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• equilibrium condition

When two systems are in thermal contact, the most probable configuration
corresponds to the maximum of the total multiplicity function g1g2,
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where U1, U2 are the energies of the most probable configuration and can be
viewed as average energies of the subsystems in thermal equilibrium. The
above notation is a bit tedious and can be written in the textbook notation
as well (though a bit confusing),
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The equilibrium condition motivates us to define a physical quantity:
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The fundamental temperature ⌧ is related to the usual temperature T by the
Bolzmann constant, ⌧ = k

B

T .

• temperature as an energy scale

The above definition of temperature is quite far from our common intuition.
Can we improve our understanding better?
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Figure 1: Temperature ⌧ can be viewed as the energy scale for the exponential
growth of the multiplicity function g(U). Its role is pretty much as same as
the half-life time ⌧ in the decaying process.

where �U is small energy derivation from the average energy in equilibrium.
Note that � log g = log g(U +�U)� log g(U) = log[g(U +�U)/g(U)]. The
above relation can be brought into the form,
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The multiplicity g(U) grows by a factor e�U/⌧ when U increase to U +�U .
That is to say, ⌧ sets the energy scale of the exponential growth of the

multiplicity g(U).

Take decaying process as a comparing example. The surviving quantity
evolves as N(t) = N(0)e�t/⌧ , where ⌧ is the half-life time. To pin down the
characteristic time scale of the decaying process, it is unwise to use the decay
rate dN/dt because it also depends on the initial condition N(0). A better
choice is to use the rate of logN ,
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The surviving quantity N(t) decays by a factor e��t/⌧ when t increases to
t+�t. Obviously, the half time ⌧ sets the time scale for the decaying process.

• the concept of reservoir

Going back to the example of two spin systems in thermal equilibrium. One
interesting limit is N2 � N1 and the larger system is called “reservoir”. The
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multiplicity function of the reservoir is

g(E2) = g(0) exp
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According to the definition of temperature, ⌧(E) of the reservoir at energy
close to its equilibrium value E2 = U2 +�U is
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In the limitN2 � N1, the energy exchange between the subsystems�U ⌧ U2

and the second term can be dropped. We arrive at the very useful approxi-
mative relation,
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where u2 = U2/N2 is the average energy of each spin in the reservoir. Two
strange behaviors need further explanations: (1) If the spin excess is positive
(thus corresponds to negative energy), the temperature is positive. How-
ever, when spin excess is negative, the temperature is negative as well. It is
important to keep in mind that negative temperature is indeed possible for
some statistical systems. (2) The temperature of the reservoir is inversely

proportional to the average energy of each constituent. Therefore, you should
abandon the intuition that the temperature is proportional to the average
energy of each constituent.

• density of states for ideal gas

Now we try to compute the multiplicity function of an ideal gas. From the
multiplicity function, we can then derive the average energy of each molecule,
u = (3/2)⌧ , in thermal equilibrium. Consider a monoatomic ideal gas of N
gas molecules. The energy of the system is
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Adding in the favor of quantum physics: the momentum p1x = n1x⇡~/L is
quantized and same for all others. Introduce the 3N dimensional vector,

n = (n1x, n1y, n1z, · · · , nNx
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Figure 2: A monoatomic ideal gas of N molecules. All stationary states
with quantized momenta can be uniquely labelled by the vector n in the 3N
dimensional space and its magnitude n /

p
E is proportional to the square

root of the total energy E.

the total energy of the system reads
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. For realistic

size of L, the energy levels are extremely close and it is better to view the
discrete energy levels as continuous. Instead of computing the multiplicity
for each energy level, we compute the total multiplicity for all levels in the
energy interval (E,E +�E),
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g(E 0) = (number of grid points in the n�space) ⌘ D(E)�E (13)

where the summation is over energy E 0 in the interval (E,E+�E) and D(E)
is the density of states. The number of grid points in the thin spherical shell
is roughly its volume in the 3N space. Therefore, D(E)�E ⇡ C⇥n3N�1�n,
where C is some constant. Making use of the relation n = (

p
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the density of states for a monoatomic ideal gas is
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In thermal equilibrium, average energy and temperature are related,
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The average energy of the ideal gas is approximately U = (3N/2)⌧ in the
thermodynamic limit N !1. The average energy of each gas molecule u is
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where f = 3 is the degrees of freedom, corresponding to the motions in three
di↵erent spatial directions. The above result can be understood by equipar-
tition of energy for each degree of freedom in the classical limit. However,
keep in mind that the theorem of equipartition of energy is only valid in the
classical limit and does not hold in general cases.


