

國 立 清 華 大 學

碩 士 論 文

題目 半督導式中文特定類型具名實體擷取

之研究

A Semi-Supervised Method for Extracting
Instances of a Certain Type in Chinese

系別 資訊系統與應用研究所 組別 乙組

學號姓名 9565702 陳瑩綺 （Ying-Chi Chen）

指導教授 張俊盛 博士 （Dr. Jason S. Chang）

 張智星 博士 （Dr. Jyh-Shing Roger Jang）

中華民國九十八年五月

 i

致謝

 這篇論文的完成，真是經過一波三折。首先要感謝張俊盛老師對我的細心指

導，讓我了解如何設計研究方法，且不厭其煩地一句句幫我改英文。感謝仲淇學

長常主動跑來提醒我一些研究的細節，讓我不至於茫然無措，也很謝謝鑑城學長

在我撰寫論文時，撥空幫我細看文章的邏輯性，也時常教導我做研究的技巧。謝

謝 NLP lab 的各位同學，在我研究有困難時主動提供意見，和我並肩作戰。

另外，很感謝張智星老師，在我一進實驗室就給我很多學習的機會，在我低

潮時安慰鼓勵我。謝謝張智星老師、李俊仁博士、和 MIR lab 的博班學長，在我

練習報告時，很有耐性地指出我投影片的錯誤。

 兩年的碩士生涯，很高興可以交到許多好朋友，一同出遊、party、打電動、

聊天。特別謝謝小鈺和天才茵，在我難過的時候，願意陪伴我，時常和我吃飯，

聊心事。MIR lab 是最歡樂的實驗室，真得很慶幸可以在這裡學習。

 謝謝我的男友，雖然在當兵，還是每天打電話來，一有假就衝來陪我，從不

因為我要忙論文，就心生抱怨。感謝我的可愛貓咪「比比」，雖然你不會講人話，

但始終在我身邊，就算我因為太忙，常把你自己關在房間裡，有時又忘了餵你吃

東西，或忘了幫你清廁所，你都不會生我氣，我一回家，你總是會撒驕地跑來歡

迎，讓我不覺得回家是件寂寞的事。

最後，謝謝我的家人，不因為我拖延畢業時間，就對我施加壓力。謝謝我的

媽咪，還很擔心地帶我四處求神問卜，爸比也常打電話來安慰我說不需要趕著畢

業。謝謝我妹在我回台南時，都陪我去逛街散心。

謝謝大家，沒有你們，這篇論文無法完成。

 ii

摘要

 本論文描述半督導式資料抽取方法，自動抽取中文文字資料中，某領域下特

定類型的具名實體。此方法能自動建立及標記語料庫，以此訓練機器學習模型，

用以消除過去督導式機器學習方法中人工標記的限制。在訓練階段，我們利用一

般用途且易取得的同義詞典，從中選取一組種子於網路上取得語料，並利用種子

自動標記取得的語料庫，再訓練機器學習模型於自動標記的語料庫。在執行階段，

應用訓練好的機器學習模型，從自然語言書寫的文章，抽取出目標的具名實體。

我們利用完全比對的評估方式，證明本方法可以有效地抽出目標的具名實體，最

高正確率逹 78%。此實驗結果以少量的種子資料，成功地消除人工標記的限制，

顯示本方法的領域移植性優於其它督導式機器學習方法。

關鍵詞：資料擷取，具名實體辨識，網路語料庫，Maximum Entropy model (ME)，

自動標記

 iii

ABSTRACT

 We introduce a semi-supervised method for the extraction of instances of a

certain type from a Chinese text under a domain. In our approach, a machine learning

model for extraction is trained on an automatically collected and tagged corpus,

aiming at eliminating the limiting factor of human annotation on current supervised

systems. The method involves selecting seed data of target instances from

off-the-shelf general purpose thesauri, using seeds to automatically collect a corpus

from the Web, automatically tagging the corpus by seed data and training a machine

learning model on the corpus. At run time, a natural language text is segmented into

words, and the trained model is applied on the words to make the best tagging

decisions, from which we extract target instances. The evaluation of exact match on a

set of annotated test data shows that the method successfully extracts target instances

at the precision rate of 78%. Our methodology accomplishes the elimination of human

annotation on training data by small amount of seed data, and the method is highly

portable to other domains.

Keywords: Information extraction (IE), Name Entity Recognition (NER), Web corpus,

Maximum Entropy model (ME), automatically tagging

 iv

Table of Contents

致謝……... i
摘要…….. ii
ABSTRACT ... iii
Table of Contents .. iv
List of Figures .. v
List of Tables ... vi
Chapter 1 Introduction .. 7
Chapter 2 Related Work .. 11
Chapter 3 Method ... 16

3.1 Problem Statement .. 16
3.2 Training a machine learning model for extraction 17
3.2.1 Data Collection .. 18
3.2.2 Tag automatically a corpus .. 19
3.2.3 Apply machine learning on tagged data ... 23
3.3 Run-time extraction of target instances .. 31

Chapter 4 Experiment Setting and Result ... 36
4.1 Experimental Setting ... 36
4.2 Systems for comparison .. 40
4.3 Evaluation Metrics and Annotation on Test Data 42
4.4. Evaluation Results ... 44

Chapter 5 Conclusion and Future Work .. 54
References .. 56
Appendix A – Samples of Seed data .. 58

Source: Chinese Wordnet .. 58
Source: ToYiChi CiLin (同義詞詞典) .. 59
Source: Chinese thesaurus provided by Academia Sinica 60
Source: UDList... 61

Appendix B – Samples of Test Data .. 62

 v

List of Figures

Figure 1. An example applying our approach to extract foods from an article 9

Figure 2: Outline of the training processes .. 17

Figure 3: Automatically tagging the corpus ... 20

Figure 4: Extracting target instances at run-time ... 31

Figure 5: The DPtable of “緊接著是海膽花壽司” in which each node is connected to
its best previous node and the bold lines are the best tagging sequence by
Viterbi search .. 34

 vi

List of Tables

Table 1: Examples of retrieved snippets by a seed .. 19

Table 2: An example of segmented snippet ... 22

Table 3: The tagging result of the sample snippet in Table 2 23

Table 4: Examples of seed data and its segmented result .. 26

Table 5: Sample lists of word-class, character-class, last characters and bigram
features, derived from data in Table 4. .. 26

Table 6: The number of instances in the selected categories of two thesauri 37

Table 7: The number of instances with selected semantic labels from Chinese
thesaurus provided by CKIP group of Academia Sinicia 37

Table 8: Training parameters ... 38

Table 9: Inappropriate words for the regular expression in automatic tagging 39

Table 10: The part-of-speech filtered out in post-process ... 39

Table 11: The results of two systems: data-driven and ME ... 45

Table 12: The comparison of ME and ME using UDList .. 46

Table 13: The results of ME using thesauri, ME using UDList and ME using thesauri
+ UDList .. 47

Table 14: The results of adding UDList-1000-a, UDList-1000-b, UDList-1000-c to
the ME using thesauri .. 48

Table 15: The results of ME using thesauri plus UDList-1000, UDList-2000, and
UDList repectively ... 49

Table 16: The results of ME and ME-plus systems with or without word-class and
character-class features .. 50

Table 17: The results of features sets of current token plus those of different
surrounding tokens .. 51

 7

Chapter 1 Introduction

 Information extraction (IE) aims at automatically extracting structured

information from unstructured machine-readable documents (e.g. a restaurant, or an

electronic product). Every day, many natural language documents (e.g. blog articles)

are created to the World Wide Web (WWW), and the fast growing amount of

information on the Web make IE ever more important because the techniques of IE

provide a shallow form of text understanding that extracts substrings about

pre-specified types of entities or relationships from documents and web pages, in

order to cope with such huge amount of data efficiently. Extracting instances of a

specific type is one of the tasks of IE since the set of instances from the same category

can be arranged in a structured format. An important part of instances of a certain type

is named entities, which are the real things or instances in the world that are

themselves natural and notable class members of subject concepts. For example, in

the furniture, there are members like “地中海風格餐桌” or “和室桌” that are named

entities.

Many systems that deal with the extraction of named entities such as Libra

(libra.msra.cn) focus on very restricted pre-defined entity classes. Names of “persons”,

“locations”, “organizations” are the three most popular types in the field of named

entity recognition mainly for the reason that there are plenty available annotated

corpora prepared by some competitional conferences, which we will discuss in the

next section. The systems built upon the large annotated training data can achieve

very high accuracy on the pre-defined classes. However, in the real world, people are

interested in a variety of named entities that fall outside these pre-defined classes,

especially for application of accessing information on WWW. Current pre-defined

http://en.wikipedia.org/wiki/Machine-readable

 8

classes cannot be applied to a wide range of domains in the WWW and it is a

time-consuming task to annotate a large corpus for training. These application

systems could be built up more efficiently if there is a way of using unannotated data

for development.

Consider the situation of developing a NER system for a new domain,

restaurants where it is important to identify dishes (e.g. “招牌牛肉麵特餐”). The best

training process for the domain are probably not through the preparation of annotated

data, which are very costly and time-consuming, but rather by crawling and automatic

tagging a domain-specific corpus collected from the Web. A good way to collect and

tag a corpus could be using a set of seed data, such as {“墨西哥玉米煎餅”, “香橙土

司”, “西班牙炒飯”, “牛肉燉湯”, “五香燻牛肉”, “麵餅”, “豆醬”}. Seeds can be sent

to a search engine (e.g. Google) to collect documents and recombined into regular

expressions to identify the positions of domain-specific instances in the corpus based

on the nature of named entities as combination of words. If seed data is segmented

into words as {“墨西哥” “玉米” “煎餅”, “西班牙” “炒” “飯”, “牛肉” “燉” “湯”, “五

香” “燻” “牛肉” , “麵餅”, “豆醬”}, the instance “牛肉玉米炒飯” can be matched by

applying the regular expression /(墨西哥|西班牙|牛肉|五香|麵餅|豆醬) (玉米|煎餅|

炒|飯|燉|湯|燻|牛肉|麵餅|豆醬)+ | (麵餅|豆醬)+)/. Intuitively, by applying the regular

expression of seed data, we can identify most of instances in the given type because

the components (words) in each instance are actually exchangeable to form another

name. With an automatically tagged corpus, we can apply machine learning for the

extraction of instances of a certain type.

We present a semi-supervised method that can automatically collect and tag a

corpus from the Web expected to develop a named entity recognition (NER) system

based on machine learning, such as hidden Markov model (HMM), maximum entropy

hidden Markov model (MEMM), support vector machine (SVM), conditional random

 9

Figure 1. An example applying our approach to extract foods from an article

field (CRF). In this paper, we choose to use MEMM as the machine learning model.

An example session where the proposed method extracts instances of food from an

article based on the MEMM model trained from automatic tagged corpus is show in

Figure 1. The results are produced by an MEMM model trained on automatically

constructed tagged corpus. We apply a heuristic method to tag each token as B-x

(begin), I-x (inside), E-x (end), or O (outside), where x indicates the category. More

specifically, during the learning process, the corpus is obtained from the Web and

segmented to produce a sequence of tokens. Then, the regular expression of seed data

(e.g. /(墨西哥|西班牙|牛肉|五香|麵餅|豆醬) (玉米|煎餅|炒|飯|燉|湯|燻|牛肉|麵餅|豆

醬)+ | (麵餅|豆醬)+)/) matches the strings of domain-specific instances. We assign

 10

each token one of BIEO tags based on its position in the matched strings. For example,

the passage “要給我吃牛肉玉米炒飯”, segmented as “要 | 給 | 我 | 吃 | 牛肉 |

玉米 | 炒飯”, and tagged as {O O O B-food I-food E-food}. Based on the tagged

corpus, a machine learning model is trained to automatically learn the features of

target instances. We describe the training process in more detail in Chapter 3.

At run-time, our method starts with a natural language article submitted by the

user, as the input article in Figure 1. The article is then segmented into words using a

Chinese segmentation parser and each word is assigned one of BIEO tags based on

the machine learning model trained specifically for the type that an user wants to

extract. In our prototype, our method presents the extracted instances of a given type

for the user (see Figure 1); alternatively, the instances extracted by our method can be

used to build the index of a vertical search engine, the answers of a question

answering system, or other systems that require the information in a certain category.

The rest of the thesis is organized as follows. We review the related work in the

next chapter. Chapter 3 presents the proposed method for automatic tagging strategy

and training process. Chapter 4 describes experimental setting and discusses the

results of the experiment. Chapter 5 concludes and points out future research

directions.

 11

Chapter 2 Related Work

 Information extraction (IE) has been an area of active research. Recently,

information explosion intensifies the need for developing IE systems that help people

to cope with the enormous amount of data available on the Web because the goal of

IE is to produce structured data from natural language text, which refers to categorize

contextually and semantically well-defined data in a certain domain (Manning et al.,

2009). In our work, we address an aspect of information extraction that focus on

extracting instances of a certain type in a domain. We not only identify general terms

(e.g., “table” for furniture) but also named entities (e.g., “Taipei beef noodles” for

food). General terms can often be looked up in a dictionary. On the other hand, named

entities are newly created and hence not included in dictionaries; however, named

entities usually carry the major information in a text (e.g., consider the situation of

“dishes of a restaurant”)

More specifically, we focus on the named entity recognition (NER), also known

as entity extraction or entity identification, namely, seeking to locate and classify

names, which often show up as multi-words units, into a certain category. NER has

long been an active topic of information extraction. In the expression “Named Entity”,

the word “Named”, defined by S. Kripke (1982), aims to restrict the task to only those

entities for which one or many rigid designators stands for the referent. Rigid

designators include proper names as well as certain natural kind terms like biological

species and substances. For instance, the automotive company created by Henry Ford

in 1903 is referred to as Ford or Ford Motor Company (Nadeau & Sekine, 2007). One

of the first research papers in the field presented by Rau (1991) describes a system to

extract and recognize company names by heuristics and handcrafted rules. In general,

 12

early works on NER mainly take the rule-based approach and rely on manually

constructed patterns to achieve high precision, but the approach lacks robustness and

portability. In contrast, we take the machine learning approach. Machine learning is

more attractive because it is more portable and less expensive to maintain.

Since 1996 when Message Understanding Conference 6 (MUC-6) introduced the

task of NER on the seven types: names of “persons”, “locations”, “organizations”,

“dates”, “times”, and “percentage”, the amount of NER researches accelerate,

especially for the recognition of “persons”, “locations”, “organizations”. A number of

conferences based on common tasks such as MUC-6 has seen organized to encourage

NER research, including IREC (Sekine & Isahara, 2000), CONLL (Tjong et al., 2003).

Based on large-scale annotated corpora, machine learning approaches are widely

adopted. Borthwick et al. (1998) describe a system that integrates the results of

systems based on handcrafted rules or statistic methods into on the basis of the

maximum entropy (ME) model and obtained a high accuracy. Uchimoto et al. (2000)

introduce a NER method based on the ME model, and report that the optimal number

of preceding/subsequent contexts to be incorporated in the model is two morphemes

to both left and right from the current position. Bender et al. (2003) present a set of

features which are easily obtainable for almost any language in ME models, such as

lexicons, dictionary features. Similarly, our work also choose ME as our machine

learning model, for the reason that as above authors remark, ME is a flexible statistic

model that enable researchers to concentrate on finding features that characterize the

problem. In contrast, although we adopt some of the features in above works, we also

discover other effective features, which will be described in detail in Chapter 3.

Chinese named entity recognition is more difficult because the Chinese text lack

word boundary, morphological variety, and capital letters to denote proper names and

sentence breaks. Additionally, the flexibility of Chinese syntax structures makes

 13

Chinese NER more complex than the English case. Recently, researchers on Chinese

NER tend to use hybrid models to cope with the complexity in Chinese text; that is,

they either incorporate rules into machine learning models or perform post-processing

to improve the accuracy. Tsai et al. (2004) present a hybrid model that incorporate

rule-based knowledge and templates into a ME framework. Zhang and Zhang (2007)

present a hybrid model for automatic Chinese person name and location name

recognition based on the ME model and post-processing. These previous works of

supervised machine learning achieve high performance of NER are all based on the

manually prepared large annotated training data and are limited to pre-defined classes

(e.g., persons, organizations, locations). However, very few NER systems have been

developed to handle online text with the requirements of low cost, flexibility, and ease

of adaptation to new domains, in order to deal with huge amount of data on the WEB.

The preparation of corpora is expensive and time-consuming. In contrast to previous

work, we aim at developing a strategy of automatically collecting and tagging a

corpus to cope with the problem.

Recently, some researchers have recognized the problem of restricted domains

on supervised machine learning system. Sekine et al. (2002) extend named entity

hierarchy to include about 150 NE types which may cover most of the entities which

appear in usual newspaper articles. Zhao and Liu (2008) present a system that

recognize Chinese product NER such as “摩托羅拉 V8088 折疊手機” (Motorola

V8088 clamshell cell phone) by applying hierarchical hidden Markov model on an

annotated corpus. However, it is time-consuming for them to prepare an annotated

corpus because of the lack of training data for product NER.

 In the NER study closer to our work, the surface pattern approach involves

semi-supervised learning using a small set of seeds and bootstrapping process. Hearst

(1992) pioneered the surface pattern approach using three handcrafted rules and

 14

bootstrapping for the automatic acquisition of the hyponym lexical (is-a) relation from

unrestricted texts. Riloff and Jones (1999) introduce a mutual bootstrapping technique

that uses a handful of seed words for a category and unannotated training texts. Their

goal is to learn two dictionaries for NER: a dictionary of semantic lexicons and a

dictionary of extraction patterns for the domain. Similar to our work, the surface

patterns approaches do not need annotated corpora. Instead, a small set of seeds are

used to find more NE instances in a large-scale corpus.

 Recent work on the surface pattern approach has been applied on the Web corpus.

Brin (1998) uses lexical features represented in regular expressions in order to

generate lists of book titles paired with book authors from the World Wide Web

(WWW). Patwarhan and Riloff (2006) collect a domain-specific corpus from the Web

by handcrafted queries and bootstrap to learn domain-specific surface patterns.

Similarly, our method also collects a domain-specific corpus from the Web for the

purpose of collecting a corpus, but we do not use handcrafted queries. Instead, we

take the seeds from general purpose thesaurus (e.g. Wordnet) and directly use them as

queries, to avoid too much human intervention. Previous work on surface patterns

perform well based on highly accurate rules produced mainly by outer context

information, meaning fixed patterns made by strings, and thus lack of flexibility. They

achieve high precision at the expense of low recall. Therefore, surface patterns are

most successful to discover named entities instead of identifying entities. Beside

purely surface patterns, Downey et al. (2007) locate complex named entities in Web

text by computing Pointwise Mutual Information and Information Retrieval (PMI-IR),

developed by Turney (2001), based on the features like Web page counts and capital

words. Downey’s approach can work on the named entities beside the pre-defined

classes (e.g. names of person, organization, location); however, it is used to create

large lists of named entities, not designed for resolving ambiguity in a given

 15

document; additionally, the useful feature of capitalization in English in Downey’s

work cannot apply in Chinese case.

 In a study more closely related to our work, Nadeau et al. (2006) propose a NER

system that combines named entity extraction based on HTML surface patterns with a

simple form of named entity; that is, they first start with a set of seeds to learn HTML

patterns for the extraction of more entities, and then a list formed by the extracted

entities is heuristically used to disambiguate entities in a document, such the list

lookup strategy, and multi words units with capital words. In contrast, our method

obtains training data from the Web and use machine learning to train a NER system,

instead of using heuristic rules. Shinzato et al. (2006) describe an automatic dictionary

construction method for NER for a specific domain such as restaurant guides. Their

dictionary construction method exploits the co-occurrence strength of two expressions

in HTML itemizations calculated from average mutual information. Then, the

dictionary entries are used as features to train a NER system based on Support Vector

Machine (SVM). Similarly, we also apply machine learning strategy to build a NER

system. However, their method still needs a small annotated corpus, while our

approach applies automatic tagging.

 In contrast to the previous research in NER, we present a method that can

identify named entity, instances, of a certain type with the goal of reducing the degree

of human intervention and enhancing the portability from one domain to another. We

exploit the semi-supervised procedure by collecting a corpus from the Web with the

seed data from general purpose thesaurus, and automatically tagging the corpus to

produce training data for machine learning.

 16

Chapter 3 Method

 Most named entity recognition (NER) research focus on several predefined

classes (e.g., persons, organizations, locations) and rely on annotated corpora. These

supervised machine learning can achieve high accuracy, but at the same time, the

human labor is the limiting factor. Unfortunately, predefined classes and annotated

corpora can not cope with the wide range of domain-specific instances on the Web. In

the real world, these named entities falling outside of the predefined classes are most

interesting and carry much information in a domain (e.g. dishes of a restaurant,

products of a furniture store). Such useful information may be costly to extract based

on supervised machine learning methods. To reduce the effort of human annotation,

which is the major limiting factor of machine learning, we propose a promising

approach for automatically collecting and tagging training data in a format that allow

the machine learning approaches to train a model expected to identify instances of a

certain type in a domain.

3.1 Problem Statement

We focus on the extraction of instances of a certain type in a domain: extracting from

a natural language text a set of instances of a certain type in a domain. The extracted

instances can be examined by a human user directly, or passed on to a vertical search

engine as index. Thus, it is crucial that the instances of a certain type, including

general terms and named entities, can be extracted. At the same time, the quality of

extracted instances should meet a certain degree of accuracy. Therefore, our goal is to

extract a set of instances in a certain type of domain that at the same time should not

contain too many false positive results. We now formally state the problem that

 17

(1) Collect a domain-specific corpus from the Web (Section 3.2.1)

(2) Tag automatically a corpus to constitute training data (Section 3.2.2)

(3) Select the features for machine learning (Section 3.2.3)

(4) Train a machine learning model

Figure 2: Outline of the training processes

we are addressing.

 Problem Statement: We are given a natural langue text Txt that contains

instances of a certain type in a domain and a set of seed data S. Our goal is to extract a

set of instances Ins of the type from Txt. For this, we use S and information from

general purpose thesaurus (e.g. Wordnet) to collect a corpus C and use heuristics to

automatically tag C such that a machine learning approach can be applied to train a

model for extracting Ins.

 In the rest of this section, we describe our solution to this problem. First, we

define a strategy for automatically collecting and tagging a domain-specific corpus

(Section 3.2). This strategy relies on a set of seed data, derived from general purpose

thesauri (which we will describe in detail in Section 4.1). In this section, we also

describe how to annotate raw training data and how a machine learning approach is

used to train a model. Finally, we show how our method extracts target instances at

run-time based on the machine learning model (Section 3.3).

3.2 Training a machine learning model for extraction

We attempt to collect a domain-specific corpus from the Web and automatically tag it

with heuristics to constitute data to train a machine learning model for the extraction

of instances of a certain type in a domain. Our learning process is shown in Figure 2.

 18

3.2.1 Data Collection

In the first stage of the learning process (Step (1) in Figure 2), we collect from the

Web a domain-specific corpus in which most of sentences contain target instances.

For example, to collect a corpus for information extraction related to foods, the

sentences should look like “你能想像出長達2400米的墨西哥玉米煎餅嗎？” which

contains the target instance “墨西哥玉米煎餅”. This kind of sentences can be

retrieved by using a set of seeds to query a search engine (e.g., Google). By using a

seed “墨西哥玉米煎餅”, we are likely to retrieve such the sentences in returned

snippets, and sentences with other target instances may also be retrieved in the same

snippet based on the empirical experience that similar instances usually show up

nearby.

 The input of this stage is a set of seeds of a certain type. These seeds are sent as

queries to a search engine to retrieve texts to build a corpus for training purpose. As

we will describe in Section 4.1, general purpose thesauri (e.g., Wordnet) contain

synonymy and antonyms, defining different kinds of terms and relationships; thus,

instances of a certain type in the domains of interest can be found in a thesaurus. For

instances, we can select instances foods from Wordnet as seed data. For seed data, we

use a number of seeds numSeeds with length longer than minQLength characters as

queries for a search engine because short instances are more likely to be a part of

another instance in a sentence, which may introduce noise into the data and create

problem for the subsequent stage of automatic tagging. For example, if a short

instance “玉米” retrieves a sentence “你能想像出長達 2400 米的墨西哥玉米煎餅

嗎？”, in which “玉米” is as a part of the long instance “墨西哥玉米煎餅”, the

program may wrongly treat the words except “玉米” as outside of a target instance.

 The output of this stage is a set of snippets that contain queried seeds returned by

a search engine (e.g., Google). Some sample queried seeds and retrieved snippets are

 19

seed snippet

墨西哥玉米煎餅

你能想像出長達 2400 米的墨西哥玉米煎餅嗎？美國內華達州里諾市近日展

出了這麼... 據報導，這個巨型墨西哥玉米煎餅總共耗費了 8200 多個玉米麵

餅、2000 磅的香炒豆醬以及...

小心翼翼地打開錫紙包裝，警方人員驚訝地張大了嘴巴，這件所謂的危險武

器，竟然是一個 巨大的墨西哥玉米煎餅。這個煎餅中間裹著大量的牛排、

生菜和墨西哥胡椒粉。

Table 1: Examples of retrieved snippets by a seed

shown in Table 1, in which the bold characters present the target instances foods.

Note that in the examples of Table 1, the retrieved sentences not only contain seeds

but also other foods, such as “玉米麵餅” and “香炒豆醬”. We will describe in the

next section the automatic tagging procedure of the sentences in the returned snippets

to produce training data.

Although there are other ways to prepare a corpus, our method uses small

amount of seed data obtained from off-the-shelf knowledge sources to expand training

data quickly. This procedure costs relatively less human effort and are language

independent.

3.2.2 Tag automatically a corpus

In the second stage of training, we automatically tag the corpus collected from

previous stage, to produce training data for machine learning (Step (2) in Figure 2). In

other words, given a corpus, we assign to each token (word) one of B, I, E and O tags.

In this scheme, the beginning token of an instance is tagged as B. Subsequent tokens

within the instance are tagged as I. The ending token of an instance is tagged as E. All

other tokens are tagged O. The B, I and E tags are suffixed with the type of the

instances, such as B-type, I-type, E-type. For example, if the sentence “你能想像出長

達 2400 米的墨西哥玉米煎餅嗎？” is segmented as “你 | 能 | 想像出 | 長達 |

 20

Procedure AutoTagCorpus(Corpus, Seed)

 TagResult = []

1) RE = GenerateRegularExpression(Seed)

 For each snippeti in Corpus

2) SegmentedSnippet = ApplyChineseSegmenter(snippeti)

3) MatchedResult = ApplyREFindAll(SegmentedSnippet, RE)

4) TagResult[i]= a list of “O” with the same size of SegmentedSnippet

 For each MatchedString in MatchedResult

 For each wordj in MatchedString

5a) If wordj = the first word of MatchedString

 TagResult[i][j] = “B”

5b) Else if wordj = the last word of MatchedString

 TagResult[i][j] = “E”

5c) Else

 TagResult[i][j] = “I”

Figure 3: Automatically tagging the corpus

2400 | 米 | 的 | 墨西哥 | 玉米 | 餅 | 嗎 | ？”, we assign a tagging sequence as

{O, O, O, O, O, O, O, B-Food, I-Food, E-Food, O, O}. Assigning tags has become the

standard way to identify the boundaries of specific types of word sequences as the

example above. The procedure of our automatically tagging is shown in Figure 3.This

procedure takes the corpus and seed data acquired from the last stage as input.

In Step (1) of the algorithm, we use seed data, selected from general purpose

thesauri for collecting a corpus in the last stage, to generate a regular expression RE

for the tagging function. Recall that we assume the components (words) of each

instance are exchangeable to form another instance. For example, the components of

the instances {“墨西哥玉米煎餅”, “香橙土司”, “西班牙炒飯”, “牛肉燉湯”, “五香

燻牛肉”, “麵餅”, “豆醬”} can be used to form another name “牛肉玉米炒飯”. For

this, all the seed data are segmented into words (tokens), where first words of each

 21

seed are selected as beginning tokens Btoken, the subsequent tokens as inside tokens

Iotken and the last tokens as ending tokens Etoken. When an instance is only

composed by one word, its token is additionally selected as single tokens Stoken. As

the example above that seed data segmented as {“墨西哥” “玉米” “煎餅”, “西班牙”

“炒” “飯”, “牛肉” “燉” “湯”, “五香” “燻” “牛肉” , “麵餅”, “豆醬”}, then

Btoken={“墨西哥”, “西班牙”, “牛肉”, “五香”}, Itoken={“玉米”, “炒”, “燉”, “燻”},

Etoken={“煎餅”, “飯”, “湯”, “牛肉”}, and Stoken={“麵餅”, “豆醬”}

After the segmentation and simple classification of tokens according to their

position in an instance, RE is produced in the form as / ((Btoken|Stoken)

(Itoken|Etoken|Stoken)+) | (Stoken)+ /. There are two parts in RE. The first part

((Btoken|Stoken) (Itoken|Etoken|Stoken)+) contains two subparts. The first subpart

(Btoken|Stoken) contains the prefixes on singles or the instances (e.g., “墨西哥”, “麵

餅”). The second subpart contains Itoken, Etoken and Stoken, for the reason that in

Chinese instances, Itoken and Etoken are usually interchangeable. However, Btoken

are not part of this second subpart because most of the times, Btoken are as

pre-modifiers instead of repetitive, interchangeable words for the type. For example,

“墨西哥” does not mean a kind of foods when not connected to “玉米”. Furthermore,

Btoken often represent the left boundary of an instance, so it is necessary to put

Btoken in the first position. In addition, single tokens, since they are composed by

only one word, is necessarily head token for the type, such as “麵餅”; therefore, in the

principle of exchangeability, Stoken are put into the second portion with Itoken and

Etoken. In Chinese syntax, two word of the same type can be connected together, so

Stoken is also allowed to be in the first portion with Btoken, making this rule a little

bit loose to match more instances. Note that the first part of RE only considers

instances of two words or longer, namely one Btoken or Stoken plus at least one

Itoken or Etoken or Stoken since the major components in this part are derived from

 22

original

snippet

你能想像出長達 2400 米的墨西哥玉米煎餅嗎？美國內華達州里諾市近日展出了

這麼... 據報導，這個巨型墨西哥玉米煎餅總共耗費了 8200 多個玉米麵餅、2000

磅的香炒豆醬以及...

segmented

result

你 能 想像出 長達 2400 米 的 墨西哥 玉米 煎餅 嗎 ？

美國 內華達州 里 諾 市 近日 展出 了 這麼 ... 據 報導 ，

這個 巨型 墨西哥 玉米 煎餅 總共 耗費 了 8200 多 個

玉米 麵餅 、 2000 磅 的 香 炒 豆醬 以及 ...

Table 2: An example of segmented snippet

instances of multi-words. The second part of RE (Stoken)+, which is much simpler,

matches one or more Stoken because Stoken surely belong to the target type as the

discussion above, and the Chinese syntax structures allow corresponding concepts

freely combined to express combinational meaning. By using the example in the

previous paragraph, RE looks like /(墨西哥|香|西班牙|牛肉|五香|麵餅|豆醬) (玉米|

煎餅||炒|飯|燉|湯|燻|牛肉|麵餅|豆醬)+ |(麵餅|豆醬)+/.

Once RE is produced using the seed data, for each snippet in the corpus, we

begin our procedure of automatically tagging. First, we initialize TagResult to store

the tagging result of the whole corpus. In Step (2) of Figure 3, a snippet snippeti is

segmented, separating each word by a blank, as the example in Table 2. In Step (3),

RE, generated in Step (1), is applied to SegmentedSnippet to obtain all the matched

strings.

After applying RE, we begin to automatically tag the snippet. In Step (4), we

initialize TagResult[i] to a list of “O” to store the tags of all the word in snippeti. In

Step (5a) to (5c), we examine each MatchedString in MatchedResult, in order to

assign B, I, or E tags to each word wordj. Note that j corresponds to the position of

current word in snippeti; therefore, TagResult[i][j] stores the value of tag of current

word wordj. In Step (5a), the first word of current MatchedString is tagged as “B”, the

 23

original snippet

你能想像出長達 2400 米的墨西哥玉米煎餅嗎？美國內華達州里諾市近日展

出了這麼... 據報導，這個巨型墨西哥玉米煎餅總共耗費了 8200 多個玉米麵

餅、2000 磅的香炒豆醬以及...

tagging result

你 能 想像出 長達 2400 米 的 墨西哥 玉米 煎餅 嗎 ？

O O O O O O O B-food I-food E-food O O

美國 內華達州 里 諾 市 近日 展出 了 這麼 ... 據 報導 ，

 O O O O O O O O O O O O O

這個 巨型 墨西哥 玉米 煎餅 總共 耗費 了 8200 多 個

 O O B-food I-food E-food O O O O O O

玉米 麵餅 、 2000 磅 的 香 炒 豆醬 以及 ...

B-food E-food O O O O B-food I-food E-food O O

Table 3: The tagging result of the sample snippet in Table 2

last word as “E” (Step (5b)), and the rest of words as “I” (Step (5c)). A sample tagging

result of the snippet in Table 2 is shown in Table 3, in which words in bold represent

MatchedString.

By using the simple procedure of regular expression described above, the result

of this training stage is a set of training data, automatically tagged by assigning each

token one of BIEO tags to produce valid data for machine learning.

3.2.3 Apply machine learning on tagged data

In the third and final stage of training, given a tagged corpus, we apply a machine

learning strategy to learn features of each BIEO tags for the computation of

conditional probability of a word with a tag. We choose Maximum Entropy model

(ME) as our machine learning strategy.

ME is a flexible statistical model that offers a clean way to combine diverse

pieces of linguistic contextual evidence in order to estimate the probability of an

outcome occurring with a certain linguistic context history. In our method, outcome

 24

space is comprised of BIEO tags for an ME formulation of extraction of instances.

ME computes the probability p(o|h) for any o from the space of all possible outcomes

O, and for every h from the space of all possible histories H. A history is all the

conditional data that enable one to assign probabilities to the space of outcomes. In

our problem, history could be viewed as all information derivable from the test corpus

relative to the current token. The computation of p(o|h) in ME depends on a set of

binary-value features, which are helpful in making a prediction about the outcome.

For instance, one of our features is: when current token is a known ending token of

food, it is likely to be tagged as “E-food”. More formally, we can represent this

feature as:

݂ሺ݄, ሻ݋ ൌ ቄ 1: if End_Char_Of_foodሺ݄ሻ ൌ true and ݋ ൌ ܧ െ ݀݋݋݂
0: else

 (1)

In this formula, End_Char_Of_Food(h) is a binary function that returns the value true

if the current word of the history h is in the list of known ending tokens. For example,

if the list of ending tokens contains {“飯”, “麵”, “排”, “湯”} and the current word is

“湯”, the value of this feature of “湯” with the tag “E-food” is 1, or in other words,

active.

Given a set of features and a training corpus, the ME estimation procedure

generates a model where every feature fi has associated with its weighting parameter

αi. This allows us to compute the cond pro a ollows: itional b bility as f

ሻ݄|݋ሺ݌ ൌ ଵ
௓ሺ௛ሻ

∑ሺ݌ݔ݁ α୧୬
୧ୀଵ ୧݂ሺ݄, ሻሻ (2)݋

where p(o|h) denotes the conditional probability of predicting an outcome o with a

history h, o is the outcomes BIEO tags, h is all the conditional information derived

from current word, ଵ
௓ሺ௛ሻ

 is the normalization factor, fi is a binary feature function, α୧

is the weight of fi. Intuitively, the probability is the multiplication of weights of active

features, meaning those fi(h,o)=1. The weight α୧ is estimated by a procedure called

 25

Generalized Iterative Scaling (GIS), which is an iterative method that improves the

estimation of the weights at each iteration, in order to maximize the model’s

log-likelihood. The ME estimation technique guarantees that for every feature fi, the

expected value of α୧ equals the empirical expectation of α୧ in the training data.

As many researchers have remarked, the major advantage of ME is that it allows

the modeler to concentrate on finding the features that characterize the problem while

letting the ME estimation systematically deal with assigning relative weights to the

features (Borthwick, 1998). In addition, ME has the ability to incorporate any

binary-valued features from different knowledge sources and can handle more

features than other approaches, such as hidden Markov Model (HMM), Conditional

Random Field (CRF), because ME does not require enumeration of the space of all

possible observations, by which ME computation has less limitation on computer

memory (Wu et al., 2006). Therefore, we choose ME as the machine learning strategy

in this thesis.

 To build a ME model, we need to identify features that best characterize the

problem of extracting instances of a certain type. In the following, we discuss each

feature we used in turn:

1. Word-class features:

Word-class feature is the most important feature we use. Based on the spirit

of the regular expression of BIEO tags, we categorize words into three classes of

BIE in advance and use list lookup strategy to select the word class as features of

a word. Seed data acquired from the data collection stage is segmented into words.

Each word according to its position in its original instance is categorized into the

corresponding class. First words of each seed are put into a list BtokenList, last

words into EtokenList, and the rest words into ItokenList. Single tokens, derived

from instances composed only by one word which is thus sure to be in the target

 26

 Example

seed data 墨西哥玉米煎餅, 西班牙炒飯, 牛肉燉湯, 五香燻牛肉, 麵餅, 豆醬

segmented data 墨西哥 | 玉米 | 煎餅, 香 | 橙 | 土司, 西班牙 | 炒 | 飯, 牛肉 | 燉 | 湯,

五香 | 燻 | 牛肉, 麵餅, 豆醬

Table 4: Examples of seed data and its segmented result

List Example

Btoken 墨西哥, 香, 西班牙, 牛肉, 五香, 麵餅, 豆醬

Itoken 玉米, 橙, 炒, 燉, 燻, 麵餅, 豆醬

Etoken 煎餅, 飯, 湯, 牛肉, 麵餅, 豆醬

Bchar 墨, 西, 哥, 香, 西, 班, 牙, 牛, 肉, 五, 香, 麵, 餅, 豆, 醬

Ichar 玉, 米, 橙, 炒, 燉, 燻, 麵, 餅, 豆, 醬

Echar 煎, 餅, 飯, 湯, 牛, 肉, 麵, 餅, 豆, 醬

LastChar 餅, 飯, 湯, 肉, 餅, 醬

Bigram 墨西哥玉米, 玉米煎餅, 西班牙炒, 炒飯, 牛肉燉, 燉湯, 五香燻, 燻牛肉

Table 5: Sample lists of word-class, character-class, last characters and bigram features, derived

from data in Table 4.

concept, are put into all three lists since the Chinese syntax structures allow

corresponding concepts freely combined to express combinational meaning. Table

4 shows the example seed data and its segmented result. Table 5 shows the sample

lists derived from seed data in Table 4. In Table 5, segmented seed data and lists of

word-class are as below:

(1) Segmented seed data: {“墨西哥” “玉米” “煎餅”, “香” “橙” “土司”, “西班

牙” “炒” “飯”, “牛肉” “燉” “湯”, “五香” “燻” “牛肉”, “麵餅”, “豆醬”}

(2) BtokenList: {“墨西哥”, “香”, “西班牙”, “牛肉”, “五香”, “麵餅”, “豆醬”}

(3) ItokenList: {“玉米”, “橙”, “炒”, “燉”, “燻”, “麵餅”, “豆醬”}

(4) EtokenList: {“煎餅”, “土司”, “飯”, “湯”, “牛肉”, “麵餅”, “豆醬”}

For example, “玉米” will have an active feature denoting its existence in

ItokenList. All other words, such as “湯勺”, are considered not belonging to any

 27

word class. Note that one token (word) could be in multiple classes, as “牛肉” in

both BtokenList and EtokenList, which means it could be the beginning or ending

word of an target instance. In this case, ME model will adjust its probabilities of

“B-food” and “E-food” according to other features, such as features from its

previous word, which we will describe later.

The benefit of word-class features is that it allows us to incorporate data from

different knowledge sources. Intuitively, we directly use seed data from the first

stage, but in practice, we can expand the word classes at will by adding other

name lists, which will be discussed in Chapter 4.

2. Character-class features:

We extend the idea of word-class features by taking characters of each word

in a class to form a character class. As in Table 5, EtokenList has {“煎餅”, “飯”,

“湯”, “牛肉”, “麵餅”, “豆醬”}, and then we take its characters to make a

EcharList as {“煎”, “餅”, “飯”, “湯”, “牛”, “肉”, “麵”, “餅”, “豆”, “醬”}.

Assigning a class to each character in a token can help to cope with the problem

of data sparseness. In the creation of a Chinese word in a certain type, some

fundamental elements, as head words, are often used in combination of unseen

characters (e.g, “旗” in “旗魚”). In the reality, it is also these head characters that

let people realize which category a new word belong to. For example, “旗魚” is a

kind of fish because of the character “魚”. In Chinese words, general characters

that indicate certain categories tend to locate near the end of a word, as the

previous example in which “魚” is the last character. In contrast, although the

word “湯勺” has a general character “湯” which is often used in words of the

category “food”, it is not a dish but a kind of household utensil. People can

understand that “湯勺” does not indicate a dish mostly because “湯” does not

 28

show up as the last character of the word, and the last character “勺” is a common

element of utensils.

To characterize this nature, when classifying a character, we assign a number

from the end of the word. For example, the Char-1 of “煎餅” is “餅” and its

Char-2 is “煎”. As the EcharList in Table 5, “煎餅” will have two active features,

one for denoting Char-1 in EcharList and the other for Char-2 in EcharList. For

another example of 湯勺”, its Char-1 will have an active feature denoting it is not

in any character lists in Table 5. Note that we assign numbers from back to front,

so the meaning of each number with regard to its position will not be confused by

different length of words. In addition, to prevent using too rare elements, which

are often such unique that does not indicate common characteristics of a type, we

only select the characters over a threshold of counts minCharCount into lists.

3. Ending character features:

We take the last characters of each instance in seed data to form a list of

ending characters. Note that in the character-class feature, we directly take

characters of tokens in a class; therefore, EcharList not only contain ending

characters but also other elements that show up in ending tokens, such as “煎”

and “牛”, which is not the ending characters, in EcharList of Table 5. In the

examples of Table 5, we can form a list LastCharList {“餅”, “飯”, “湯”, “肉”

“餅”, “醬”}, “濃湯” will have a feature indicating its existence in LastCharList,

while “湯勺” will have a feature indicating its nonexistence in LastCharList. Last

character features mainly identify the ending token of an instance. Intuitively, in

Chinese, last characters are most characteristic of the semantic category. For

example, typically dishes end with characters such as “湯” or “飯”, while

furniture names typically end with “桌” or “爐”.

 29

4. Bigram features:

Tokens from seed data are combined into bigrams to form a list BigramList,

for the benefit that bigrams can present more specific information of a category

than single tokens. Note that instances of single tokens can not form bigrams

since they do not have combinational information inside their own instances. We

check if bigrams of current token with its previous as well as next token are in

BigramList. As in Table 5, if seed data are segmented as {“墨西哥” “玉米” “煎

餅”, “香” “橙” “土司”, “西班牙” “炒” “飯”, “牛肉” “燉” “湯”, “五香” “燻” “牛

肉” , “麵餅”, “豆醬”}, BigramList={“墨西哥玉米” “玉米煎餅”, “香橙” “橙土

司”, “西班牙炒” “炒飯”, “牛肉燉” “燉湯”, “五香燻” “燻牛肉”}. For example,

“煎餅” and its previous token is “玉米” has an active feature indicating the

bigram is in BigramList, while “煎餅” and its next token as “嗎” has an active

feature for the nonexistence of this bigram in BigramList.

Intuitively, the above four kind of features directly use the seed data to form

lists. Furthermore, we can enrich these lists by adding other name lists, which can

be easily gathered from the Web or dictionaries. We will examine this idea in the

experiment.

5. Part-of-Speech features:

The part-of-speech of current token offered by a Chinese segmenter is

directly used as a feature because part-of-speech presents syntactic information of

a token. For example, the part-of-speech of current token “牛肉”, as a common

noun (Na), is directly taken as a feature.

 30

6. Semantic label features:

The semantic labels of Chinese thesaurus provided by CKIP of Academia

Sinica are also taken directly as features because semantic labels offer basic

concept categories of a word. For example, “meals”, as the semantic label of “牛

肉” is taken directly as a feature.

7. Preceding and subsequent features:

As Uchimoto et al. (2000), we also take all the features from previous and

following tokens within a certain window size windowSize, to provide

surrounding information for the improvement of accuracy. For instance, at a

window size of two, we take all the active features from two tokens on the left

and two tokens on the right for current token.

8. Previous state features:

We take the previous tag as a feature to estimate transition probability in the

model, for Viterbi search at run-time. This transition feature is for the procedure

of Maximum Entropy Markov model (MEMM), which is the combination of ME

and HMM to estimate state transition probability, in order to find better tagging

sequence at run-time (McCallum et al., 2000). For example, if the previous tag of

current token is “O”, then it has an active feature “Current-PreTag-Is-O”. At

run-time, this feature will be dynamically changed according to which previous

node we are computing (McCallum et al., 2000). The detail of MEMM procedure

will be described in Section 3.3.

 By selecting these features, we train a ME model for the extraction of target

instances. The run-time procedure of which will be described in Section 3.3.

 31

3.3 Run-time extraction of target instances

Procedure ExtractInstance(Article, MEmodel)

(1) segment = ChineseSegmenter(Article)

queue=[]

for each <wordi, posi> in segment

(2) historyi=FindActiveFeature(wordi, posi)

Append <wordi, historyi> to queue

DPtable=[]

BackTrackTable=[]

For each <wordi, historyi> in queue

(3) currentHistory=AddSurroundingHistory(historyi, WindownSize)

HISTORY=[]

For t = 1 to 4

(4) HISTORY.append(currentHistory)

(4a) Append “Current-PreTag-Is-B” to HISTORY[1]

(4b) Append “Current-PreTag-Is-I” to HISTORY[2]

(4c) Append “Current-PreTag-Is-E” to HISTORY[3]

(4d) Append “Current-PreTag-Is-O” to HISTORY[4]

DPtable[i]=[]

BackTrackTable[i]=[]

For each tagj in BIEOtags

tmpProbArr=[]

For each <tagt, preProbt> in DPtable[i-1]

(5a) MEMMprob= preProbt*ComputeMEprob(HISTORYt, tagj, MEmodel)

(5b) Append <MEMMprob, tagt> to tmpProbArr

(5c) <curProb,curPreTag>=GetMaxProbAndPreNode(tmpProbArr)

Append <wordi, tagj, curProb> to DPtable[i]

 Append <curPreTag> to BackTrackTable[i]

(6) TagSequence=ViterbiSearch(BackTrackTable)

(7) Results=ExtractInstance(TagSequence)

Figure 4: Extracting target instances at run-time

 32

 Once the machine learning model is trained for a certain type of instances, the

model is used to find the best tagging sequence of an article, in order to extract the

target instances. At run-time, we apply Maximum Entropy Markov model (MEMM)

proposed by McCallum et al. (2000). Basically, MEMM is still a ME framework, but

incorporates state-transition of HMM as one of features into the model, to substitute

for the transition probability in HMM. It is shown that MEMM can find better tagging

sequence than pure ME approaches (McCallum, 2000). Therefore, we choose MEMM

at run-time to find the best tagging sequence. The procedure of run-time extraction is

shown in Figure 4. The input of procedure is an article and a ME model trained for a

certain domain, such as food.

 In Step (1), an article is segmented into words by a Chinese segmenter as “緊接

著 | 是 | 海膽 | 花 | 壽司”. In Step (2), we extract the active features of each

word, as the example that for the target instances food, the word “海膽” will have

active features denoting its existence in BtokenList, its characters in BcharList and so

on. For each word wordi, we store its active features into hisotryi, which is a variable

containing all the observations of wordi for the estimation of ME probability.

We use DPtable a two-dimensional array for storing the conditional probabilities

of each word with its four BIEO tags respectively, in order to implement Viterbi

search. Let a sentence has n words, and then DPtable has a size of 4*n. In DPtable, a

node means a word with one of BIEO tags; therefore, each word has 4 nodes that

store their MEMM probability. BackTrackTable is also a two-dimensional array, to

store the best path of each node to its previous node for the principle of Viterbi search.

The benefit of using Viterbi algorithm is that it let ME model decide all the

conditional probabilities, and among these, it can find the globally optional tagging

sequence of a sentence without trapping in local maximal solutions.

 For each word wordi and its historyi in queue, we begin to compute their

 33

probability for dynamic programming. In Step (3), preceding and subsequent features

at a certain WindowSize are selected and stored with historyi into currentHistory. In

order to apply MEMM, in Step (4), before computing conditional probability by

currentHistory, we need to make a one-dimensional array HISTORY in which each

record represents the history of wordi with a different previous state feature. Step

(4a-d) add features of previous state as “B”, “I”, “E” or “O” respectively to each

record of HISTORY. Making this array is in the spirit of dynamic programming of

MEMM that each node needs to find its best path from previous node for state

transition, so each node needs to compute the probabilities by four different

observations in HISTORY respectively, and pick up the highest one as its probability.

 After the preparation of HISTORY, we begin to compute conditional probability

of each node; in other words, wordi needs to compute four different probabilities of

BIEO tags tagj. tmpProbArr is to store the probabilities of four different previous

state features of wordi with tagj. In MEMM, the probability of current node needs to

be multiplied by that of previous node inferred by the previous state feature of

HISTORYt, so we go through each probability of previous word preProbt, meaning the

probabilities of wordi-1 with IOBE tags respectively. tagt means the tag of the node

having preProbt for wordi-1. In Step (5a), HISTORYt, which has the previous tag

feature of tagt, is taken to compute the probability of wordi with tagj by the trained

MEmodel described in Section 3.2. For example, if current tagt is “B”, then HISTORYt

should have an active feature “Current-PreTag-Is-B”. Then, the computed probability

is multiplied by preProbt as in the principle of MEMM. MEMMprob and tagt as the

current previous node are stored in tmpProbArr (Step (5b)). After the probabilities of

four different observation sets are computed, in Step (5c), we select the highest

probability as the probability of current node curProb, and at the same time get the

previous node that owns the best path curPreTag. Then, we store the probability of

 34

緊接著 是 海膽 花 壽司

B

I

E

O

Figure 5: The DPtable of “緊接著是海膽花壽司” in which each node is connected to its best previous

node and the bold lines are the best tagging sequence by Viterbi search

current node into DPtable. More formally, we can state the process of MEMM

comp as: utation

ܽݐ୵୭୰ୢ౟ሺݎ݌ܯܯ ୨݃ሻ ൌ max୲ୀଵସ ୲ሻ݃ܽݐ௪௢௥ௗ౟షభሺݎ݌ܯܯ כ ܽݐ௪௢௥ௗ೔ሺݎ݌ܧܯ ୨݃|ܴܱܶܵܫܪ ୲ܻሻ

(3)

where ୵ܸ୭୰ୢ౟ሺܽݐ ୨݃ሻ is the MEMM probability of current node,

௪ܲ௢௥ௗ೔ሺܽݐ ୨݃|ܴܱܶܵܫܪ ୲ܻሻ is the ME probability of current word wordi with current

observation set HISTORYt, ௪ܸ௢௥ௗ౟షభሺ݃ܽݐ୲ሻ means preProbt in the algorithm of

Figure 4. For curPreTag, we can state the process formally as below:

ܽݐ୵୭୰ୢ౟ሺݎ݌ܯܯ ୨݃ሻ ൌ argmax୲ ୲ሻ݃ܽݐ௪௢௥ௗ౟షభሺݎ݌ܯܯ כ ܽݐ௪௢௥ௗ೔ሺݎ݌ܧܯ ୨݃|ܴܱܶܵܫܪ ୲ܻሻ (4)

where t corresponds to curPreTag. curPreTag is store into BackTrackTable.

 Once DPtable has stored the conditional probabilities of all the words and

BackTrackTable has connected each node to its best previous node, we can decode a

best tagging sequence backward by Viterbi search in Step (6). An example of finished

BackTrackTable is shown in Figure 5, in which each node is connected to its best

previous node and the bold lines indicate the best tagging sequence. Then, the target

 35

instances can be extracted by the rules of BIEO chunks, as Figure 5 in which the

target instances “海膽花壽司” can be extracted. An example of tagging sequence and

extraction for an article on our working prototype is shown in Figure 1.

 36

Chapter 4 Experiment Setting and Result

 We carried out experiments to extract from a natural language text a set of

instances in a more fine-grained type of a domain that lacks annotated data. As such, a

machine learning model will be trained on an automatically tagged corpus and

evaluated over a set of natural language texts containing target instances. Furthermore,

we evaluate our method on the level of exact match; that is, a target instance must be

exactly the same as the answer to be considered correct. In this chapter, we first

present the setup of our training and test procedure for the evaluation (Section4.1).

Then, Section 4.2 lists the systems that we developed for the comparison. The

evaluation metrics for the performance of developed systems are introduced in

Section 4.3. Finally, Section 4.4 reports and discusses the results of the evaluation

using the methodology described in previous sections.

4.1 Experimental Setting

 We select foods as our training and test type in the evaluation; that is, our

experiment is for the extraction of eatable things as the target instances, such as dishes,

drinks (e.g., “玉米麵餅”, “特調冰咖啡”). A set of 4,557 instances are selected as

seeds to automatically collect and tag a corpus for training, obtained from three

off-the-shelf thesauri, Chinese-English bilingual Wordnet, TonYiCi CiLin (同義詞詞

林), and Chinese thesaurus provided by CKIP group of Academia Sinicia, all of which

contain instances in various domains and categories. For Wordnet, we select the

instances labeled as <noun.food>, indicating that an instance belongs to the food

category. For TonYiCi CiLin, we select the food categories of Br01and Br03 to Br12.

 37

Thesauri Category Number Total Total

Chinese Wordnet noun.food 2461 2461

3155
TonYiCi CiLin

Br01 (糧食) 53

694

Br03 (食物) 15

Br04 (飯, 粥, 鍋巴) 33

Br05 (麵食) 50

Br06 (菜肴) 157

Br07 (調味品) 26

Br08 (油, 塩, 醬, 醋, 糖) 79

Br09 (點心) 80

Br10 (糖果) 23

Br11 (果料, 餡料, 酵子) 32

Br12 (飲料, 乳酪) 146

Table 6: The number of instances in the selected categories of two thesauri

Thesaurus Semantic labels Examples Number Total

Chinese

thesaurus

food 零食 72

1402

meals 水餃, 牛肉 519

drinks 茶, 奶, 可樂 144

spices 冰糖, 沙茶 89

fruits 芒果, 香蕉 171

birds 雞, 鴨 192

plants 大白菜 38

marine 魚, 牡蠣 177

Table 7: The number of instances with selected semantic labels from Chinese thesaurus provided

by CKIP group of Academia Sinicia

The category Br02 contains instances of feed for domestic animals, so it is not

selected. The number of instances in two thesauri is shown in Table 6. For Chinese

thesaurus, we selected 1402 instances with the semantic labels indicating foods. The

manual selection process required can be done in a few minutes. The details of

selected labels and examples are listed in Table 7. More samples of the seed data used

for evaluation are listed in appendix.

 38

Parameter Value Description

minQLength 4 Minimum length of a seed for querying a search engine

numSeeds 1000 Number of seeds used to query a search engine for data collection

minCharCount 2 Minimum frequency for generating character-class lists

windowSize 2 The window size for preceding and subsequent features in the ME model

Table 8: Training parameters

Our experiments used a number of parameters in the training process. We

performed some experimentation with the different values of these parameters

resulting in the parameters shown in Table 8. We did not test parameters exhaustively

and further fine-tuning may improve the performance of the system. As shown in

Table 8, we randomly selected 1,000 instances with at least four characters and sent

them to a search engine to collect data. We chose Google as the search engine because

of its well known effective performance. A number of 40,535 snippets were retrieved

and segmented into 1,994,222 words. The Chinese segmenter was done using an

in-house segmentation system.

 In the development stage of our method, we had a set of developing data,

including ten articles of about 500 words. From the observation of developing data,

we found, by checking part-of-speech of each word of seed data, some words usually

do not belong to our target instances and thus should be excluded during the

automatically tagging process; otherwise, they may create noise. For example, in the

Chinese instances of food, quantifiers usually show up near the end of an instances,

such as “麵包(Na) 捲(Nf)” or “包(Nf) 餡(Na) 卷(Nf)”, where “捲”, “包” and “卷”

are quantifiers (Abbreviations inside parentheses are part-of-speech tags provided by

our Chinese segmenter). However, when quantifiers show up in front of food

instances, most of the time they indicate the amount of a noun and thus do not belong

 39

Part-of-speech Examples

Quantifier (Nf) “麵包(Na) 捲(Nf)”, “包(Nf) 餡(Na) 卷(Nf)”

Conjunction (CA, CB, CC) “博(bb) 若(CC) 來(Db) 莆萄酒(Na)＂, “雜(VH) 和(CA) 菜(Na)＂

Expletive (T) “勃(bb) 良(bb) 地(Te) 葡萄酒(Na)”

Alphabet Italien

Adverb (Da, Db) “全(Da) 麥(Na) 餅乾(Na)”, “塔(bb) 可(Db) 餅(Na) 醬(bb)”

Table 9: Inappropriate words for the regular expression in automatic tagging

Part-of-speech Example

Alphabet (Fw) XO

Number (Fw) 1, 2, 3

Punctuation (?X) , . ? !

Adverb (Da, Db) 也, 總共, 都

Conjunction (CA, CB, CC) 和, 與

Postposition (NG) 以上, 後, 裡

Expletive (T) 地, 啊, 哦

Location (LG) 上面, 側邊

(DE) 的, 之, 得, 地

(VQ) 是

(VX) 有

(VHEcDaDF) 多

(NfDE) 些

(NfNd) 元, 小時

Table 10: The part-of-speech filtered out in post-process

to our target instances, such as “一卷錄音帶” or “一包餅乾”. Therefore, we restrict

that quantifiers cannot be Btoken but they can be in Itoken or Etoken. English words

are also not considered because our method is designed for identifying Chinese NER.

Other words that are not part of any named entity include conjunction (CA, CB, CC),

expletive (T) and some adverbs (Da, Db). All the words are excluded using regular

expression and the examples are listed in Table 9.

 From the developing data, we also found that in the test procedure, additional

 40

post-processing can be applied by checking part-of-speech of each word to filter out

the tokens that are often wrongly tagged as parts of our target instances, maybe for the

reason that their preceding or subcequent features elevate the probability as part of

target instances. Recall that preceding and subsequent features are to include all the

word-class, character-class, last character, bigram, part-of-speech, and semantic label

features from the surrounding tokens at a certain window size into current token (In

the experiment, the window size is two, as in Table 8). All the filtered part-of-speech

are listed in Table 10 and applied in the experiment.

 Testing data were obtained from 30 blog articles about users experiences of

dining in some restaurants. We randomly selected these articles from food forum in

the PTT bulletin board system (BBS). PTT, as the biggest BBS in Taiwan, contains

various forums on diverse topics. There are approximately 100,000 users at any time

on PTT. Food forum at PTT is an active area for users to discuss and share their

experiences with restaurants; therefore, it is easy for us to obtain articles containing

our target instances. Human annotation was done on these articles for the evaluation

of exact match. Criteria of annotation will be described in Section 4.3.

4.2 Systems for comparison

Our experimental evaluation focuses on how a trained ME model can improve

accuracy of extraction of target instances. We compare the result with a baseline

evaluation, the data-driven system, which is the automatic tagging approach in the

training process, to see if we can improve the performance. Then, we train the ME

model using the methodology described in Chapter 3 for the extraction of food

instances. Recall that in the ME model, we use word-class, character-class, last

character, bigram, part-of-speech, semantic labels, preceding and subsequent, and

 41

previous state features. The parameters for these features are listed in Table 8. Now,

we state the systems evaluated as follow:

- Data-driven: The method of automatic tagging using the regular expression of

seed data described in Section 4.1.

- ME using thesauri: Using the seed data (described in Section 4.1), the trained ME

model and MEMM procedure (described in Chapter 3) to extract target instances.

Recall that in Section 3.2.2, we discuss the benefit of the word-class,

character-class, last character and bigram feature lists is that they allow us to

incorporate different knowledge sources to expand the amount of data in lists.

Therefore, we expand these feature lists of ME using thesauri system by adding

instances obtained from a web forum called “非凡大探索” (Unique Discovery)

(http://www.ustv.com.tw/viewforum.php?f=33), which is a forum of a TV show in

Unique Satellite TV Channel (非凡電視台) introducing delicacies found in Taiwan.

In the Unique Discovery Forum, the discussions from 2005/12/31 to 2008/08/17 were

selected and compiled into a list of instances UDList mainly about Taiwanese food.

We gathered more seed data from this Web forum with the goal of showing the

simplicity and effectiveness of our training procedure since collecting seeds from the

Web is much easier than the preparation of annotated corpus. We will compare the

performances about different amount of UDList added in the feature lists. We also

compare the performances with and without word-class as well as character-class

features to observe whether they help cope with data sparseness and improve

performance. Additionally, the preceding and subsequent features (Uchimoto et al.,

2000) are also examined for effectiveness.

http://www.ustv.com.tw/viewforum.php?f=33

 42

4.3 Evaluation Metrics and Annotation on Test Data

 Recall that our approach starts with a natural language text created by a user, and

reduces the text into a tagging sequence of BIEO. The output of our approach is a set

of instances of a certain type in a domain, which can either be shown to the user

directly, or used as the index of a vertical search engine, the answers of a question

answering system. It is crucial that a system can extract fully correct instances, so the

index or answers will be meaningful for users. Therefore, our evaluation is a simple

scoring protocol the same as IREX and CONLL, “exact-match evaluation”.

Information extraction systems are usually compared based on the quality of the

extracted instances. This quality is traditionally quantified using three metrics,

precision, recall, and F-measure. Precision is calculated as the fraction of exactly

correct instances among all the instances extracted, and recall measures the coverage

of the system as the fraction of the real answers in the test data that are successfully

extracted by the system. F-measure considers both precision and recall of the test

data to compute a score that can measure a test’s accuracy, as the harmonic mean of

precision and recall.

To evaluate our approach, we inspect the instances extracted by the various

systems that we compared (Section 4.2). We will describe how we annotate instances

of food instances in the test data later. Using the annotated test data, we evaluate the

instances that the systems extract using the precision, recall, and F-measure.

Definition 4.1. The precision of an extracting system Sys for test data is the

percentage of correct instances among all the instances returned by Sys.

EXAMPLE 1. Consider 1,000 instances extracted by Sys from test data. If 700 of

these 1000 instances are fully correct with the answers, then the precision is

଻଴଴
ଵ଴଴଴

כ 100% ൌ 70%.

 43

Definition 4.2. The recall of Sys is the percentage of correct instances among all

the answers of test data.

EXAMPLE 2. Consider test data contain 900 answers. If 700 of the 1000

instances extracted by Sys are fully correct with the answers, then the recall is

଻଴଴
ଽ଴଴

כ 100% ൌ 77%.

Definition 4.3. The F-measure of Sys is the mean of precision and recall. The

formula is as follow:

݁ݎݑݏܽ݁݉ܨ ൌ ଶכሺ௣௥௘௖௜௦௜௢௡ כ ௥௘௖௔௟௟ሻ
ሺ௣௥௘௖௜௦௜௢௡ା௥௘௖௔௟௟ሻ

 (4)

EXAMPLE 3. If the precision is 70% and the recall is 77%, then the F-measure is

ଶכሺ଴.଻כ଴.଻଻ሻ
ሺ଴.଻ା଴.଻଻ሻ

ൌ 0.72.

Once we have trained a ME model for food instances as discuss in the previous

sections, we evaluate the performance of the extracting systems in Section 4.2 using

the evaluation metrics. We annotate the test data to mark the food instances in the text

as the answers. The definition of food instances is eatable things or dishes that are

usually seen on menus, such as “牛肉麵”, “焗烤蔬菜飯”; additionally, more general

instances, such as “菜”, “飯”, “肉”, or “猪肉” are also marked. Note that if two or

more food instances are connected together, we consider them as one instances, such

as “水果鰻魚壽司” because in Chinese syntax, when a noun locate right before

another noun, the first noun is usually used as the modifier of second noun to make

them as a multi-words unit. On the other hand, if there is a conjunction, preposition or

punctuation between two food instances, we treat them as two separate instances, as

the example that “水果和壽司” have two instances “水果” and “壽司”.

In the evaluation, we only consider those instances that are three characters or

longer because in our empirical observation, instances composed by less than two

characters are often general terms and can be simply looked up in dictionaries.

 44

However, instances of three characters or more are more likely named entities, which

are often not included in dictionaries. After human annotation, there are totally 823

food instances in the test data. By checking Chinese Wordnet and Chinese thesaurus

provided by Academia Sinicia, only about 13% of answers containing three characters

above are in the dictionaries.

4.4. Evaluation Results

 In this section we report and discuss the results of the experimental evaluation

using the methodology described in Chapter 3. First, we report the performances of

two systems, data-driven and ME using thesauri on the test data. Then, we compare

the results of different amount of UDList adding into ME using thesauri. Finally, the

significance of word-class and character-class features is discussed by comparing the

results of ME using thesauri and ME using thesauri plus UDList with and without

these features. Additionally, we also examine the effectiveness of the preceding and

subsequent features (Uchimoto et al., 2000).

 During this evaluation, 30 articles were through the run-time procedure

described in Section 3.3 to extract target instances, foods. Table 11 shows the

precision, recall, and F-measure of two systems: data-driven and ME using thesauri.

As we can see, the precision rate of the data-driven system is about 0.66. About two

thirds of correct instances suggest that our automatically tagging approach can

correctly match target instances to a certain degree. On the contrary, the recall of

data-driven system is relative low maybe due to the reason that using the criteria of

exact match for an instance, such the instance segmented as “涼拌 | 魚膠”, the

data-driven system can not extract the unknown word “魚膠” even though its

components (characters) and previous word are the obvious characteristics of food

 45

 Precision Recall F-measure

Data-driven 0.66 (305 / 458) 0.37 (305 / 823) 0.47

ME using thesauri 0.70 (452 / 639) 0.54 (452 / 823) 0.61

Table 11: The results of two systems: data-driven and ME

instances. Thereby the F-measure is less than 0.5. However, we believe that in our

training data, the recall may be higher for the reason that since the snippets are

retrieved by the seed data, the possibility of unknown words may be lower.

 In Table 11, the ME using thesauri shows improvement on both precision and

recall. The precision rate is about 0.70, indicating that after applying machine

learning on the automatically tagged data, the MEMM procedure can increase the

precision rate by using the additional features. Also note that the ME using thesauri

substantially improves the recall, showing that the machine learning model solves the

problem of data sparseness to some extent, as the example that the instance “涼拌魚

膠” can be correctly extracted since the characters of “魚膠” are commonly used

elements in foods and “涼拌” is often the Btoken of foods. The F-measure of ME

using thesauri increases to over 0.6, outperforming that of data-driven system. This

improvement indicates that the instances derived from thesauri already contain some

commonly used elements and general terms, such as “飯”, “麵”, “牛排”, “麵包”, “三

明治”. The problem of data-sparseness can also be improved by our discovered

features.

 Recall that we can expand the word-class, character-class, last character and

bigram list features of the ME using thesauri system by adding instances from UDList

(described in Section 4.2), which contains a lot of Taiwanese dishes, to see the

influence of increasing amount of data. Table 12 shows the comparison of ME using

thesauri and ME using thesauri plus UDList. As we can see, the ME using thesauri

plus UDList shows a great improvement on precision and recall. The precision is

 46

 Precision Recall F-measure

ME using thesauri 0.70 (452 / 639) 0.54 (452 / 823) 0.61

ME using thesauri + UDList 0.78 (615 / 788) 0.74 (615 / 823) 0.76

Table 12: The comparison of ME and ME using UDList

increase drastically to 0.78 while the recall to 0.74, which are significant

improvement over the ME using thesauri. This improvement may be due to the fact

that TonYiCi CiLin and Chinese thesaurus contain mostly the general terms, such as

“麵粉” or “飯”, which can not cover enough commonly used elements for food

instances. Chinese Wordnet is basically the translation version of English Wordnet,

and thus may not include a lot of instances for Chinese food. Therefore, it is likely

that the elements of Btoken are not enough and our discovered features can not solve

all the problem of unknown Btoken, so adding UDList let the model can learn more

Btoken to correctly extract foods. For example, Btoken like “日式”, “和風”, “麻辣”,

or “手工” commonly shows up in Taiwanese food instances but is not included in the

thesauri. Adding UDList allow the ME model to extract instances like “日式南瓜鍋”.

 Additionally, we examined whether UDList can actually replace thesauri all

together, so we remove the data of thesauri from the word-class, character-class, last

character and bigram list features, to see if the ME model only using UDList can

achieve the same performance as the same model using thesauri plus UDList. Table

13 shows the results of ME only using UDList and ME using thesauri plus UDList.

As Table 13 shows, although the recall rate stays almost the same, the precision is

greatly decreased by 0.10, even lower than the ME using thesauri, indicating that

without thesauri a lot of noise is created. The reason may be that although UDList

contains many elements of Taiwanese foods, some may not be important elements

and their importance is falsely elevated without the reinforcement of data from

thesauri, especially for Itoken and Etoken. As for the ME using thesauri, thesauri may

 47

 Precision Recall F-measure

ME using thesauri 0.70 (452 / 639) 0.54 (452 / 823) 0.61

ME using UDList 0.69 (617 / 822) 0.74 (617 / 823) 0.72

ME using thesauri + UDList 0.78 (615 / 788) 0.74 (615 / 823) 0.76

Table 13: The results of ME using thesauri, ME using UDList and ME using thesauri + UDList

contain a lot of general terms but not enough elements for Btoken or Itoken, so some

answers may be partially extracted such that recall is relatively lower. Therefore, ME

using thesauri plus UDList, as a combined system, can learn the advantages from both

ME using thesauri and ME using UDList to present a better performance. As the

example segmented sentence “味道 | 完全 | 蓋過 | 煙燻 | 鮭魚 | 滋味”, ME

using thesauri plus UDList can correctly extract “煙燻鮭魚”, while ME using

thesauri and ME using UDList wrongly extract “煙燻鮭魚滋味”. The reason may be

that the part-of-speech of “滋味” is a common noun (Na), which often shows up as an

Itoken or Etoken in Chinese foods (e.g., 美奶 “滋” in Chinese Wordnet, 川 “味”

小炒 in UDList), and some of its characters are in IcharList and EcharList of UDList,

so according to the part-of-speech and the interchangeability of Itoken as well as

Etoken the model decides “滋味” to be Etoken of the instance. However, using

thesauri plus UDList, which contain many fundamental instances, especially Etoken,

as well as Btoken for Taiwanese food allows the model to learn when the current

characters are in IcharList and its previous word is an Etoken, the current word is not

likely to be an Etoken.

 We also investigated whether or not the performance depends on the number of

instances in UDList. There are totally 2,932 food instances in UDList. First, we

randomly select three groups of instances from UDList, named UDList-1000-a,

UDList-1000-b, and UDList-1000-c, each of which contain 1,000 instances, in order

to see if adding the same amount of three groups with different members from UDList

 48

 Precision Recall F-measure

ME using thesauri + UDList-1000-a 0.75 (554 / 737) 0.67 (554 / 823) 0.71

ME using thesauri + UD List-1000-b 0.76 (558 / 730) 0.67 (558 / 823) 0.71

ME using thesauri + UD List-1000-c 0.76 (565 / 740) 0.68 (565 / 823) 0.72

Table 14: The results of adding UDList-1000-a, UDList-1000-b, UDList-1000-c to the ME

using thesauri

respectively to the ME using thesauri system can achieve similar performance. Table

14 shows the results of adding the three groups respectively to the ME using thesauri

system. As we can see, the precision and recall of three groups are approximately the

same. Comparing to the ME system using full UDList in Table 12, the precision only

decrease about 0.02, suggesting that once the feature lists contains some elements of

Taiwanese food, our machine learning model can identify food in Chinese text more

effectively. The reason may be that the missing elements of original ME using

thesauri system is mainly Btoken in Taiwanese foods. These Btoken are limited and

can be acquired in small amount of data. On the other hand, the recall decreases about

0.06, indicating that amount of elements of Taiwanese food still limit the coverage of

the ME system.

 To examine variations of recall more specifically, we evaluate the performances

of changing the amount of instances from UDList added to the ME system.

UDList-1000-a in Table 11 is taken as the group with the least amount of instances

from UDlist, UDList-1000, since it has the weakest performance in Table 14. Upon

UDList-1000, we randomly select 1000 instances, which do not exist in the instances

of UDList-1000, from UDList, to make a list of 2000 instances, UDList-2000. Finally,

ME using thesauri plus full UDList is also put into this comparison since there only

about 3000 instances in UDList. Thereby we increase 1000 instances at each group to

see the effects with different amount of Taiwanese food instances. The results are

 49

 Precision Recall F-measure

ME using thesauri + UDList-1000 0.75 (554 / 737) 0.67 (554 / 823) 0.71

ME using thesauri + UDList-2000 0.76 (583 / 752) 0.70 (583 / 823) 0.74

ME using thesauri + UDlist 0.78 (615 / 788) 0.74 (615 / 823) 0.76

Table 15: The results of ME using thesauri plus UDList-1000, UDList-2000, and UDList

repectively

shown in Table 15.

As indicated in Table 15, with increasing amount of instances, the recall rates

are stably improved, about 0.04 increased at each group. This shows that the coverage

of ME model is based on the number of instances in the feature lists. However, the

precision rate stays more or less the same. The ME using thesauri + UDList-2000

even have similar precision as that using thesauri + UDList-1000-b or UDList-1000-c,

indicating that most of the Taiwanese food contain about the same elements, which

can be acquired from a small amount of Taiwanese food instances, such as “日式”,

“法式”, “義式”, “和風” and so on. Once our model learns these elements, the system

can identify Taiwanese food more correctly using the designated features.

 Finally, we examine the relation between the performances and individual

feature. We found that the word-class and character-class features are the most

important. Table 16 shows the results of the ME using thesauri and the ME using

thesauri plus UDList when word-class and character-class features were removed.

First, we remove both word-class and character-class features, and the results show

that the precision does not change much, especially for the ME using thesauri whose

precision almost stays the same, maybe because the bigram list and semantic labels

features already provide enough information, which can correctly identity food

instances. However, without two class-based features, the recall is obviously much

lower, suggesting that missing class-based features prevent the machine learning

 50

 ME using thesauri ME using thesauri + UDList

 Precision Recall F-measure Precision Recall F-measure

- Word-class

- Character-class

0.70

(283 / 404)

0.34

(283 / 823)

0.46 0.75

(420 / 554)

0.51

(420 / 823)

0.61

- Character-class
0.70

(427 / 609)

0.51

(427 / 823)

0.59 0.75

(603 / 798)

0.73

(603 / 823)

0.74

+ All features
0.70

(452 / 639)

0.54

(452 / 823)

0.61 0.78

(615 / 788)

0.74

(615 / 823)

0.76

Table 16: The results of ME and ME-plus systems with or without word-class and character-class

features

model from recognizing more food instances. When we only removed the

character-class features, the recall was greatly improved, suggesting that word-class

features, as categorized unigrams, provide significant characteristics for the model.

However, the precision still stay the same, meaning that word-class features can

improve the coverage but can not increase the degree of exactness. When all the

features, including character-class and word-class features, are used, the recall rate

increases slightly and more importantly, the precision of ME using thesauri plus

UDList was improved. It is interesting that the precision of the ME using thesauri

plus UDList increases while the ME using thesauri does not. It is possible that UDList

contains various elements which can let the model extract more instances by their

significant character-class features and at the same filter out some noise when they do

not have suitable character-class. As for the ME using thesauri, the character-class

features seem not to contain diverse elements enough, especially for the elements of

Taiwanese foods, thereby unable to extract as more instances as the ME using

thesauri plus UDList does to improve the accuracy. For example, the ME using

thesauri can only recognize partial answer “蕃茄培根義大利麵” while ME using

thesauri plus UDList can extract the full answer “辣味野菇蕃茄培根義大利麵”. By

 51

Feature set
ME using thesauri ME using thesauri + UDList

Precision Recall F-measure Precision Recall F-measure

 (0)
0.67

(241 / 359)

0.29

(241 / 823)

0.40 0.77

(399 / 513)

0.48

(399 / 823)

0.59

(-1) to (1)
0.70

(431 / 609)

0.52

(431 / 823)

0.60 0.74

(465 / 625)

0.56

(465/ 823)

0.64

(-2) to (2)
0.70

(452 / 639)

0.54

(452 / 823)

0.61 0.78

(615 / 788)

0.74

(615 / 823)

0.76

(-3) to (3)
0.68

(459 / 667)

0.55

(459 / 823)

0.61 0.73

(606 / 820)

0.73

(606 / 823)

0.73

Table 17: The results of features sets of current token plus those of different surrounding tokens

using character-class features with the information in UDList, the model learns “辣味”

as a beginning token, and “野” as well as “菇” as inside tokens.

 We further examine the performance of using surrounding features (preceding

and subsequent features). Recall that in the previous experiment we all use the

window size of two for the preceding and subsequent features. In Table 17, we test

different values of window size to see if the results are consistent with Uchimoto’s

work. In Table 17, “(0)” means that only the features from the current token were

used. “(-1) to (1)” indicates that we used features from the current token and its two

adjacent tokens. “(-2) to (-2)” indicates that we used features from the current token

and its four adjacent tokens, the two on the left and the two on the right of the current

token. “(-3) to (3) indicates that we used features from the current token and the six

nearest tokes, the three on the left and the three on the right. As we can see, for “(0)”,

the precision of both ME using thesauri and ME using thesauri plus UDList systems

are slightly decrease, while their recall are greatly decreased, suggesting that although

our discovered features already can handle a certain degree of extraction, at the same

time they can not deal with data sparseness by surrounding features, and thus the

coverage of the extraction becomes insufficient.

 52

 For the “(-1) to (1)” case of Table 17, the recall is significantly increased,

meaning that the problem of coverage is improved by adding surrounding features.

However, it is interesting that the precision of ME using thesauri plus UDList is 0.03

lower than that of “(0)”, possibly for the reason that using features of two adjacent

tokens still does not have enough information to deal with the problem of data

sparseness. At the same time, it may introduce the noise because of the diverse

elements of UDList. As the example sentence segmented as “這 | 道 | 絲瓜 | 完全

| 是 | 品嘗 | 原味”, the ME using thesauri plus UDList of the “(0)” case can

successfully extract “絲瓜”, while ME using thesauri plus UDList of “(-1) to (1)”

extracts “道絲瓜” because the probability of “道” as a part of a food instance is raised

by the surrounding features from “絲瓜”, and “道” is one of beginning tokens in

UDList (e.g., “道口燒雞” in UDList).

 For the “(-2) to (2)” case in Table 17, the precision and recall of ME using

thesauri plus UDList are substantially improved, probably for reason that more

surrounding information can allow the model to automatically learn more specific

rules for the diverse elements of UDList. As the example of “道絲瓜”, the ME using

thesauri plus UDList of “On (-2) to (2)” can let “絲瓜” successfully recognize that

“道” should not be its Btoken in this sentence by its surrounding token “這” and “是”.

On the other hand, the ME using thesauri of “(-1) to (1)” and “(-2) to (2)” have almost

the same precision, suggesting that since without the diverse elements of UDList, the

both ME systems can achieve similar performance by using surrounding features.

 Finally, for the “(-3) to (3)” case of the ME using thesauri, Table 17 shows that

the precision is slightly decreased while the recall is slight increased; therefore, the

performance stay almost the same. However, the performance of ME using thesauri

plus UDList with “On (-3) to (3)” is obviously decreased. The reason might be that

the model may learn too specific rules since the ME using thesauri plus UDList

 53

contains so many diverse elements. As the example sentence “而 | 是 | 它 | 雲 |

醬 | 高麗菜 | 啊”, the ME using UDList of “(-2) to (2)” successfully extracts “雲醬

高麗菜”, while that of “(-3) to (3)” extracts “醬高麗菜” because the previous tokens

“而”, “是” and “它” may lower the possibility of “雲” as a Btoken, and “雲” and “醬”

are both in BtokenList and ItokenList, such that the model may learn too specific rules

preventing “雲” from being a part of the food instance.

 Therefore, from the discussion above, our results confirm the discovery of

Uchimoto et al. (2000) that the best accuracy was achieved by using the features of

current token and the four nearest tokens.

 54

Chapter 5 Conclusion and Future Work

 In summary, we have introduced a semi-supervised method for the extraction of

instances of a certain type in a domain by a machine learning model developed from

an automatically collected and tagged corpus. The method involves selecting seed

data of target instances from off-the-shelf general purpose thesauri, using seeds to

automatically collect a corpus from the Web, automatically tagging the corpus by seed

data and training a machine learning model on the corpus. We have implemented and

thoroughly evaluated the method as applied to natural language texts. In the

evaluation of exact match, we have shown that the method successfully extracts target

instances that meet a certain degree of accuracy, about 78%, by using a small amount

of seed data and automatic procedure for the constitution of training data. Our

proposed method has the advantage of using less expensive development.

 Many avenues exist for future research and improvement of our system. From

our examination of results, the problem of data sparseness still exists; therefore, more

domain knowledge or heuristics could be used to improve the identification of target

instances. More effective features for the ME model could be discovered in further

experiments. For example, more class-based features could be applied for improving

the performance of the given target instances. Since we successfully use small amount

of seeds to develop an IE system, bootstrapping strategy of repetitive crawling, using

more and more instances, may allow using a smaller amount of data to build a very

large corpus. Additionally, an interesting direction to explore is to perform rule-based

post-processing for creating a hybrid system, for the reason that we find a lot of

unknown words are brands of products, such “黑炫” in the instance “黑炫巧克力餅

乾 ”, from which our method can only extract “巧克力餅乾 ”. Using more

 55

sophisticated post-processing may solve the problem of unknown words to some

extent.

 56

References

Bender, O., Och, F. J., & Hermann, N. (2003). Maximum Entropy Models for Named

Entity Recognition. In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL.

Borthwick, A., Sterling, J., Agichtein, E., & Grishman, R. (1998). NYU: Describption
of the MENE Named Entity System as used in MUC-7. In Proceedings of the
Seventh Message Understanding Conference (MUC-7).

Brin, S. (1998). Extracting Patterns and Relations from the World Wide Web. In
WebDB Wokshop at EDBT '98.

Downey, D., Broadhear, M., & Etzioni, O. (2007). Locating Complex Named Entities
in Web Text. In Proceedings of IJCAI 2007.

Hearst, M. (1992). Automatic Acquisition of Hyponyms from Large Text Corpora. In
Proceedings of the 14th conference on Computational linguistics.

Kripke, S. Naming and Necessity. Boston: Harvard University Press.

Lisa, R. F. (1991). Extracting Company Names from Text. In Proceedings of
Conference on Artificial Intelligence Applications of IEEE.

Manning, C. D., Raghavan, P., & Schutze, H. (2009). Introduction to Information
Retrieval. Cambridge university press.

McCallum, A., Freitag, D., & Pereira, F. (2000). Maximumentropy Markov models
for information extraction andsegmentation. In Proceedings of ICML (pp.
591–598). California: Stan-ford.

Nadeau, D., & Sekine, S. (2007). A Survey of Named Entity Recognition and
Classification. Lingvisticae Investigationes, Volume 30, Number 1 , pp. 3-26.

Nadeau, D., Turney, P. D., & Matwin, S. (2006). Unsupervised NamedEntity
Recognition: Generating Gazetteers and Resolving Ambiguity. In Proceedings
of Canadian Conference onArtificial Intelligence.

Patwardhan, S., & Riloff, E. (2006). Learning Domain-specific Information
Extraction Patterns from the Web. In Proceedings of the ACL 2006 Workshop on
Information Extraction Beyond the Document.

 57

Riloff, E., & Jones, R. (1999). Learning Dictionaries for Information Extraction by
Multi-level Bootstrapping. In Proceedings of the Sixteenth National Conference
on Artificial Intelligence.

Sekine, S., & Isahara, H. IREX: IR and IE Evaluation project in Japanese. In
Proceedings of the 2nd International Conference on Language Resources and
Evaluation.

Sekine, S., Sudo, K., & Nobata, C. (2002). Extended Named Entity Hierarchy. In
Proceedings of the LREC-2002 Conference.

Shinzato, K., Sekine, S., Yoshinaga, N., & Torisawa, K. (2006). Constructing
Dictionaries for Named Entity Recognition on Specific Domains from the Web.
In Web Content Mining with Human Language Technolo-gies Workshop on the
5th International Semantic Web.

Tjong Kim Sang, E. F., & De Meulder, F. (2003). Introduction to the CoNLL-2003
Shared Task:Language-Independent Named Entity Recognition. In Proceedings
of the seventh conference on Natural language learning at HLT-NAACL 2003.

Tsai, T.-H., Wu, S.-H., Lee, C.-W., Shih, C.-W., & Hsu, W.-L. (2004). Mencius: A
Chinese Named Entity Recognizer Using Maximum Entropy-based Hybrid
Model. International Journal of Computational Linguistics & Chinese
Language Processing .

Uchimoto, K., Ma, Q., Murata, M., Ozaku, H., & Hitoshi, I. (2000). Named Entity
Extraction Based on A Maximum Entropy Model and Transformation Rules. In
Proceedings of 33rd Annual Meeting of the Association of the Computational
Linguistics.

Zhang, Y.-J., & Zhang, T. (2007). ME-based Chinese Person Name and Location
Name Recognition Model. In Proceedings of the Sixth International Conference
on Machine Learning and Cybernetics.

Zhao, J., & Liu, F. (2008). Product Named Entity Recognition in Chinese Text.
Language Resources and Evaluation .

 58

Appendix A – Samples of Seed data

Source: Chinese Wordnet

 丁香

 丁骨牛排

 人心果樹

 八角茴香果

 十字花科蔬菜

 十字霜糖麵包

 十字麵包

 三丁煎蛋捲

 三明治

 三明治餐

 三層三明治

 下午茶

 上等牛排

 上等紅茶

 上腰肉牛排

 千島醬

 千層麵

 口香糖

 口香糖球

 土耳其式開胃菜

 土耳其肉飯

 土耳其咖啡

 土耳其飯

 大比目魚肉

 大白菜

 大肉塊

 大西洋鮭魚

 大西洋蟹

 大豆

 大豆油

 大空心粉筒

 大青豆

 大型三明治

 大紅香腸

 大胡桃

 大香腸

 大茴香

 大茴香果實

 大茴香烈酒

 大茴香餅

 大梭魚肉

 大理石蛋糕

 大粒葡萄

 大麥

 大麥芽威士忌

 大麥茶

 大麥湯

 大麥糖

 大湖鱒魚

 大黃

 大黃派

 大腿肉

 大蒜

 大蒜奶油

 大蒜麵包

 大嘴鱸

 大蝦

 大蕉

 大餐

 大鍋湯

 大雜燴

 大麗花

 大蘋果

 小口黑鱸

 小牛肉

 小牛肉片

 小牛肉塊

 小牛舌

 小牛腦

 小白菜

 小羊肉

 小西餅

 小西點

 小杏仁餅乾

 小豆蔻

 小型麵包

 59

Source: ToYiChi CiLin (同義詞詞典)

 糧食

 食糧

 糧

 乾糧

 侯糧

 糗

 粗糧

 糙糧

 米

 大米

 白米

 秈米

 機米

 陳米

 老米

 碎米

 粞

 江米

 糯米

 糙米

 糲

 高梁米

 秫米

 米粒

 糝

 米粉

 米面

 麵粉

 白麵

 麵

 玉米麵

 棒子麵

 麩子

 麩皮

 細糧

 雜糧

 原糧

 口糧

 軍糧

 公糧

 錢糧

 餘糧

 機動糧

 商品糧

 救濟糧

 漕糧

 粳米

 黃米

 炒米

 小米

 小米麵

 豆麵

 高梁麵

 食物

 食品

 食

 吃食

 飯食

 飯菜

 熟食

 煙火食

 煙火

 副食品

 軟食

 麵食

 葷食

 素食

 零食

 飯

 米飯

 白飯

 白玉

 白米飯

 乾飯

 蓋飯

 蓋澆飯

 份兒飯

 客飯

 剩飯

 現飯

 粗飯

 糙米飯

 脫粟飯

 撈飯

 齋飯

 夾生飯

 菜飯

 八寶飯

 粥

 稀飯

 米湯

 糜

 大米粥

 臘八粥

 魚生粥

 雞粥

 糖粥

 赤豆粥

 綠豆粥

 鍋巴

 鑊焦

 麵食

 麵條

 麵

 湯麵

 麵湯

 抻麵

 拉麵

 削麵

 刀削麵

 掛麵

 卷麵

 卷子麵

 卷子

 卷

 饅頭

 包子

 饅首

 饃

 饃饃

 餑餑

 麵餅

 餅子

 餑餑

 過水麵

 雜麵

 雜和麵兒

 切麵

 燙麵

 冷麵

 炒麵

 拌麵

 壽麵

 麵坯兒

 通心粉

 死麵

 60

Source: Chinese thesaurus provided by Academia Sinica

 子

 奶

 瓜

 冰

 米

 派

 苗

 凍

 茶

 蚌

 酒

 乾

 梨

 梟

 蚵

 雀

 魚

 鳥

 湯

 粟

 粥

 菸

 雁

 飯

 蜆

 飴

 鳩

 蜜

 餅

 餌

 鳶

 魟

 蔥

 蝦

 醋

 醅

 魴

 魨

 橙

 燕

 糕

 糖

 餐

 餡

 鴨

 鴛

 龜

 鮀

 鮓

 薑

 醣

 鮫

 鮪

 鴿

 醢

 鮚

 鴳

 黿

 糧

 雞

 鯉

 鵝

 鵠

 羹

 蟹

 鯨

 鯛

 鶉

 鵲

 鵰

 麵

 蠙

 鰋

 鰈

 鯷

 鶴

 饘

 鰣

 鷃

 鱉

 鰻

 鰷

 鰲

 鷲

 鷹

 鷺

 鹽

 鱣

 鸇

 鷽

 鸞

 丁香

 九孔

 人魚

 八珍

 八哥

 八寶

 三鮮

 丸子

 兀鷹

 千鳥

 口糧

 土司

 土豆

 土雞

 大豆

 大菜

 大雁

 子規

 小吃

 小食

 小鳥

 小菜

 山雀

 山楂

 山鵲

 山鷸

 川菜

 川鹽

 干貝

 中飯

 中餐

 五香

 五穀

 介蟲

 切麵

 刈包

 午飯

 午餐

 天鵝

 孔雀

 文旦

 方糖

 月餅

 木瓜

 毛豆

 61

Source: UDList

 JUMBO 大漢堡

 Sophia 芝麻牛蒡

 XO 蝦醬麵

 XO 醬炒曼波魚

 XO 醬炒帶子

 XO 醬爆蜇頭

 xo 醬潤餅捲

 xo 醬鴨胸

 ㄧ窩絲餅

 一串心

 一品沙鍋

 一品鍋

 一窩絲

 七色炸物

 七里香

 七味雞柳

 九孔燉雞

 九州豚骨拉麵

 九尾雞

 九層塔牛肉絲

 九層塔炒蟹

 九層粿

 九層粿加蛋

 九環醬燒牛肉

 九點米猪腳鍋

 九轉肥腸

 二節子麵

 二層肉

 人蔘花膠燉湯

 人蔘雞湯

 八仙湯

 八仙飯

 八寶冰

 八寶豆花

 八寶乾麵疙瘩

 八寶湯

 八寶菜

 八寶釀雞翅

 刀切猪腳麵

 刀削牛肉麵

 刀削炒麵

 刁大根

 十全燉物雞

 十穀土司

 卜肉

 卜鴨

 三口雞汁拌麵

 三色布丁豆花

 三色壽司

 三色慕思

 三色丼

 三角湯圓

 三角餅

 三味雞

 三味鱸魚

 三明治

 三杯土雞

 三杯中卷

 三杯地瓜

 三杯花枝串

 三杯花枝標

 三杯花膠

 三杯猪血糕

 三杯猪尾巴

 三杯雞

 三杯雞米漢堡

 三杯雞套餐

 三絲丸

 三樣冰

 三樣湯

 三鮮炒貓耳朵

 三鮮拼盤

 三鮮燴飯

 三寶飯

 下午茶套餐

 下水湯

 下水雞佛清湯

 下水麵線

 上海炸醬麵

 上海菜飯

 上海灌湯包

 上等牛五花

 上等牛舌

 丸仔湯

 丸蛋米苔目

 丸類拼盤

 千層油糕

 千層酥

 叉燒包

 叉燒拉麵

 叉燒豚骨拉麵

 叉燒酥

 口水雞

 口袋燒餅

 土司半條

 土豆粽

 土豆猪腳湯

 土鳳梨酥

 土雞爪

 土鵝肉

 土魠魚羹

 大包子

 62

Appendix B – Samples of Test Data

NO. Text Answers

1 在桌邊把木造圓形餐台撐開，端菜的侍者則右手單手成 90°的托著

大餐盤過來，單膝著地的把大餐盤放到餐台上，然後再分送各人的

食物，我想，在這裡送錯餐這種事是不在茹絲葵字典上的。

餐前酒：微酸的氣泡香檳酒

帶著香氣的氣泡香檳酒，舉起酒杯對著燈光照射時，還可看到細微

的氣泡從底部慢慢升起，啜了一小口，嚐起來微酸，酒精度還好。

生煎日式鮪魚片

用紗袋包住的 Lemon

生煎日式鮪魚片一放上桌，就立刻吸引了目光焦點。

片成約 0.5cm 的生煎鮪魚，前後交疊的浸在淺淺的橙色醬汁裡，

放在黑色瓷盤中間，旁邊就是用紗袋包住的 Lemon 和薑片、蘿蔔絲，

還有一隻小鐵夾

鮪魚是先將上皮略煎過，再灑上些胡椒粒，在尚末擠上 lemon juice

時，我就先夾起一塊，蘸了些醬汁送入口中，鮪魚細嫩的口感跟牛

肉極像，sauce 是芥末調成的醬汁，有芥末微辛的口感但不嗆，不

會破壞了鮪魚的口感。再透過餐廳貼心以紗袋包住的 lemon，擠上

幾滴 Lemon juice，嚐起來炎點微酸的口感又是一種層次了。

凱散沙拉

上桌時，羅蔓生菜已經被切成小口的份量，除了灑的細微的起士粉

外，上面還鋪著切成片狀的白色薄起士片，還有油炸過還有溫度的

麵包丁，吃起來不膩，sauce 裡的橄欖油及酒醋的調和比例也很均

勻。

蟹肉鑲蘑菇

另一道前菜為蟹肉鑲蘑菇，如球狀的外表，先蟹肉裹上包著香料及

胡椒粒的粉後，連著蘑菇下鍋炸後起鍋，咬下時可以嚐到蟹肉的甜

美及蘑菇的鮮嫩，是道結合海鮮及蔬菜的料理。

蕃茄濃湯

今天的濃湯是蕃茄濃湯，上桌時香氣立刻散了出來，橙黃色的湯色

用湯匙攪時即可感受到湯的濃稠，油炸過的麵包丁大半浮在濃湯

餐前酒

氣泡香檳酒

氣泡香檳酒

生煎日式鮪魚片

生煎日式鮪魚片

生煎鮪魚

醬汁

薑片

蘿蔔絲

鮪魚

胡椒粒

醬汁

鮪魚

牛肉

芥末

芥末

鮪魚

凱散沙拉

羅蔓生菜

起士粉

起士片

麵包丁

橄欖油

酒醋

蟹肉鑲蘑菇

前菜

蟹肉鑲蘑菇

蟹肉

香料

胡椒粒

蘑菇

蟹肉

蘑菇

海鮮

 63

上，喝了一口，唔，好喝。一整個是濃郁的感覺，讓人忍不住想獨

享蕃茄的香氣、微酸的口感整個含在湯裡，果然是道蕃茄「濃」湯

現烤長條麵包

Cream Cheese

現烤的外皮酥脆的長條麵包，單吃的話是單薄了些，不過若蘸桌上

的 Cream Cheese，滲入了麵包裡層的 sauce，現烤麵包的軟嫩，外

皮的酥脆。滋味立刻大不同的好吃

用完這些後，服務生過來詢問後，就把桌面整理乾淨，

準備上主菜了，美式餐廳上菜速度是頗快的，當然餐點種類沒法餐

多也是原因，服務生整理桌面時，還會拿刮尺將桌巾上掉了許多麵

包屑的地方，一一仔細慢慢的刮乾淨，十分的貼心。

上主菜時也一併將點的附菜上桌了，所以原本清空的桌面又一下子

被佔滿了，共有焗青花椰、馬鈴薯泥、香炒蘑菇及新鮮蘆筍配荷蘭

醬

焗青花椰 馬鈴薯泥

香炒蘑菇

新鮮蘆筍配荷蘭醬

荷蘭醬

焗青花椰，焗烤的起士整個包覆住裡面的青花椰，嚐起來不膩，香

氣及口感都極佳。

香炒蘑菇是我覺得最好吃的一道小菜，浸過 sauce 的小蘑菇，蒸過

出來後再灑上些香料，嚐起來蘑菇細嫩不老，湯汁醇厚。

馬鈴薯泥則是出乎意料的好，用湯匙挖起一角時，湊近一聞可以聞

到馬鈴薯蒸過的味道，嚐起來十分細緻綿密而不會整個黏在嘴裡，

非常的好吃，蘸著肉汁吃更對味。不過因為易飽足，

所以也是嚐了幾口就停了。

新鮮蘆筍配荷蘭醬是典型的西餐菜，新鮮整根的蘆筍，蒸過後，大

把的置於白瓷盤裡，旁邊再放一小碟以蛋黃、檸檬汁、芥末醬、荷

蘭芹及奶油打出來的荷蘭醬。食用時可以先咬一口蘆筍，嚐嚐鮮度，

再蘸些荷蘭醬，入口有濃濃的奶油香。在吃完大份量的主菜後再回

頭吃，可以解膩又健康。

蔬菜

蕃茄濃湯

濃湯

蕃茄濃湯

麵包丁

濃湯

蕃茄

湯

蕃茄

湯

現烤長條麵包

長條麵包

現烤麵包

外皮

主菜

麵包屑

主菜

附菜

焗青花椰

馬鈴薯泥

香炒蘑菇

新鮮蘆筍

荷蘭醬

焗青花椰

馬鈴薯泥

香炒蘑菇

新鮮蘆筍配荷蘭醬

荷蘭醬

焗青花椰

起士

青花椰

香炒蘑菇

小菜

小蘑菇

香料

蘑菇

湯汁

馬鈴薯泥

 64

馬鈴薯

肉汁

新鮮蘆筍

荷蘭醬

西餐菜

蘆筍

蛋黃

檸檬汁

芥末醬

荷蘭芹

奶油

荷蘭醬

蘆筍

荷蘭醬

主菜

2 期待的進入大門、與服務生說明訂位並跟著到了今晚的位置，我便

開始發現了人數實在很多的問題，心理忐忑著，習慣性的走了一圈，

然後期望掉了一半。

先來說說食物吧。

烤牛肉、嫩烤霜降沙朗、鮮蔬炒蚌

在燒烤區，有著上面兩項牛肉，本身不吃猪肉、因此一些跟猪有關

的食材都沒有注意；而自己拿的這兩個料理，烤牛肉看似鮮嫩多汁，

但是卻口感微韌，沒有外觀那樣美味的感覺，淋醬美名為松露黑胡

椒醬，其實也只是普通的黑胡椒醬汁，並沒有加入香氣濃郁的松露。

而霜降沙朗這個名字，會讓人覺得肉汁豐富、軟嫩可口，但是很抱

歉，我沒有吃完這兩塊，這對於甚麼都秉持著要吃完的自己是一種

對食物的否決，非常堅韌，是完全不能咬下的口感，令人失望。

而炒蚌肉香氣濃郁，與蔬菜搭配得當，算是佳品。

一來到座位上，變會有兩個小木夾子，讓客人方便點選現炒的菜色，

小木夾子如照片所示，粗糙而且有點不衛生，與同等類型的餐廳如

上闔屋、饗食天堂變有所區別。

而這盤久待而來鮮蔬炒軟絲，也讓人發覺京采快炒的功力不差，同

樣是快炒的印象中還有田雞腿、炒蛤蠣、炒青菜，但是我們並沒有

烤牛肉

嫩烤霜降沙朗

鮮蔬炒蚌

牛肉

猪肉

猪

食材

料理

烤牛肉

淋醬

松露黑胡椒醬

黑胡椒醬汁

松露

霜降沙朗

炒蚌肉

蔬菜

菜色

鮮蔬炒軟絲

田雞腿

炒蛤蠣

炒青菜

熱炒

食材

 65

點選太多熱炒，而我也逐漸發現每期名為海鮮百匯餐廳，其實並沒

有讓很驚艷的食材出現。

生魚片

最惡，也不過如此。

我不知道為甚麼當初爬文時會有版友推薦生魚片，但是我當天差點

因為生魚片而找餐廳經理來理論。版友若所研如是，那便是這家餐

廳的品管有了問題，總而言之，我非常非常的不滿意，而且我也沒

有完全吃完。

照片可以說明的十分清楚：可怕的刀工、可怕的色澤，千萬不要想

像它的口感，因為我在寫下這篇文章的當下想起，還是一陣反嘔。

不論是鮪魚、旗魚，兩者的口感都是軟爛，而且帶筋，我必須把筋

抽出，當成碎肉來吃；而很難雷到的鮭魚，卻一點香氣都沒有，完

完全全，一點香氣都沒有！

生魚片區的生魚片，全部都放置在盤子中，盤子裡面泛著一層水光，

很明顯的就是沒有清理的結果，師父一邊切生魚片、一邊啪擦啪擦

的跟身邊的人說話、與正妹閒聊，在我看來是十分生氣的，在加上

魚生品質實在糟糕，才會讓我失望至極。

也罷，試試其他料理。

揚物 酥炸鮮菇、酥炸花枝、炸銀白魚

銀白魚已經涼掉，鮮菇尚可但卻失去水分，花枝更是口如嚼蠟，同

樣出現的是師父的輕薄與怠慢，似乎是害怕客人的食量，總是在一

陣閒聊後，才會慢條斯理的開始炸炸蝦，而每次的數量兩手數數剛

好，想當然爾，一樣會先顧慮到正妹是否足夠了，雄性動物都餓死

吧。

指定菜色 砂鍋鮑魚

拿完揚物回到座位，我們發現座位上有一張小紙條切割成一小段一

小段，原來只要拿著夾子夾上交給服務生，就會替你送到座位上。

服務生一開始並未提醒這一點，而且繳出紙條到食材送上，那可真

是顧客的漫長等待。

這一道的名字我並沒有記下，似乎是砂鍋鮑魚之類的名稱，而這到

生魚片

生魚片

生魚片

鮪魚

旗魚

筋

碎肉

鮭魚

生魚片

生魚片

魚生

揚物

酥炸鮮菇

酥炸花枝

炸銀白魚

銀白魚

鮮菇

花枝

炸蝦

菜色

砂鍋鮑魚

揚物

砂鍋鮑魚

大白菜

料理

鮑魚

象拔蚌

冷盤

沙拉

橙味雁胸

煙燻鮭魚

食材

食材

廉價火鍋

蔬菜

沙拉

沙拉

蔓蘿

 66

料理我硬將它吞下以避免過份浪費，因為，它已經餿掉了。大白菜

的餿味十分明顯，想當然爾，不是今天的料理，鮑魚也不過是象拔

蚌，再度失望。

冷盤 自取沙拉、橙味雁胸、煙燻鮭魚

冷盤區可以說是杯盤狼藉，所有的食材都混雜在一起，而食材本身

卻會出現廉價火鍋變得蔬菜爛邊，實在令人訝異。勉強的選擇了沙

拉，想說沙拉總不會有問題，沒想到蔓蘿竟然老到中間的芯無法吞

下，鮭魚更是軟爛、充滿腥味，倒是橙汁雁胸表現不錯，肥嫩的雁

肉搭配上酸甜合宜的醬汁，是十分美味的，雖然我懷疑雁肉不過是

鴨胸...

芯

鮭魚

橙汁雁胸

雁肉

醬汁

雁肉

鴨胸

3 第一道菜來了，光是外表就讓人覺得很美味，

高腳杯加上架在上面的湯匙，實在吸引人...

內容物看似冰淇淋，經過介紹才知道，原來是馬鈴薯泥佐自製葡萄

醬汁，真的好特別，馬鈴薯泥沒有添加調味，沒有黑胡椒、奶油、

巴西里...等常用的調味

搭配上酸酸甜甜的葡萄醬，十分適合，還可以吃出馬鈴薯的原味，

很不錯的前菜!!

外表很可愛的馬鈴薯沙拉，先吃ㄧ口未沾醬汁的馬鈴薯泥，口感綿

密細緻，夾雜一點顆粒，很甘甜，配上醬汁一起吃，酸酸甜甜的味

道跟馬鈴薯互相融合，讓人胃口大開

新鮮的葡萄醬汁沒有人工香料的味道，酸酸甜甜的滋味，真的好好

吃喔～

第二道菜，枸杞絲瓜，哈，我看得出來啦

絲瓜去皮切塊，稍為煮過，用鹽巴調味，再加上枸杞的甜味，整個

把絲瓜的原味都展現出來，沒有過多的調味，像是蛤蜊的鮮味、蝦

米、薑絲、蒜頭等

吃起來清脆甘甜，不會煮得過頭而太軟

好吃！

這道絲瓜完全是品嘗原味，但是絲瓜清脆爽口，而且沒有一般絲瓜

的土味，我連湯都喝光光了喔～

第三道菜，梅子猪排，小小一塊，用野薑花葉襯著，吃過那麼多種

炸猪排，還沒吃過包梅子的耶，外皮很酥脆，加上猪肉跟酸酸甜甜

梅子，感覺很清爽，梅子消除了油膩感，搭配起來很棒！

菜

冰淇淋

馬鈴薯泥

葡萄醬汁

馬鈴薯泥

黑胡椒

奶油

巴西里

葡萄醬

馬鈴薯

前菜

馬鈴薯沙拉

醬汁

馬鈴薯泥

醬汁

馬鈴薯

葡萄醬汁

人工香料

枸杞絲瓜

絲瓜

鹽巴

枸杞

絲瓜

蛤蜊

蝦米

薑絲

蒜頭

 67

後來聽老闆娘說他們店是嘉義裡起司猪排的創始店呢！

(嗚嗚 剛剛網誌打到一半，按了一下 backspace，結果內容都不見

了，害我重打一次....╰(‵皿′＊)╯)

擺盤光看到橫切面就快流口水了，一口咬下，薄薄外皮酥脆但不油

膩，梅子酸甜中和配上熟度剛好的猪肉，一口咬下真是幸福

雖然是很小的一道菜，但是已經可以看出廚師的功力了！！

第四道菜，美味的插曲，因為大聲讚揚好吃而得到的招待菜，奶油

炒蛋用漂亮又昂貴的湯匙裝著，僅僅一口的份量，光看起來就很好

吃！吃第一口，蓬鬆的蛋、蛋香、奶香、還有甜味，好像在吃鬆軟

的蛋捲一般，再搭配上海苔粉，就讓我想到的煎餅...

好吃，但是有點甜，如果吃多了恐怕會膩，就跟我吃蛋糕一樣，

但是他份量抓得剛剛好！不多也不少，厲害！

(喔喔，打完一道菜要存一次檔...避免悲劇再度發生 o(一＾一

+)o)

我比較想叫它＂蛋糕炒蛋＂

口感很像蛋糕，帶著一股奶香味，香甜可口，蛋的熟度剛剛好，吃

起來有像蛋糕一樣的蓬鬆感，又很滑嫩，吃到這道特別招待真是開

心：）

第五道菜，干貝滷肉飯，

老闆娘說這是台南的作法，肉塊、香菇、干貝、蝦米，

味道濃郁甘純，十分好吃。

(但是我覺得我也可以做出來 XD)

吃不夠還可以加飯喔！

跟一般外面賣的滷肉飯相較之下，雖然香味沒有那麼濃，但是相較

之下沒有油膩膩的肥肉

比較健康，吃起來也不油不膩，帶著蝦米跟干貝的香味，讓平常都

只吃半碗飯的我把整碗吃光了

第六道菜是清蒸烏鰡，清蒸魚最能吃出魚的鮮味了

老闆娘說這是水庫裡養殖的淡水魚喔！想必一定是很大一尾吧！

清蒸魚，搭配上醬油、薑絲和蔥絲，還有很多香油，

想必應該是魚蒸熟了，再使用油淋的方式來淋蔥絲薑絲，

(不過如果是我做，我應該還會再撒一些黑胡椒粒；

絲瓜

絲瓜

湯

菜

梅子猪排

野薑花葉

炸猪排

梅子

猪肉

梅子

梅子

起司猪排

梅子

猪肉

菜

菜

招待菜

奶油炒蛋

蛋

海苔粉

煎餅

蛋糕

菜

蛋糕炒蛋

蛋糕

蛋

蛋糕

干貝滷肉飯

肉塊

香菇

干貝

蝦米

滷肉飯

肥肉

蝦米

干貝

飯

清蒸烏鰡

 68

而我也會懶得把蔥薑切絲，大概就切蔥段跟薑片吧 XD)

好吃！魚的鮮甜滋味，搭配上辣辣的薑絲蔥絲，還有香味十足的醬

汁，更加襯托出魚肉的美味本質呢，而且一點腥味都沒有喔！

剩下的湯汁也一點都不能浪費，還可以來拿辦飯呢～

清蒸魚

魚

淡水魚

清蒸魚

醬油

薑絲

蔥絲

香油

魚

蔥絲薑絲

黑胡椒粒

蔥薑

蔥

薑片

魚

薑絲蔥絲

醬汁

魚肉

湯汁

飯

