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ABSTARCT

It is well-known that H(Z/2) is a Thom spectrum,
observed by Mark Mahowald. In this paper, our main
purpose is to give a generalization of this. The gen-
eralization is observed by Dung-Yung Yan. Our proof
will follow closely a short proof by Dung-Yung Yan in
[7].
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1 Introduction

The main result of this paper is to give a generalization
of Mahowald’s striking observation that the mod 2 Eilenberg-
MacLane spectrum is a Thom spectrum. This generalization is
observed by Dung-Yung Yan in [7].

First, we recall the definition of Thom spectra as follow.

Let f : L — BO be an H-map. Choose a filtration {L,}
of L such that f(L,) € BO(n). Let f, = f |1,. Consider a
universal n-plane bundle ~, over BO(n). Set 7, = (fu)"(7n)-
Then we define Th(f), = E(%,)/A, where A is the subset of
E(7,,) consisting of those vectors of length at least 1 in each
fibre. We call it a Thom space with respect to 7,,.

Because we have the commutative diagram

N, ® el —=Vni1

A

Ln — LTH-17
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where €' is a trivial 1-plane bundle over L,,, we have the struc-

ture map
€n: SYATHh(f)n — Th(f)ny1.

Hence, we obtain the Thom spectrum, Th(f).



In [4], Mahowald shows that the Thom spectrum, Th(f), is
a ring spectrum, with the ring structure map induced by the
following commutative diagram:

LxL—t
fol lf
BO x BO*2% BO,

where py and pupo are multiplications for H-spaces L and BO,
respectively.

Furthermore, if LL is a commutative H-space and f is a mor-
phism of commutative H-spaces, then Th(f) is a commutative
ring spectrum.

According to [1], we can see that Th(f) is (—1)-connected
and mo(Th(f)) is either Z or Z/2. As f is non-orientable, i.e.,
f*(w1) # 0, mo(Th(f)) = Z/2. Otherwise, wo(Th(f)) = Z.

For example, if we take L. = BO, which is the infinite loop
space, and f is the identity mapping of BO, we obtain the Thom
spectrum MO.

Note that the homology H.(X) always means with (Z/2)-
coefficient in this paper. Now we state our main results as follow.

Theorem 1.1. Given a connected C'W-complex L. Suppose
f L — BO 1is a non-orientable double loop map. Then
H.(Th(f)) is an extended comodule over the mod 2 dual Steen-
rod algebra A, = H,(H(Z/2)), i.e., H,(Th(f)) = A, ®z C,

with the following comodule structure:

Y&id

o

A ®zp C (As ®z/2 As) @72 C Ay Rz (A ®z/2 0),
where ¢ : A, — A, ® A, 18 the co-product on A,.
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Theorem 1.2. Given a connected CW-complex L. Suppose
f + L — BO 1is a non-orientable double loop map. Then
the Thom spectrum Th(f) can be split as a wedge of suspen-
sions of Eilenberg-MacLane spectra H(Z/2).

Corollary 1.3 (Thom, [2]). H.(MO) is an extended A.-comodule.

Hence MO can be stably split as the wedge of suspensions of
Filenberg-MacLane spectra H(Z/2).

Corollary 1.4. Consider a Thom spectrum Th(f1) induced by
the follounng fibration:

U/0-~BO—-BU.

Then H.(Th(f1)) is an extended comodule, and so Th(f1) can
be stably split as the wedge of suspensions of Filenberg-MacLane
spectra H(Z/2).

Corollary 1.5. Consider a Thom spectrum Th(fs) induced by
the following fibration:

Sp/O-~BO—~BSp.

Then H.(Th(f2)) is an extended comodule, and so Th(fy) can
be stably split as the wedge of suspensions of Filenberg-MacLane
spectra H(Z,/2).



2 Proof of Our Theorems

In order to prove Theorem 1.1 and Theorem 1.2, we will
apply two theorems; one is Mahowald’s Theorem due to [3], and
the other is the comodule structure theorem due to [5]. Now,
we recall them as follow.

Let n represent the generator of m(BO) = Z/2. Since BO is
a double loop space, we have a map

g 0288 = 2yegt EEN _opvepn L BO.

Theorem 2.1 (Mahowald, [3]). Thom spectrum Th(g) is the
Filenberg-MacLane spectrum H(Z/2).

Remark 2.2. In [6], Priddy shows that the composite map

H(Z)2)——~MO—2—H(Z/2)

is a homotopic equivalence, where the first map ¢ is the map of
Thom spectra induced by g and the second map « is the Thom
class which represents the generator of HY(MO) = Z/2. Hence,
there exists a map A : MO — H(Z/2) such that the following
composite map

H(Z/2)—2~MO-2~H(Z/2)

is homotopic to the identity map. [



Next, we state the comodule structure theorem. Before we
state this theorem, we recall the definition about cotensor prod-
uct.

Definition 2.3 (Cotensor product). Given a Hopf algebra
A over K. If M s a right A-comodule, with the right coaction
Ay : M — M® A, and N is a left A-comodule, with the left
coaction Ay : N — AR N, then the cotensor product of M and
N, denoted by MO4N, is the kernel of [Ay @idy —idy @ Ay] :
M N—M® AR N.

Theorem 2.4 (Milnor and Moore, [5]). Let A be a com-
mutative connected Hopf algebra over a field K, i.e., Ay = K.
Let B be a connected left A-comodule algebra and C' = KO B,
the cotensor product of K and B. If there is a surjective homo-
morphism g : B — A of left A-comodule algebras, then B is
isomorphic to A @ C simultaneously as a left A-comodule and
a right C-module.

Before we start to prove our main theorems, we first prove
the following lemma.

Lemma 2.5. Given two spectra X and Y of finite type. Sup-
pose that there exists a map f : X — Y, such that f, is an
isomorphism from H.(X,Z/2) onto H.(Y,Z/2), then fo) is a
homotopy equivalence from X (o) to Y(2), which is induced by f.



Proof. Consider a cofibration X1~V —-C r. Then we have a
long exact sequence

o H(X,Z)2) L H(Y,Z)2) - H(C}, Z)2)— - - .

Since H,(X,Z/2) = H.(Y,Z/2), H.(Cy,Z/2) = 0. It is following
that H*((Cf)(g),Z/Q) = 0.

By the Adams spectral sequence, we have 7.((Cy)@)) = 0.
Because

fe) i(2) -~
XY= (Cre) =~ Cy
is also a cofibration, it is a fibration in the stable category. This
implies that we have a long exact sequence

(f2)) (i(2))
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and so there is a short exact sequence

~ (f2)) (i2)) ~
0= mei1((Cf) @) — (X (2) = (Yio))—m((Cf) ) = 0.
Thus, (f(Q))# is an isomorphism from m, (X)) onto m.(Y(y).
That is to say, f(2) is a homotopy equivalence from X () to Y(9),
and then we complete the proof.



Now we prove our main theorems.
Proof of Theorem 1.1:

First, let L = Q2X, for some space X. Since f*(w;) # 0 and
the following diagram commutes

ontol ionto

Hy(Q2X) -1~ Hy(BO),
there is a map ¢ : S* — QX such that the composite map
Sl X -BO

is homotopic to the map 7, representing the generator of 71 (BO).

Since f is a double loop map, this implies that the following
diagram

9253\ J %BO
h
02X

commutes up to homotopy, where h : 925% — Q%X is induced
by ¢.
By Theorem 2.1, we have the commutative diagram:

~id

H(Z)2)

ngOA
\)/’

h
Th(f

H(Z/2),

where h and f are thomfied by h and f, respectively.

7



This induces the commutative diagram

7* )\*

A, —— s~ H.(MO) A,,
H.(Th(f))

where A\, 0 g, = id.

So we have a map ® = A\, o f, : H.(Th(f)) — A,, which
is a surjective homomorphism of left comodule algebras. Set
C = (Z/2)0,4 (H.(Th(f))). By Theorem 2.4, H.(Th(f)) is iso-
morphic to A, ®z, C, as a left comodule algebra. That is to
say, H.(Th(f)) is an extended A,-comodule. O

Proof of Theorem 1.2:

In Theorem 1.1, we have shown the algebraic isomorphism.
Now we only have to construct the topological map such that it
induces an isomorphism of mod 2 homology and then we com-
plete the proof.

First, we claim that every element of C' is a stable sphere,

i.e., C' is equal to the image of Hurewicz homomorphism which
maps . (Th(f)) to H.(Th(f)).

Since C' is the set of consisting of coaction primitive ele-
ments in the A,- comodule H,(Th(f)), we see that the image of
Hurewicz homomorphism is contained in C'. Next, we want to
show that Es-term for the Adams spectral sequence collapses to
E-term.



It is easy to check that

Ey' = Euxtj (Z/2, H.(Th({)))
Eajtii(Z/Q, A, Xz/2 )
= Bty (Z/2,A) @z, C

B C ,if s=0
- 0 ,if s#0

This implies E;" = E3™ = ... =2 E** and so each generator of
C' is a permanent cycle.

Moreover, since mo(Th(f)) = Z/2, m.(Th(f)) has character-
istic 2, and thus Th(f) is 2-local. This implies that the Adams
spectral sequence Fy™ converges to m.(Th(f)). It is following
that each generator of C' is stably spherical.

112

Next, let ¢ be any generator of C'. Then there exists an
essential map g, from S to Th(f), such that (g.)«(ia) = ¢,
where i, is the generator of H,(S®). Let v be the following
composite map:

V, Se—Yet N\ Th(f)—S—Th(f),

where the second map V is the folding map. Note that ~, is
an isomorphism from H,(\/,S%) onto C, by the construction of
Jo- Thus, we have the following composite map 6:

dA\y

H(Z/2) A (V, 5) H(Z/2) A Th(f) 22T h(f) A Th(f)—“=Th(f),

where p: Th(f) ATh(f) — Th(f) is the structure map of Th(f).

In order to prove that 6, is an isomorphism, we need to de-
scribe two homomorphisms

Rt A, — H.(Th(f)) and . : H(\/ §%) — H.(Th(f)).

9



Clearly, v, maps H.(\/,S%) onto C. By Theorem 2.1, we see
that h, is an isomorphism from A, onto the part A, of H,(Th(f)) =
A, ®z/2 C, and so 0, is an isomorphism.

By Lemma 2.5, we see that

Oy m(H(Z/2) N \/SO‘ — m(Th(f))

is an isomorphism. By Whitehead Theorem, we have
Th(f) ~ H(Z/2) A \/ S*) = \/SH(Z/2).

]
Proof of Corollary 1.4:

It is well-known that U/O and BO are infinite loop spaces,
and f; : U/O — BO is an infinite double loop map. It is
enough to show that f; is non-orientable. Moreover, we know
that

U/0--BO—~BU

is a fibration. Hence, we have an exact sequence

7T1(U/O)4> 1(BO)4>7T1(BU) = 0.

That is to say, (f1)x : m(U/O) — w(BO) is surjective. Hence,
(f1)*(wy) # 0. By Theorem 1.1 and Theorem 1.2, we see that

Th(f1) can be stably split as the wedge of suspensions of Eilenberg-
MacLane spectra H(Z/2). O

Proof of Corollary 1.5:
Similar to Corollary 1.4 ]

10
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