the fraction of exactly
correct instances among all the instances extracted, and recall measures the coverage
of the system as the fraction of the.real-answers-in the test data that are successfully
extracted by the system. F-measure.considers both precision and recall of the test
data to compute a score that can measure a test’s accuracy, as the harmonic mean of
precision and recall.

To evaluate our approach, we inspect the instances extracted by the various
systems that we compared (Section 4.2). We will describe how we annotate instances
of food instances in the test data later. Using the annotated test data, we evaluate the
instances that the systems extract using the precision, recall, and F-measure.

Definition 4.1. The precision of an extracting system Sys for test data is the
percentage of correct instances among all the instances returned by Sys.

EXAMPLE 1. Consider 1,000 instances extracted by Sys from test data. If 700 of

these 1000 instances are fully correct with the answers, then the precision is

700
1000

*100% = 70%.
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Definition 4.2. The recall of Sys is the percentage of correct instances among all
the answers of test data.
EXAMPLE 2. Consider test data contain 900 answers. If 700 of the 1000

instances extracted by Sys are fully correct with the answers, then the recall is

% x100% = 77%.

Definition 4.3. The F-measure of Sys is the mean of precision and recall. The

formula is as follow:

2*(precision * recall
Fmeasure = 2Precs ) 4)
(precision+recall)

EXAMPLE 3. If the precision is 70% and the recall is 77%, then the F-measure is

2+(0.75077) _ 072,
(0.7+0.77)

Once we have trained a ME model-for food-instances as discuss in the previous
sections, we evaluate the performance of the extracting systems in Section 4.2 using
the evaluation metrics. We annotate the test data to mark the food instances in the text
as the answers. The definition of food. instances is eatable things or dishes that are
usually seen on menus, such as “2 ¢ #§”, “¥&%% # % 4<”; additionally, more general
instances, such as “x™”, “4”, “g 7, or “7 ¢ ” are also marked. Note that if two or
more food instances are connected together, we consider them as one instances, such
as ‘K% 4 & @ because in Chinese syntax, when a noun locate right before
another noun, the first noun is usually used as the modifier of second noun to make
them as a multi-words unit. On the other hand, if there is a conjunction, preposition or
punctuation between two food instances, we treat them as two separate instances, as
the example that “-k % =& # ” have two instances “-k %" and “& # ”.

In the evaluation, we only consider those instances that are three characters or
longer because in our empirical observation, instances composed by less than two

characters are often general terms and can be simply looked up in dictionaries.
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However, instances of three characters or more are more likely named entities, which
are often not included in dictionaries. After human annotation, there are totally 823
food instances in the test data. By checking Chinese Wordnet and Chinese thesaurus
provided by Academia Sinicia, only about 13% of answers containing three characters

above are in the dictionaries.

4.4. Evaluation Results

In this section we report and discuss the results of the experimental evaluation
using the methodology described in Chapter 3. First, we report the performances of
two systems, data-driven and ME using thesauri on the test data. Then, we compare
the results of different amount of UDList adding into ME using thesauri. Finally, the
significance of word-class and character-class features is discussed by comparing the
results of ME using thesauri and ME -using thesauri plus UDList with and without
these features. Additionally, we also.examinethe effectiveness of the preceding and
subsequent features (Uchimoto et al., 2000).

During this evaluation, 30 articles were through the run-time procedure
described in Section 3.3 to extract target instances, foods. Table 11 shows the
precision, recall, and F-measure of two systems: data-driven and ME using thesauri.
As we can see, the precision rate of the data-driven system is about 0.66. About two
thirds of correct instances suggest that our automatically tagging approach can
correctly match target instances to a certain degree. On the contrary, the recall of
data-driven system is relative low maybe due to the reason that using the criteria of
exact match for an instance, such the instance segmented as “/ 4% | 4 *%”, the
data-driven system can not extract the unknown word “ & ¥ even though its

components (characters) and previous word are the obvious characteristics of food
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Precision Recall F-measure

Data-driven 0.66 (305 / 458) 0.37 (305 / 823) 0.47

ME using thesauri 0.70 (452 / 639) 0.54 (452 / 823) 0.61

Table 11: The results of two systems: data-driven and ME

instances. Thereby the F-measure is less than 0.5. However, we believe that in our
training data, the recall may be higher for the reason that since the snippets are
retrieved by the seed data, the possibility of unknown words may be lower.

In Table 11, the ME using thesauri shows improvement on both precision and
recall. The precision rate is about 0.70, indicating that after applying machine
learning on the automatically tagged data, the MEMM procedure can increase the
precision rate by using the additional features. Also note that the ME using thesauri
substantially improves the recall, showing that-the machine learning model solves the
problem of data sparseness to some extent,-as the example that the instance “/z #= 4.
" can be correctly extracted since the characters of “ 4 %" are commonly used
elements in foods and “/%4~” is often the Btoken of foods. The F-measure of ME
using thesauri increases to over 0.6, outperforming that of data-driven system. This
improvement indicates that the instances derived from thesauri already contain some
commonly used elements and general terms, such as “4<”, “4#g”, “=+ 27, “dg & 7, “=
P ;5" The problem of data-sparseness can also be improved by our discovered
features.

Recall that we can expand the word-class, character-class, last character and
bigram list features of the ME using thesauri system by adding instances from UDList
(described in Section 4.2), which contains a lot of Taiwanese dishes, to see the
influence of increasing amount of data. Table 12 shows the comparison of ME using
thesauri and ME using thesauri plus UDList. As we can see, the ME using thesauri

plus UDList shows a great improvement on precision and recall. The precision is
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Precision Recall F-measure

ME using thesauri 0.70 (452 / 639) 0.54 (452 / 823) 0.61

ME using thesauri + UDList 0.78 (615 / 788) 0.74 (615 / 823) 0.76

Table 12: The comparison of ME and ME using UDList

increase drastically to 0.78 while the recall to 0.74, which are significant
improvement over the ME using thesauri. This improvement may be due to the fact
that TonYiCi CiLin and Chinese thesaurus contain mostly the general terms, such as
“Fak 7 or “4”, which can not cover enough commonly used elements for food
instances. Chinese Wordnet is basically the translation version of English Wordnet,
and thus may not include a lot of instances for Chinese food. Therefore, it is likely
that the elements of Btoken are not enough and our discovered features can not solve
all the problem of unknown Btoken, so-adding UDList let the model can learn more
Btoken to correctly extract foods. For example, Btoken like “p 747, “fe i 7, “Frik”,
or “+ 1 commonly shows up in Taiwanese food instances but is not included in the
thesauri. Adding UDL.ist allow the ME model to extract instances like “p ;% = /A 4&”.

Additionally, we examined whether UDList can actually replace thesauri all
together, so we remove the data of thesauri from the word-class, character-class, last
character and bigram list features, to see if the ME model only using UDList can
achieve the same performance as the same model using thesauri plus UDList. Table
13 shows the results of ME only using UDList and ME using thesauri plus UDList.
As Table 13 shows, although the recall rate stays almost the same, the precision is
greatly decreased by 0.10, even lower than the ME using thesauri, indicating that
without thesauri a lot of noise is created. The reason may be that although UDList
contains many elements of Taiwanese foods, some may not be important elements
and their importance is falsely elevated without the reinforcement of data from

thesauri, especially for Itoken and Etoken. As for the ME using thesauri, thesauri may
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Precision Recall F-measure
ME using thesauri 0.70 (452 / 639) 0.54 (452 / 823) 0.61
ME using UDList 0.69 (617 / 822) 0.74 (617 / 823) 0.72
ME using thesauri + UDList 0.78 (615 / 788) 0.74 (615 / 823) 0.76

Table 13: The results of ME using thesauri, ME using UDList and ME using thesauri + UDList

contain a lot of general terms but not enough elements for Btoken or Itoken, so some
answers may be partially extracted such that recall is relatively lower. Therefore, ME
using thesauri plus UDList, as a combined system, can learn the advantages from both
ME using thesauri and ME using UDList to present a better performance. As the
example segmented sentence “rkif | = > | i | LW | 4 | ER”, ME
using thesauri plus UDList can correctly extract “’% *d 4t 4.7, while ME using
thesauri and ME using UDList wrongly extract ““& ‘& 4 4. ;% *&”. The reason may be
that the part-of-speech of “;%rx-is'@:common.noun-(Na), which often shows up as an
Itoken or Etoken in Chinese foods-(e.g., % %% “;%#” in Chinese Wordnet, "' “rk”
.]-*#;in UDList), and some of its characters-are in IcharList and EcharList of UDList,
so according to the part-of-speech and the interchangeability of Itoken as well as
Etoken the model decides “;#=k” to be Etoken of the instance. However, using
thesauri plus UDList, which contain many fundamental instances, especially Etoken,
as well as Btoken for Taiwanese food allows the model to learn when the current
characters are in IcharList and its previous word is an Etoken, the current word is not
likely to be an Etoken.

We also investigated whether or not the performance depends on the number of
instances in UDList. There are totally 2,932 food instances in UDList. First, we
randomly select three groups of instances from UDList, named UDList-1000-a,
UDList-1000-b, and UDList-1000-c, each of which contain 1,000 instances, in order

to see if adding the same amount of three groups with different members from UDList

47



Precision Recall F-measure
ME using thesauri + UDList-1000-a 0.75 (554 /737) | 0.67 (554 /823) 0.71
ME using thesauri + UD List-1000-b 0.76 (558 /730) | 0.67 (558 /823) 0.71
ME using thesauri + UD List-1000-c 0.76 (565 /740) | 0.68 (565 /823) 0.72

Table 14: The results of adding UDL.ist-1000-a, UDL.ist-1000-b, UDL.ist-1000-c  to the ME

using thesauri

respectively to the ME using thesauri system can achieve similar performance. Table
14 shows the results of adding the three groups respectively to the ME using thesauri
system. As we can see, the precision and recall of three groups are approximately the
same. Comparing to the ME system using full UDList in Table 12, the precision only
decrease about 0.02, suggesting that once the feature lists contains some elements of
Taiwanese food, our machine learning model can identify food in Chinese text more
effectively. The reason may be that the missing elements of original ME using
thesauri system is mainly Btoken in-Taiwanese.foods. These Btoken are limited and
can be acquired in small amount of data.-On-the other hand, the recall decreases about
0.06, indicating that amount of elements of Taiwanese food still limit the coverage of
the ME system.

To examine variations of recall more specifically, we evaluate the performances
of changing the amount of instances from UDList added to the ME system.
UDLIist-1000-a in Table 11 is taken as the group with the least amount of instances
from UDlist, UDList-1000, since it has the weakest performance in Table 14. Upon
UDLIist-1000, we randomly select 1000 instances, which do not exist in the instances
of UDLIist-1000, from UDList, to make a list of 2000 instances, UDLIist-2000. Finally,
ME using thesauri plus full UDList is also put into this comparison since there only
about 3000 instances in UDList. Thereby we increase 1000 instances at each group to

see the effects with different amount of Taiwanese food instances. The results are
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Precision Recall F-measure
ME using thesauri + UDList-1000 0.75 (554 / 737) 0.67 (554 / 823) 0.71
ME using thesauri + UDList-2000 0.76 (583 /752) 0.70 (583 / 823) 0.74
ME using thesauri + UDlist 0.78 (615 / 788) 0.74 (615 / 823) 0.76

Table 15: The results of ME using thesauri plus UDList-1000, UDList-2000, and UDList
repectively
shown in Table 15.

As indicated in Table 15, with increasing amount of instances, the recall rates
are stably improved, about 0.04 increased at each group. This shows that the coverage
of ME model is based on the number of instances in the feature lists. However, the
precision rate stays more or less the same. The ME using thesauri + UDList-2000
even have similar precision as that using thesauri + UDList-1000-b or UDList-1000-c,
indicating that most of the Taiwanese food contain-about the same elements, which
can be acquired from a small amount of ‘Taiwanese food instances, such as “p 347,
“E 7 & 547 “Yeh 7 and so on. Once-our model learns these elements, the system
can identify Taiwanese food more correctly using the designated features.

Finally, we examine the relation between the performances and individual
feature. We found that the word-class and character-class features are the most
important. Table 16 shows the results of the ME using thesauri and the ME using
thesauri plus UDList when word-class and character-class features were removed.
First, we remove both word-class and character-class features, and the results show
that the precision does not change much, especially for the ME using thesauri whose
precision almost stays the same, maybe because the bigram list and semantic labels
features already provide enough information, which can correctly identity food
instances. However, without two class-based features, the recall is obviously much

lower, suggesting that missing class-based features prevent the machine learning
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ME using thesauri ME using thesauri + UDList
Precision Recall F-measure | Precision Recall F-measure
- Word-class 0.70 0.34 0.46 0.75 0.51 0.61
- Character-class | (283/404) | (283/823) (420 /554) | (420/823)
0.70 0.51 0.59 0.75 0.73 0.74
- Character-class
(427/609) | (427 /823) (603/798) | (603/823)
0.70 0.54 0.61 0.78 0.74 0.76
+ All features
(452 /639) | (452/823) (615/788) | (615/823)

Table 16: The results of ME and ME-plus systems with or without word-class and character-class

features

model from recognizing more food instances. When we only removed the
character-class features, the recall was greatly improved, suggesting that word-class
features, as categorized unigrams, provide significant characteristics for the model.
However, the precision still stay the same, meaning that word-class features can
improve the coverage but can not“increase the-degree of exactness. When all the
features, including character-class. and‘word-class features, are used, the recall rate
increases slightly and more importantly, the precision of ME using thesauri plus
UDList was improved. It is interesting that the precision of the ME using thesauri
plus UDList increases while the ME using thesauri does not. It is possible that UDList
contains various elements which can let the model extract more instances by their
significant character-class features and at the same filter out some noise when they do
not have suitable character-class. As for the ME using thesauri, the character-class
features seem not to contain diverse elements enough, especially for the elements of
Taiwanese foods, thereby unable to extract as more instances as the ME using
thesauri plus UDList does to improve the accuracy. For example, the ME using
thesauri can only recognize partial answer “#% i35 42 & < (48" while ME using

thesauri plus UDList can extract the full answer “siek 27 & % 3032 13 & + {148 ”. By
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ME using thesauri ME using thesauri + UDList
Feature set — —
Precision Recall F-measure Precision Recall F-measure
0 0.67 0.29 0.40 0.77 0.48 0.59
(241/359) | (241/823) (399/513) | (399/823)
0.70 0.52 0.60 0.74 0.56 0.64
(-1)to (1)
(431/609) | (431/823) (465/625) | (465/823)
0.70 0.54 0.61 0.78 0.74 0.76
(-2)to0 (2)
(452 /639) | (4521823) (615/788) | (615/823)
0.68 0.55 0.61 0.73 0.73 0.73
(-3) to (3)
(459/667) | (459/823) (606 /820) | (606 /823)

Table 17: The results of features sets of current token plus those of different surrounding tokens

using character-class features with the information in UDList, the model learns “s{rx”

[ ==l

as a beginning token, and “#%” as well as “%” as inside tokens.

We further examine the performance of -using surrounding features (preceding
and subsequent features). Recall that in the. previous experiment we all use the
window size of two for the preceding and subsequent features. In Table 17, we test
different values of window size to see-if-the results are consistent with Uchimoto’s
work. In Table 17, “(0)” means that only the features from the current token were
used. “(-1) to (1) indicates that we used features from the current token and its two
adjacent tokens. “(-2) to (-2)” indicates that we used features from the current token
and its four adjacent tokens, the two on the left and the two on the right of the current
token. “(-3) to (3) indicates that we used features from the current token and the six
nearest tokes, the three on the left and the three on the right. As we can see, for “(0)”,
the precision of both ME using thesauri and ME using thesauri plus UDList systems
are slightly decrease, while their recall are greatly decreased, suggesting that although
our discovered features already can handle a certain degree of extraction, at the same

time they can not deal with data sparseness by surrounding features, and thus the

coverage of the extraction becomes insufficient.
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For the “(-1) to (1)” case of Table 17, the recall is significantly increased,
meaning that the problem of coverage is improved by adding surrounding features.
However, it is interesting that the precision of ME using thesauri plus UDList is 0.03
lower than that of “(0)”, possibly for the reason that using features of two adjacent
tokens still does not have enough information to deal with the problem of data
sparseness. At the same time, it may introduce the noise because of the diverse
elements of UDList. As the example sentence segmented as “i& | & | $: 2~ | =
| | &% | ®mek”, the ME using thesauri plus UDList of the “(0)” case can
successfully extract “%: &, while ME using thesauri plus UDList of “(-1) to (1)”
extracts “ig 5% /A because the probability of “ig ” as a part of a food instance is raised
by the surrounding features from “3: A7, and “ig” is one of beginning tokens in
UDList (e.g., “ig © “&%t” in UDList).

For the “(-2) to (2)” case in Table 17, the precision and recall of ME using
thesauri plus UDList are substantially ‘improved, probably for reason that more
surrounding information can allow the madel to automatically learn more specific
rules for the diverse elements of UDList. As the example of “ig 5% & ™, the ME using
thesauri plus UDList of “On (-2) to (2)” can let “.3& & successfully recognize that
“ig ” should not be its Btoken in this sentence by its surrounding token “i” and “&_".
On the other hand, the ME using thesauri of “(-1) to (1)” and “(-2) to (2)” have almost
the same precision, suggesting that since without the diverse elements of UDList, the
both ME systems can achieve similar performance by using surrounding features.

Finally, for the “(-3) to (3)” case of the ME using thesauri, Table 17 shows that
the precision is slightly decreased while the recall is slight increased; therefore, the
performance stay almost the same. However, the performance of ME using thesauri
plus UDList with “On (-3) to (3)” is obviously decreased. The reason might be that

the model may learn too specific rules since the ME using thesauri plus UDList
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contains so many diverse elements. As the example sentence “a | &_| v | £ |
%*C‘ | B # % | %", the ME using UDList of “(-2) to (2)” successfully extracts “Z if?i‘
% J %", while that of “(-3) to (3)” extracts %’Z‘ % J %" because the previous tokens
“@m 7 “F7and “v ” may lower the possibility of “Z ” as a Btoken, and “Z ” and %‘C"
are both in BtokenList and ItokenList, such that the model may learn too specific rules
preventing “Z ” from being a part of the food instance.

Therefore, from the discussion above, our results confirm the discovery of
Uchimoto et al. (2000) that the best accuracy was achieved by using the features of

current token and the four nearest tokens.
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Chapter 5 Conclusion and Future Work

In summary, we have introduced a semi-supervised method for the extraction of
instances of a certain type in a domain by a machine learning model developed from
an automatically collected and tagged corpus. The method involves selecting seed
data of target instances from off-the-shelf general purpose thesauri, using seeds to
automatically collect a corpus from the Web, automatically tagging the corpus by seed
data and training a machine learning model on the corpus. We have implemented and
thoroughly evaluated the method as applied to natural language texts. In the
evaluation of exact match, we have shown that the method successfully extracts target
instances that meet a certain degree of accuracy, about 78%, by using a small amount
of seed data and automatic procedure for:the constitution of training data. Our
proposed method has the advantage of using less expensive development.

Many avenues exist for future research and improvement of our system. From
our examination of results, the problem of data sparseness still exists; therefore, more
domain knowledge or heuristics could be used to improve the identification of target
instances. More effective features for the ME model could be discovered in further
experiments. For example, more class-based features could be applied for improving
the performance of the given target instances. Since we successfully use small amount
of seeds to develop an IE system, bootstrapping strategy of repetitive crawling, using
more and more instances, may allow using a smaller amount of data to build a very
large corpus. Additionally, an interesting direction to explore is to perform rule-based
post-processing for creating a hybrid system, for the reason that we find a lot of
unknown words are brands of products, such “2. *=” in the instance “2 'z 37 5. 4 4

5z 7, from which our method can only extract “37 5. 4 4 5z”. Using more
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sophisticated post-processing may solve the problem of unknown words to some

extent.
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Appendix A — Samples of Seed data

Source: Chinese Wordnet
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Source: UDList
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Appendix B — Samples of Test Data
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