

 5

3. Proposed method

3.1 Fundamental algorithm
There are two main phases in speech-recognition system, training phase and

recognition phase. Feature extraction and HMM, which would be briefly introduced

below, are important issues in both phases. Viterbi and viterbi-like algorithms used in

the recognition phase would be discussed, too.

3.1.1 Feature extraction－MFCC

There are usually six steps to calculate MFCC:

(1) Pre-emphasis－emphasizes the high frequencies

(2) Windowing－diminishes both ends of a frame

(3) FFT－transfers the signal to frequency domain

(4) Triangular band-pass filters－smooth the spectrum

(5) Log－transfers the spectrum to log scale

(6) DCT－transfers the spectrum to cepstrum

Pre-emphasis could be ignored with little effects on the recognition results.

Windowing would also increase the continuity between adjacent frames. Triangular

band-pass filters should be chose averagely according to Mel Frequency, which

represents the sensitivity of human ears to sound frequencies. According to the steps

above, we could get 13 coefficients, including 12 MFCC and the logarithm of energy.

With two more steps, we could get 39 coefficients:

(7) 1st order regression－delta coefficients

(8) 2nd order regression－acceleration coefficients

Fig.2 demonstrates the whole procedure.

 6

Fig. 2 Each step to calculate MFCC

3.1.2 Building acoustic model－HMM

DTW, Artificial Neural Network and HMM are all known methods to implement

the speech-recognition system. HMM is popularly adopted recently because it

requires less memory and is speaker-independent. We also use HMM, as shown in

Fig.3, to implement the speech-recognition system on the embedded system. bj(ot)

determines the probability of generating observation ot at time t. aij determines the

associated transition probability between state i and j. We can compute bj(ot) as shown

in Eq. (3-1), where Mjs is the number of mixture components in state j for stream s,

cjsm is the weight of the m’th component and N(o;μ,Σ) is a multivariate Gaussian

with mean vectorμand covariance matrixΣas Eq. (3-2). We can build the acoustic

model according to features in the training phase, and the model will be used to do the

 7

Viterbi decoding later in the recognition phase. For more details, please refer to [8, 9].

Fig. 3 Simple left-right HMM

 () ()∏ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
Σ=

S

s

Mjs

m
jsmjsmstjsmtj

s

oNcob
1 1

,;
γ

µ (3-1)

 ()
()

() ()µµ

π
µ

−Σ−− −

Σ
=Σ

oo

n
eoN

1'
2
1

2

1,; (3-2)

3.1.3 Searching the most-likely path－Viterbi algorithm

 Viterbi algorithm is a dynamic programming approach to find the best state

sequence in an HMM, as shown in Fig.4. The algorithm consists of four steps:

(1) Initialization－calculate the initialized probability

(2) Induction－calculate the rest probabilities according to the acoustic model

(3) Termination－find the max probability

(4) Backtracking－find the most-likely sequence

These steps are shown in Fig.5. Backtracking is optional depending on the purpose of

the application.

 8

Fig. 4 Viterbi decoding

Fig. 5 Each step to do Viterbi decoding

Since the computation of the induction step in Fig.4 requires repeated

multiplications with small values, it could lead to underflow. Hence, we could rewrite

the equation as Eq. (3-3) by using the log likelihood instead.

 () () (){ } ()()tjijtNit obaij loglogmax 11
++= −≤≤

ψψ (3-3)

 9

The classic Viterbi algorithm computes the probability of the most probable path,

without actually retaining the path. It is not enough for larger networks, where we are

interested in the sequence of words spanned by the winning path. Thus we use a

Viterbi-like algorithm, called the token-passing algorithm [10] instead.

The token-passing algorithm, as displayed in Fig.6, makes the concept of state

path explicit. Imagine each state j of an HMM at time t holds a single movable token

which contains the partial likelihood ()jtψ and other information. The induction

step represented by Eq. (3-3) is replaced by the following steps executed at each time

frame t:

(1) Pass a copy of the token in state i to all connecting states j, incrementing the

log likelihood of the copy by () ()()tjij oba loglog + .

(2) Examine the tokens in every state and discard all but the one with the highest

probability.

The above-presented algorithm assumes each state to be an emitting one. We

need a set of history records for the algorithm to keep track of the history of a token’s

route, and every token must carry a pointer to one of these records. The transition of a

token from the exit state of a word to the entry state of another represents a potential

word boundary. A new history record containing the value of the new word and a

reference to the original history record is created. The token would be re-point to this

new record.

The token emerging from the final state of the network at the end of the

recognition process would refer a history record that can be traced back to obtain the

full sequence of words the final token has passed through.

 10

Fig. 6 Token-passing algorithm

3.2 Implementation on embedded system
 We use “HP iPAQ H4100 Series-4150” pocket pc as the platform. Specifications

are listed in Table 1.

Table 1: iPAQ H4150 specifications

System Feature Description

Processor Intel(R) PXA255 400 Mhz

RAM 64 MB SDRAM (55 MB main memory, user accessible)

Audio Microphone, Speaker

Floating-point computation Simulated by fixed-point computation

 11

Since the floating-point computation is not supported directly on the 32-bit

fixed-point processor, all computations in the recognition steps should be replaced

with fixed-point operations.

3.2.1 MFCC

 As we said in the Sec. 3.1.1, there are eight steps to calculate 39-dimensions

MFCC. We will introduce fixed-point computations of each step, including problems

we met and solutions to these problems. During the feature-extraction process, there

are four kinds of error measures, which are listed below:

(1) Max absolute error－ [] []{ } max
1

0
idataBidataA

N

i
−

−

=

(2) Max relative error－ [] []() []{ } max
1

0
idataAidataBidataA

N

i
−

−

=

(3) Avg. absolute error－ [] [] NidataBidataA
N

i
⎟
⎠

⎞
⎜
⎝

⎛
−∑

−

=

1

0

(4) Avg. relative error－ [] [] []∑∑
−

=

−

=

⎟
⎠

⎞
⎜
⎝

⎛
−

1

0

1

0

N

i

N

i
idataAidataBidataA

(N: frame size):

The dataset used to estimate these errors are digits 0 ~ 9. Each digit is recorded

twice by a speaker and the details are listed in Table 2.

Table 2: Feature verification dataset

Speaker 38 males and 12 females
Sampling rate 16 kHz
Bits per sample 8 bits
Total 1000 files = 2000 seconds

1. Pre-emphasis

 In this step, we replace the floating-point coefficient 0.95 with 15974>>14. In

order to increase the accuracy, we also scale up the minuend with 214. The overflow

will not occur in this step because 16-bit wave data are only scale up with 214, which

 12

are still within the 32-bit range of the system.

The original equation could be modified as follows:

 [] [] []() Niixixiy <≤>>−×−<<= 0 ,1411597414 (3-4)

The errors in this step are listed in the following table:

 Absolute error Relative error

Max 1.6016 6.2535%
Avg. 0.4815 0.0388%

2. Hamming window

 We build look-up table of Hamming window. The window values are scaled

from 0 ~ 1 to 0 ~ 16384 (214) and saved in the table, HamTable.

The original equation can be modified as follows:

 [] [] []() Niixiiy <≤>>×= 0 ,14HamTable (3-5)

The errors in this step are listed in the following table:

 Absolute error Relative error

Max 4.5742 48.9457%
Avg. 0.5269 0.0786%

3. FFT

 Due to the complicated computations of FFT, we adopt the “FFT of pure real

sequences” algorithm [11] to speed up this step. With this algorithm,
2
N -points

complex sequences could substitute for the original N-points real sequence. If N is not

2n (n is an integer), we need to pad N with zeros until N = 2n. The basic FFT equation

is like

 ∑
−

−=
1

/2)()(
N

n

NknjenffF π
(3-6)

 13

According to the Euler’s equations,

)sin()cos(kjke jk −=− (3-7)

, which means lots of trigonometric functions would be used. Therefore, we build

look-up table to replace trigonometric functions. The table sizes of cosine and sine are

N, which is zero padded. The cosine and sine values are scaled from -1 ~ 1 to -1024 ~

1024 (210) and saved in tables, cosTable and sinTable.

For instance, if we want to compute

[] [] ()π××= inxny sin

We could replace it with

[] [] [] 10sinTable >>××= Ninxny

Based on the experimental result, we scale up the values with 210 instead of 214 in this

step.

The errors in this step are listed in the following table:

 Absolute error Relative error

Max 47526.2281 3170883.4949%
Avg. 2598.6019 34.5058%

4. Triangular band-pass filter

 We use 26 filters in this step. Again, look-up table is used for the filters. We scale

up the filter values by 211, which is also based on our observation on the experimental

data.

The original equation could be modified as follows:

[] [] [][]() 260 ,11 efilterTabl
2/

0
<≤>>×=∑

=

ikikxiy
N

k
(3-8)

Because we use “FFT of pure real sequences” algorithm in the previous step, []kx is

actually [] []kjxkx ir + , and []kx should be [] []22 kxkx ir + . Since []2kxr and

 14

[]2kxi exceed 232, which cause overflow, we make some adjustment to avoid this

situation.

[] [] 4>>= kxkx rr

[] [] 4>>= kxkx ii

[] [] [] 422 <<+= kxkxkx ir

The errors in this step are listed in the following table:

 Absolute error Relative error

Max 614.625 5.5027%
Avg. 104.0894 0.092%

5. Log

 We build look-up table for log function by scaling up the log values with 896,

which is an experimental result to meet the constraint of recognition process.

The original equation could be modified as

 [] [][]iYiY logTable~ = (3-9)

For example, () 693.02log = [] 6212log = .

[][]iYlog and [][]aiY +log would be identical when [][]iY is large enough, a grows

with [][]iY . To prevent this redundancy, we group [][]iY (dividing it by 148,

approximate to n5), and the Eq. (3-6) could be modified as

 [] [][]148Tablelog~ iYiY = (3-10)

For example, () 397.102log 15 = [] 93181482Tablelog 15 = .

The errors in this step are listed in the following table:

 Absolute error Relative error

Max 2.4587 0.0221%
Avg. 0.6782 0.0071%

 15

6. DCT

 Just like what we did with FFT, we use the look-up table instead of trigonometric

functions in this step.

The errors in this step are listed in the following table:

 Absolute error Relative error

Max 158.7221 2217.4588%
Avg. 21.6741 2.0115%

The six steps above could generate the basic 12 MFCC. The logarithm of energy

is combined to form 13 coefficients. Because the frame size of 20ms (= 320 points

with 16kHz sample rate) is used in this research, the sum of the square of energy

would exceed 232. We divide the square of energy by 403 (approximate to n6) first and

compensate it after operating the logarithmic function. The logarithm of energy also

needs to be scaled up by 896 for the same reason mentioned in the Log step.

[] []()∑
−

=

×=
1

0
403/

N

i
ixixE

[] []() 8966log12 ×+= Ec

The errors of energy are listed in the following table:

 Absolute error Relative error

Max 0.9423 0.0046%
Avg. 0.4057 0.0019%

7. 1st order regression

 There is no complicated computation in this step so we just compute the

coefficients with fixed point instead of floating point.

The errors in this step are

 16

 Absolute error Relative error
Max 1.2732 46.3005%
Avg. 0.4948 0.0556%

8. 2nd order regression

As mentioned in the 1st order regression step, we just compute the coefficients with

fixed point instead of floating point.

The errors in this step are

 Absolute error Relative error

Max 1.4165 55.8275%
Avg. 0.6009 0.1679%

Since all floating-point values are scaled, the overflow will possibly occur. We

create a new class Int to deal with this problem. Operations that generate values

exceeding -2147483648 (-231) ~ 2147483647 (231-1) would cause an overflow and be

detected. An error message “overflow occurs” will be shown. With this class, we

could conveniently estimate the scaling factors at each step.

 To verify if the extracted features in this system is efficient, we test a minor

dataset of digits 0 ~ 9, as listed in Table 2, with DTW and HTK (HMMs toolkit). The

result is displayed in Table 3, which shows that the recognition rates of DTW and

HTK using fixed-point features are even higher than that of the floating-point features.

These features really have the ability for recognition.

Table 3: Feature verification result

 Fixed point Floating point
Frame size 20 ms 20 ms
Overlap 10 ms 10 ms
DTW 80.0% 79.6%
HTK 79% 75%

 17

3.2.2 HMM

 Building acoustic model needs lots of computations so we leave this process on

the PC, which has strong computational power. We use HTK to build HMMs in this

research. We need to take care of some issue while using HTK to train acoustic model

with fixed-point features, because HTK is basically used for floating-point features.

At first we directly use fixed-point features without any adjustment. We found that

“bad data or over-pruning” would be shown and ruin the training process. Therefore,

scaling is used to solve this problem. Fixed-point features are scaled down as

floating-point values and used for training. After training, we scale up the acoustic

model for recognition. Fig.7 displays this adjustment.

Fig. 7 Adjustment of training process

 As the experimental result listed in Table 4, the mixture weight, mean, variance

and transition probability of a model need to be scaled differently according to their

range of the values.

 18

Table 4: Statistic of model content

 Range Scale
Mixture weight 0.7121449~0.00003 217
Mean -2.053871~1.862582 896
Variance 1.000e-30~119.1154 8962
Transition probability < 1 217

 There is no specific scaling rule except the relation between scales of mean and

variance. According to Eq. (3-11), if the scale of mean is s, the scale of variance must

be s2.

[]()

N

ix
N

i
∑
=

−
= 1

2

2
µ

σ (3-11)

 The HTK parameters used for training are shown in Table 5. For more details,

please refer to [9].

Table 5: HTK parameters

Parameter kind MFCC_E_D_A
State number 5
Stream number 1
Mixture number per stream 2~6

3.2.3 Token-passing algorithm

As we mentioned in Sec. 3.1.3, the computation of probability could lead to

under- flow, thus we use the log likelihood instead. With log likelihood, the

multiplication of probability could be replaced by simple addition. Due to the

logarithm is considerably used, we need to speed it up by building a look-up table. We

scale up the log value by 256.

For example, () 12log2 = [] 25625612Table2log =×= .

Since mixture weight and transition probability are scaled up by 217, the log value

 19

should minus 17, as shown next:

() () () () maaa mm +=+=× 2222 log2loglog2log

() () maa m −×= 2loglog 22
(3-12)

For example, () 12log2 = [] () 40962561712Table2log −=×−= .

As the same reason mentioned in the log step of MFCC, we also group the log value

(dividing it by 1024) to save memory.

For example, () 12log 15
2 = [] () 5122567510242Table2log 15 −=×−= .

 The log of the observation probability bj(ot) could be derived from Eq. (3-1) as

()() ()

()∑ ∑

∏ ∑

= =

= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Σ=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
Σ=

S

s

Mjs

m
jsmjsmstjsms

S

s

Mjs

m
jsmjsmstjsmtj

oNc

oNcob
s

1 1

1 1

,;log

,;loglog

µγ

µ
γ

(3-13)

From Eq. (3-2), the computational complexity of N(o;μ,Σ) could be decreased if we

take the log of it. To achieve this purpose, the log of summation needs to be revised

based on Eq. (3-14).

 () () yx
x
yx

x
yxyx ≥⎟

⎠
⎞

⎜
⎝
⎛ ++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +=+ if ,1loglog1loglog (3-14)

 In Sec. 3.1.3, only the best token at each word boundary is saved. In fact, we

save the best N tokens and this idea is called lattice N-best. With this idea, the

potential tokens would not be discarded at the very beginning. But the drawback is the

increasing computation and memory requirement. To solve this problem, a pruning

process is adopted. The concept of pruning is only propagating tokens that have some

chance of being amongst the eventual winners. It could be implemented at each time

step by keeping a record of the best token overall and those whose log likelihood still

stay within a beam-width below the best. If the pruning beam-width is set too small,

the most likely path might be pruned before its token reaches the end. Therefore,

setting the beam-width is a compromise between speed and recognition rate.

 20

 We also use the Int class, described in Sec. 3.2.1, to estimate the scaling factor in

this process. Some relation between the scaling factor and the pruning beam-width is

consequently revealed. If the scaling factors are too small, the error will be too large

and the recognition rate will decrease. On the other hand, with large scaling factors,

the pruning beam-width must be small, or tokens with overflowed log likelihood

would still compete with the eventual winner. The pruning beam-width would also

affect the recognition rate as we mentioned above. Therefore, there is a trade-off

among pruning beam-width, scaling factor and the recognition rate.

