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3. Proposed method 

3.1 Fundamental algorithm 
There are two main phases in speech-recognition system, training phase and 

recognition phase. Feature extraction and HMM, which would be briefly introduced 

below, are important issues in both phases. Viterbi and viterbi-like algorithms used in 

the recognition phase would be discussed, too. 

3.1.1 Feature extraction－MFCC 

There are usually six steps to calculate MFCC: 

(1) Pre-emphasis－emphasizes the high frequencies 

(2) Windowing－diminishes both ends of a frame 

(3) FFT－transfers the signal to frequency domain 

(4) Triangular band-pass filters－smooth the spectrum 

(5) Log－transfers the spectrum to log scale 

(6) DCT－transfers the spectrum to cepstrum 

Pre-emphasis could be ignored with little effects on the recognition results. 

Windowing would also increase the continuity between adjacent frames. Triangular 

band-pass filters should be chose averagely according to Mel Frequency, which 

represents the sensitivity of human ears to sound frequencies. According to the steps 

above, we could get 13 coefficients, including 12 MFCC and the logarithm of energy. 

With two more steps, we could get 39 coefficients:  

(7) 1st order regression－delta coefficients 

(8) 2nd order regression－acceleration coefficients 

Fig.2 demonstrates the whole procedure. 
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Fig. 2 Each step to calculate MFCC 

 

3.1.2 Building acoustic model－HMM 

DTW, Artificial Neural Network and HMM are all known methods to implement 

the speech-recognition system. HMM is popularly adopted recently because it 

requires less memory and is speaker-independent. We also use HMM, as shown in 

Fig.3, to implement the speech-recognition system on the embedded system. bj(ot) 

determines the probability of generating observation ot at time t. aij determines the 

associated transition probability between state i and j. We can compute bj(ot) as shown 

in  Eq. (3-1), where Mjs is the number of mixture components in state j for stream s, 

cjsm is the weight of the m’th component and N(o;μ,Σ) is a multivariate Gaussian 

with mean vectorμand covariance matrixΣas Eq. (3-2). We can build the acoustic 

model according to features in the training phase, and the model will be used to do the 
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Viterbi decoding later in the recognition phase. For more details, please refer to [8, 9]. 

 

Fig. 3 Simple left-right HMM 
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3.1.3 Searching the most-likely path－Viterbi algorithm 

 Viterbi algorithm is a dynamic programming approach to find the best state 

sequence in an HMM, as shown in Fig.4. The algorithm consists of four steps:  

(1) Initialization－calculate the initialized probability 

(2) Induction－calculate the rest probabilities according to the acoustic model 

(3) Termination－find the max probability 

(4) Backtracking－find the most-likely sequence 

These steps are shown in Fig.5. Backtracking is optional depending on the purpose of 

the application. 
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Fig. 4 Viterbi decoding 

 

 

Fig. 5 Each step to do Viterbi decoding 

 

Since the computation of the induction step in Fig.4 requires repeated 

multiplications with small values, it could lead to underflow. Hence, we could rewrite 

the equation as Eq. (3-3) by using the log likelihood instead. 

 ( ) ( ) ( ){ } ( )( )tjijtNit obaij loglogmax 11
++= −≤≤

ψψ (3-3)
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The classic Viterbi algorithm computes the probability of the most probable path, 

without actually retaining the path. It is not enough for larger networks, where we are 

interested in the sequence of words spanned by the winning path. Thus we use a 

Viterbi-like algorithm, called the token-passing algorithm [10] instead. 

The token-passing algorithm, as displayed in Fig.6, makes the concept of state 

path explicit. Imagine each state j of an HMM at time t holds a single movable token 

which contains the partial likelihood ( )jtψ  and other information. The induction 

step represented by Eq. (3-3) is replaced by the following steps executed at each time 

frame t: 

(1) Pass a copy of the token in state i to all connecting states j, incrementing the 

log likelihood of the copy by ( ) ( )( )tjij oba loglog + . 

(2) Examine the tokens in every state and discard all but the one with the highest 

probability. 

The above-presented algorithm assumes each state to be an emitting one. We 

need a set of history records for the algorithm to keep track of the history of a token’s 

route, and every token must carry a pointer to one of these records. The transition of a 

token from the exit state of a word to the entry state of another represents a potential 

word boundary. A new history record containing the value of the new word and a 

reference to the original history record is created. The token would be re-point to this 

new record. 

The token emerging from the final state of the network at the end of the 

recognition process would refer a history record that can be traced back to obtain the 

full sequence of words the final token has passed through. 
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Fig. 6 Token-passing algorithm 

 

3.2 Implementation on embedded system 
 We use “HP iPAQ H4100 Series-4150” pocket pc as the platform. Specifications 

are listed in Table 1. 

 

Table 1: iPAQ H4150 specifications 

System Feature Description 

Processor Intel(R) PXA255 400 Mhz 

RAM 64 MB SDRAM (55 MB main memory, user accessible)

Audio Microphone, Speaker 

Floating-point computation Simulated by fixed-point computation 
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Since the floating-point computation is not supported directly on the 32-bit 

fixed-point processor, all computations in the recognition steps should be replaced 

with fixed-point operations. 

3.2.1 MFCC 

 As we said in the Sec. 3.1.1, there are eight steps to calculate 39-dimensions 

MFCC. We will introduce fixed-point computations of each step, including problems 

we met and solutions to these problems. During the feature-extraction process, there 

are four kinds of error measures, which are listed below:  
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(N: frame size): 

The dataset used to estimate these errors are digits 0 ~ 9. Each digit is recorded 

twice by a speaker and the details are listed in Table 2. 

 

Table 2: Feature verification dataset 

Speaker 38 males and 12 females
Sampling rate 16 kHz 
Bits per sample 8 bits 
Total 1000 files = 2000 seconds

 

1. Pre-emphasis 

 In this step, we replace the floating-point coefficient 0.95 with 15974>>14. In 

order to increase the accuracy, we also scale up the minuend with 214. The overflow 

will not occur in this step because 16-bit wave data are only scale up with 214, which 
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are still within the 32-bit range of the system. 

The original equation could be modified as follows: 

 [ ] [ ] [ ]( ) Niixixiy <≤>>−×−<<= 0  ,1411597414 (3-4)

The errors in this step are listed in the following table: 

 
 Absolute error Relative error 

Max 1.6016 6.2535% 
Avg. 0.4815 0.0388% 

 

2. Hamming window 

 We build look-up table of Hamming window. The window values are scaled 

from 0 ~ 1 to 0 ~ 16384 (214) and saved in the table, HamTable. 

The original equation can be modified as follows: 

 [ ] [ ] [ ]( ) Niixiiy <≤>>×= 0  ,14HamTable (3-5)

The errors in this step are listed in the following table: 

 
 Absolute error Relative error 

Max 4.5742 48.9457% 
Avg. 0.5269 0.0786% 

 

3. FFT 

 Due to the complicated computations of FFT, we adopt the “FFT of pure real 

sequences” algorithm [11] to speed up this step. With this algorithm, 
2
N -points 

complex sequences could substitute for the original N-points real sequence. If N is not 

2n (n is an integer), we need to pad N with zeros until N = 2n. The basic FFT equation 

is like 

 ∑
−

−=
1

/2)()(
N

n

NknjenffF π
(3-6)
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According to the Euler’s equations, 

 )sin()cos( kjke jk −=− (3-7)

, which means lots of trigonometric functions would be used. Therefore, we build 

look-up table to replace trigonometric functions. The table sizes of cosine and sine are 

N, which is zero padded. The cosine and sine values are scaled from -1 ~ 1 to -1024 ~ 

1024 (210) and saved in tables, cosTable and sinTable. 

For instance, if we want to compute 

[ ] [ ] ( )π××= inxny sin  

We could replace it with 

[ ] [ ] [ ] 10sinTable >>××= Ninxny  

Based on the experimental result, we scale up the values with 210 instead of 214 in this 

step. 

The errors in this step are listed in the following table: 

 
 Absolute error Relative error 

Max 47526.2281 3170883.4949%
Avg. 2598.6019 34.5058% 

 

4. Triangular band-pass filter 

 We use 26 filters in this step. Again, look-up table is used for the filters. We scale 

up the filter values by 211, which is also based on our observation on the experimental 

data. 

The original equation could be modified as follows: 

[ ] [ ] [ ][ ]( ) 260  ,11 efilterTabl
2/

0
<≤>>×=∑

=

ikikxiy
N

k
(3-8)

Because we use “FFT of pure real sequences” algorithm in the previous step, [ ]kx  is 

actually [ ] [ ]kjxkx ir + , and [ ]kx  should be [ ] [ ]22 kxkx ir + . Since [ ]2kxr  and 
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[ ]2kxi  exceed 232, which cause overflow, we make some adjustment to avoid this 

situation. 

[ ] [ ] 4>>= kxkx rr  

[ ] [ ] 4>>= kxkx ii  

[ ] [ ] [ ] 422 <<+= kxkxkx ir  

The errors in this step are listed in the following table: 

 
 Absolute error Relative error 

Max 614.625 5.5027% 
Avg. 104.0894 0.092% 

 

5. Log 

 We build look-up table for log function by scaling up the log values with 896, 

which is an experimental result to meet the constraint of recognition process. 

The original equation could be modified as 

 [ ] [ ][ ]iYiY logTable~ =  (3-9)

For example, ( ) 693.02log =     [ ] 6212log = . 

[ ][ ]iYlog  and [ ][ ]aiY +log  would be identical when [ ][ ]iY  is large enough, a grows 

with [ ][ ]iY . To prevent this redundancy, we group [ ][ ]iY  (dividing it by 148, 

approximate to n5), and the Eq. (3-6) could be modified as 

 [ ] [ ][ ]148Tablelog~ iYiY =  (3-10)

For example, ( ) 397.102log 15 =     [ ] 93181482Tablelog 15 = . 

The errors in this step are listed in the following table: 

 
 Absolute error Relative error 

Max 2.4587 0.0221% 
Avg. 0.6782 0.0071% 
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6. DCT 

 Just like what we did with FFT, we use the look-up table instead of trigonometric 

functions in this step. 

The errors in this step are listed in the following table: 

 
 Absolute error Relative error 

Max 158.7221 2217.4588% 
Avg. 21.6741 2.0115% 

 

The six steps above could generate the basic 12 MFCC. The logarithm of energy 

is combined to form 13 coefficients. Because the frame size of 20ms ( = 320 points 

with 16kHz sample rate) is used in this research, the sum of the square of energy 

would exceed 232. We divide the square of energy by 403 (approximate to n6) first and 

compensate it after operating the logarithmic function. The logarithm of energy also 

needs to be scaled up by 896 for the same reason mentioned in the Log step. 

[ ] [ ]( )∑
−

=

×=
1

0
403/

N

i
ixixE  

[ ] [ ]( ) 8966log12 ×+= Ec  

The errors of energy are listed in the following table: 

 
 Absolute error Relative error 

Max 0.9423 0.0046% 
Avg. 0.4057 0.0019% 

 

7. 1st order regression 

 There is no complicated computation in this step so we just compute the 

coefficients with fixed point instead of floating point. 

The errors in this step are 
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 Absolute error Relative error 
Max 1.2732 46.3005% 
Avg. 0.4948 0.0556% 

 

8. 2nd order regression 

As mentioned in the 1st order regression step, we just compute the coefficients with 

fixed point instead of floating point. 

The errors in this step are 

 
 Absolute error Relative error 

Max 1.4165 55.8275% 
Avg. 0.6009 0.1679% 

 

Since all floating-point values are scaled, the overflow will possibly occur. We 

create a new class Int to deal with this problem. Operations that generate values 

exceeding -2147483648 (-231) ~ 2147483647 (231-1) would cause an overflow and be 

detected. An error message “overflow occurs” will be shown. With this class, we 

could conveniently estimate the scaling factors at each step. 

 To verify if the extracted features in this system is efficient, we test a minor 

dataset of digits 0 ~ 9, as listed in Table 2, with DTW and HTK (HMMs toolkit). The 

result is displayed in Table 3, which shows that the recognition rates of DTW and 

HTK using fixed-point features are even higher than that of the floating-point features. 

These features really have the ability for recognition. 

 

Table 3: Feature verification result 

 Fixed point Floating point
Frame size 20 ms 20 ms 
Overlap 10 ms 10 ms 
DTW 80.0% 79.6% 
HTK 79% 75% 
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3.2.2 HMM 

 Building acoustic model needs lots of computations so we leave this process on 

the PC, which has strong computational power. We use HTK to build HMMs in this 

research. We need to take care of some issue while using HTK to train acoustic model 

with fixed-point features, because HTK is basically used for floating-point features. 

At first we directly use fixed-point features without any adjustment. We found that 

“bad data or over-pruning” would be shown and ruin the training process. Therefore, 

scaling is used to solve this problem. Fixed-point features are scaled down as 

floating-point values and used for training. After training, we scale up the acoustic 

model for recognition. Fig.7 displays this adjustment. 

 

 
Fig. 7 Adjustment of training process 

 

 As the experimental result listed in Table 4, the mixture weight, mean, variance 

and transition probability of a model need to be scaled differently according to their 

range of the values. 
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Table 4: Statistic of model content 

 Range Scale 
Mixture weight 0.7121449~0.00003 217 
Mean -2.053871~1.862582 896 
Variance 1.000e-30~119.1154 8962 
Transition probability < 1 217 

 

 There is no specific scaling rule except the relation between scales of mean and 

variance. According to Eq. (3-11), if the scale of mean is s, the scale of variance must 

be s2. 
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 The HTK parameters used for training are shown in Table 5. For more details, 

please refer to [9]. 

 

Table 5: HTK parameters 

Parameter kind MFCC_E_D_A 
State number 5 
Stream number 1 
Mixture number per stream 2~6 

 

3.2.3 Token-passing algorithm 

As we mentioned in Sec. 3.1.3, the computation of probability could lead to 

under- flow, thus we use the log likelihood instead. With log likelihood, the 

multiplication of probability could be replaced by simple addition. Due to the 

logarithm is considerably used, we need to speed it up by building a look-up table. We 

scale up the log value by 256. 

For example, ( ) 12log2 =     [ ] 25625612Table2log =×= . 

Since mixture weight and transition probability are scaled up by 217, the log value 
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should minus 17, as shown next: 

( ) ( ) ( ) ( ) maaa mm +=+=× 2222 log2loglog2log

( ) ( ) maa m −×= 2loglog 22  
(3-12)

For example, ( ) 12log2 =     [ ] ( ) 40962561712Table2log −=×−= . 

As the same reason mentioned in the log step of MFCC, we also group the log value 

(dividing it by 1024) to save memory. 

For example, ( ) 12log 15
2 =     [ ] ( ) 5122567510242Table2log 15 −=×−= . 

 The log of the observation probability bj(ot) could be derived from Eq. (3-1) as 
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From Eq. (3-2), the computational complexity of N(o;μ,Σ) could be decreased if we 

take the log of it. To achieve this purpose, the log of summation needs to be revised 

based on Eq. (3-14). 
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 In Sec. 3.1.3, only the best token at each word boundary is saved. In fact, we 

save the best N tokens and this idea is called lattice N-best. With this idea, the 

potential tokens would not be discarded at the very beginning. But the drawback is the 

increasing computation and memory requirement. To solve this problem, a pruning 

process is adopted. The concept of pruning is only propagating tokens that have some 

chance of being amongst the eventual winners. It could be implemented at each time 

step by keeping a record of the best token overall and those whose log likelihood still 

stay within a beam-width below the best. If the pruning beam-width is set too small, 

the most likely path might be pruned before its token reaches the end. Therefore, 

setting the beam-width is a compromise between speed and recognition rate. 
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 We also use the Int class, described in Sec. 3.2.1, to estimate the scaling factor in 

this process. Some relation between the scaling factor and the pruning beam-width is 

consequently revealed. If the scaling factors are too small, the error will be too large 

and the recognition rate will decrease. On the other hand, with large scaling factors, 

the pruning beam-width must be small, or tokens with overflowed log likelihood 

would still compete with the eventual winner. The pruning beam-width would also 

affect the recognition rate as we mentioned above. Therefore, there is a trade-off 

among pruning beam-width, scaling factor and the recognition rate. 




