Abstract

BER R RO e SO i (Ve R 0] 3 SRR
£ HIOET I~ PDA HIET i 4712 B A L)) BT
e (ELRLE S ARG S pSE pT TR L el s YR R IZERT PRI e
TEr] fﬁj)}nu Koo

AP SRR Sl (82 R A

R R L Al TR R i e I e R e L IET R - e TR

B~ o SRR A e R P ‘ﬁn HIVE | S REIF RREGELET IS
122 Fo0 P 2R 0 A 53 S s B 20 7 [et
IR o i PR (MR 3%V I o T IINIER Y PR
79 6.7 fih > B I B PR R 4L

1F=9¢ &’ﬂ%ﬁi’%ﬁ?ﬁ%ﬂ—ﬁ% e A R P R E (R L A R
A Pruning bean-width 4 FIATREREBANBEBIS - 2 (1T B i
Scaling factor -+ 7F11 B FE o B [OIRARE & » 25 PR RIRERH -
Ce+ class 'SR | 1Y« 3f) o4 b ORISR 0 S F e LR R

e -

Due to the advancement of modern technologies, more and more digital devices
are capable of recognizing speech for various applications, such as voice dialing on
cell phones, voice commands on PDAs and voice-based telephone operators.
However, the lack of floating-point arithmetic and the limited computing power of
these mobile devices constrain the domain of speech-based applications.

This study proposes some methods to overcome these constraints. We have also
implemented a recognition system on a 32-bit processor to show the feasibility of the

proposed approach. In general, the process of speech recognition could be divided

into three steps, including feature extraction, acoustic model construction (training),
and Viterbi search for the most-likely path (recognition). Since all of these
time-consuming steps are floating-point operations, one straightforward way to reduce
computation time is to use fixed-point operations instead. Moreover, we also built
look-up tables to speed up the evaluation of some mathematical functions. The feature
extraction is about 6.7 times faster and Viterbi decoding is about 4.1 times faster than
their floating-point counterparts, while the recognition rate only drops about 3%.

We have also discussed the effects of several recognition parameters on the
recognition results. For example, we have tried several values of the pruning
beam-width in order to achieve a balance between the recognition rate and the
computation time. We have also explored the scaling factor at various stages, which
affects the occurrence of overflow. For-better debugging, we have designed a new
C++ class that can be used to detect overflows and handle the situation correctly. We
sincerely hope that these proposed. methods:can pave a road to a better and more

convenient world of speech-based applications.

