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Consider a system composed of non-interaction bosons inside a box of
volume V = L3. It is convenient to introduce the temperature-dependent
quantum concentration,

nQ(τ) =
( mτ

2π~2
)3/2

. (1)

In previous lectures, we understand that quantum statistics starts to play
important role when crossing the boundary n ≈ nQ(τ). Unlike the smooth
crossover for non-interacting fermions from the classical regime to the quan-
tum territory, there is a true phase transition for bosons to cross the boundary
from the classical to the quantum. As will be elaborated later, the transition
occurs at

n

nQ
= ζ(3/2) ≈ 2.612 (2)

For small density n or high temperature τ , the boson system is in the classical
regime. On the other hand, by either lowering the temperature or increasing
the density, it enters the condensed phase, often referred as Bose-Einstein
condensate.

The existence of condensate is defined by the notion of “macroscopic
occupation”. For each orbital, one can define its macroscopic occupation,

n(εs) ≡ lim
V→∞

f(εs)

V
= lim

V→∞

1

V

1

exp[(εs − µ)/τ ]− 1
. (3)

Except the lowest orbital, εs − µ > 0, ensuring the Bose function is always
finite. In consequence, the corresponding macroscopic occupation is zero in
the thermodynamic limit (V → ∞). For the lowest orbital, it is possible
that εs − µ is tiny and goes to zero as V →∞. The singularity in the Bose
function may cancel the 1/V factor and gives rise to non-zero macroscopic
occupation. In general, phase transition occurs when singularity develops in
thermodynamic limit, i.e. V → ∞ and is usually very difficult to describe
in complete details. The Bose-Einstein condensation is one of the few exam-
ples where how the singularity arises can be understood without too much
mathematical difficulty.
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Figure 1: A boson system with Ns = 5 orbitals and N = 10 particles. For
simplicity, the adjacent gap is set to unity, ∆ = 1.

• finite-orbital boson system

Let us start with a simple boson system with Ns = 5 orbitals and N =
10 particles. For simplicity, let’s assume the orbital energies are εs = s∆,
with s = 0, 1, 2, 3, 4. The occupation fraction is defined as the ratio of the
occupation number and the total particle number,

ns ≡
1

N

1

(1/λ) eεs/τ − 1
, (4)

where λ = eµ/τ is the absolute activity. The conservation of particles impose
the constraint on these occupation fractions,

4∑
s=0

ns =
1

N

4∑
s=0

1

(1/λ) eεs/τ − 1
= 1. (5)

The absolute activity can then by solved numerically as plotted in Figure
1. At high temperatures, it is clear that ns ≈ 1/Ns = 1/5. However, as
the temperature cools down, the occupation fraction for the lowest orbital
n0 approaches unity, while all other occupation fractions falls down to zero.

The absolute activities at low and high temperatures can be computed.
In the low temperature regime, the occupation is dominated by the lowest
orbital,

N ≈ 1

(1/λ0)− 1
→ λ0 ≈

N

N + 1
≈ 0.91. (6)

At high temperatures, all occupation fractions are the same and the energy
difference can be ignored,

N ≈ Ns
1

(1/λ∞)− 1
→ λ∞ ≈

N

N +Ns

≈ 0.67. (7)
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The above results can be checked in Figure 1. Because both Ns and N are
finite here, there is no singularity.

However, for Bose gas in three dimensions, there are infinite states (Ns →
∞) and the absolute activity λ→ 0 in the high temperature limit (τ →∞).
Meanwhile, it is expected that all occupation fractions vanish as 1/Ns at
high temperatures. On the other hand, in the low-temperature regime, n0

will be of order one, much larger than other occupation fractions. The drastic
different trends in high and low temperatures imply some sort of singularity,
emerging in the thermodynamic limit.

• near zero temperature

There are different ways to understand how Bose-Einstein condensation oc-
curs. Let us follow Kittel’s textbook and start with the low temperature
limit first. Suppose the total particle number N is large but not infinite.
Near τ = 0, almost all bosons are in the ground state. The Bose-Einstein
distribution simplifies,

N =
∑
s

1
1
λ
eεs/τ − 1

≈ λ

1− λ
. (8)

One can then solve for the absolute activity,

λ ≈ N

N + 1
≈ 1− 1

N
(9)

In the thermodynamic limit, λ = 1. It gives rise to singularity and leads to
macroscopic occupation in the lowest orbital. The chemical potential is

µ = τ log λ = −τ log

(
1 +

1

N

)
≈ − τ

N
. (10)

The chemical potential is very close to zero but slightly less than zero. This is
a very nice realization of the mathematical notion “0−” in a physical system.

• almost-zero chemical potential

Consider an atom inside a cube of volume V = L3. The energy of the single-
particle orbital is

ε =
~2π2

2mL2

(
n2
x + n2

y + n2
z

)
. (11)
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The energies of the lowest and the second lowest orbitals are

ε0 =
~2π2

2mL2
(1 + 1 + 1), ε1 =

~2π2

2mL2
(4 + 1 + 1). (12)

Take m = 6.6× 10−27 Kg (4He atom) and L = 1 m, it is straightforward to
estimate the energy gap between the lowest two orbitals.

∆ε = ε1 − ε0 ≈ kB × 10−18 K. (13)

The energy gap is tiny for a macroscopic system. It is hard to imagine how
such a tiny energy difference can play any significant role in a physical system.
Well, it does and here comes the surprise!

For a Bose gas of N = 1023 atoms at 1 mK, the chemical potential is

µ ≈ ε0 −
τ

N
= ε0 − kB × 10−26 K, (14)

where ε0 is the energy of the lowest orbital. The occupation number of the
second lowest orbital is approximately

f(ε1) =
1

exp[(ε1 − µ)/τ ]− 1
≈ 1

exp(∆ε/τ)− 1
≈ τ

∆ε
= 1015. (15)

The number may look large at first glance but the corresponding fraction is
actually very small,

f(ε1)

N
≈ τ

N∆ε
≈ (ε0 − µ)

ε1 − ε0
≈ 10−8 (16)

That is to say, the chemical potential is much closer to the energy of the
lowest orbital than the tiny energy gap ∆ε. For a Bose gas with constant
density n, the energy gap ∆ε ∼ 1/V 2/3 in the thermodynamic limit. But,
ε0−µ ∼ 1/N ∼ 1/V goes to zero faster. As a result, the occupation fraction of
the second lowest orbital approaches zero even though its energy is extremely
close to that of the lowest orbital.

• cooling down from high temperature

Now we reverse the direction and try to understand the Bose gas from the
high temperature side. The total number is expressed as the sum of Bose
functions over all orbitals,

N =
∑
s

1
1
λ
eεs/τ − 1

. (17)
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Figure 2: Polylog function g 3
2
(λ) and the same function but with lowest-

orbital occupation. The quantum concentration is set to unity (nQ = 1) in
the right panel.

As explained in previous lecture, the summation can be converted into the
integral, ∑

s

(· · · ) =
2√
π

(nQV )

∫ ∞
0

dx
√
x(· · · ), (18)

where x = ε/τ is dimensionless. Thus, the particle density is expressed by
the following integral,

n = nQ
2√
π

∫ ∞
0

dx

√
x

(1/λ)ex − 1
(19)

Recall the definition of the polylogarithm function,

gν(z) =
∞∑
n=1

zn

nν
=

z

1ν
+
z2

2ν
+
z3

3ν
+ · · · , (20)

and the useful integral formula,∫ ∞
0

dx
xν−1

(1/λ)ex − 1
= Γ(ν)gν(λ). (21)

The particle density of a Bose gas can be expressed elegantly by the poly-
logarithm function,

n = nQ g 3
2
(λ) ≤ nQ g 3

2
(1). (22)

The inequality comes from the fact that g 3
2
(λ) is a monotonically increasing

function with maximum at λ = 1 as shown in Figure 2. At high temperatures,
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nQ is large and the inequality is easily satisfied. But, as the temperature cools
down to the critical one,

n = g 3
2
(1)
( mτc

2π~2
)3/2
≈ 2.612

( mτc
2π~2

)3/2
, (23)

The absolute activity reaches unity, λ = 1, i.e. µ = 0. This is already strange
because the occupation number of the lowest orbital becomes singular. What
if we further cool down the Bose gas below the critical temperature τc? Trou-
bled... We don’t even have a real solution for λ if the temperature is cooled
below the critical one!

• macroscopic occupation of the lowest orbital

The confusions stem from the macroscopic occupation of the lowest orbital,

n0 =
1

V

λ

1− λ
. (24)

Since the density of state at ε = 0 vanishes, it is legal to separate the occu-
pation number of the lowest orbital and the others. If the volume is large
(but not yet infinite), the summation can again be converted into integral
and the density can be expressed as

n = n0 + nQ g 3
2
(λ). (25)

Note that, if we blindly take the thermodynamic limit (V →∞),

n0 = lim
V→∞

1

V

λ

1− λ
= 0. (26)

We then come back to the same expression in previous paragraphs. To over-
come the difficulty explained before, one needs to be cautious when taking
the thermodynamic limit. For τ > τc, the absolute activity can be solved
from n = g 3

2
(λ). For τ < τc, one should keep the volume large but finite

momentarily. As can be seen in Figure 2, the equation n = n0 + nQg 3
2
(λ)

indeed has a real solution for λ,

λ ≈ 1− 1

N

(
n

n0

)
, when n0 6= 0. (27)

It is worth emphasizing that the above relation is true only when n0 6= 0
and the particle number N is enormous. When the macroscopic occupation
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is nonzero, a finite fraction of particles stay in the lowest orbital, referred as
Bose-Einstein condensate. Though we only work out the critical temperature
here, it is expected that all other physical quantities in the condensate can
be computed with more advanced techniques.

Meanwhile, the temperature dependence of the condensation fraction can
be derived,

n0 = n− nQg
3
2 (1) = n

[
1−

(
τ

τc

) 3
2

]
. (28)

Because N for a macroscopic system is huge (of the order 1023), even for τ
slightly less than the critical temperature τc, a large number of bosons occupy
the lowest orbital. These particles in the lowest orbital form a condensate
and usually give rise to superfluidity when realistic interactions are included.

• phase transition due to singularity

The emergence of a condensate marks a true phase transition from the gas
phase to the condensation phase. The phase transition is associated with the
nonuniform convergence so that the order of limits does not commute,

lim
λ→1

lim
V→∞

1

V

λ

1− λ
= 0 (29)

lim
V→∞

lim
λ→1

1

V

λ

1− λ
=∞ (30)

If the thermodynamic limit is taken first, the macroscopic occupation is al-
ways zero. However, if the absolute activity is taken to be unity first, the
macroscopic occupation is divergent. None of the results are sensible and
these two limits are not independent but related: 1 − λ ≈ 1/(n0V ). A final
comment is that the pause transition is not directly related to τ → 0 limit –
the condensation occurs at finite temperature!

• occupation number fluctuations

It is interesting to study the fluctuation of the occupation number in a Bose
gas. The occupation number for each orbital is

〈Ns〉 =
1

Z

∞∑
m=0

m e−m(εs−µ)/τ , (31)
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where Z is the Gibbs sum. Taking derivative with respect to εs, one finds a
useful identity,

−τ ∂

∂εs
〈Ns〉 =

1

Z

∞∑
m=0

m2 e−mεs/τ +
τ

Z2

∂Z
∂εs

∞∑
m=0

m e−mεs/τ . (32)

After a little bit of massage, the above identity can be rewritten as

〈N2
s 〉 − 〈Ns〉2 = −τ ∂

∂εs
〈Ns〉. (33)

Since the occupation number is 〈Ns〉 = [e(εs−µ)/τ − 1]−1, it is straightforward
to obtain the fluctuations in particle numbers,

(∆Ns)
2 ≡ 〈N2

s 〉 − 〈Ns〉2 =
e(εs−µ)/τ

[e(εs−µ)/τ − 1]2
= 〈Ns〉+ 〈Ns〉2 (34)

For a Bose gas, the fluctuation is always strong, ∆Ns/〈Ns〉 > 100%. It is
important to stress that the fluctuation we discuss here is about the occu-
pation number for each orbital, not the total particle number. It is quite
interesting that the fluctuation is smaller when 〈Ns〉 is larger. As a result,
in the condensation phase, the occupation fluctuation of the lowest orbital is
the smallest, ∆N0/〈N0〉 = 1 while other orbitals gave stronger fluctuations.
The strong fluctuation in the occupation number reflects the nature of non-
interacting bosons: they love to hang out together, known as boson bunching
effects in the literature.


