
1

CS542200 Parallel Programming
Homework 2: Mandelbrot Set

Revision 7
Due: Wed Nov 7 23:59, 2018

1 GOAL

This assignment helps you to:

 Get familiar with OpenMP.

 Know the differences between different memory architectures we’ve

learned so far.

 Understand the importance of load balance.

In this assignment, you are asked to parallelize the sequential Mandelbrot Set

program by implementing the following four versions:

1. MPI with static scheduling

2. MPI with dynamic scheduling

3. OpenMP (scheduling of your choice)

4. Hybrid – MPI + OpenMP (scheduling of your choice)

2

2 PROBLEM DESCRIPTION

The Mandelbrot Set is a set of complex numbers that are quasi-stable when

computed by iterating the function:

𝑍𝑘 = {
C, k = 0

𝑍𝑘−1
2 + 𝐶, k ≥ 1

 C is some complex number: C = a + b𝑖

 𝑍𝑘 is the 𝑘𝑡ℎ iteration of the complex number

 if |𝑍𝑘| ≤ 2 for any k, C belongs to the Mandelbrot Set

What exact is the Mandelbrot Set?

 It is fractal: An object that display self-similarity at various scale;

magnifying a fractal reveals small-scale details similar to the larger-

scale characteristics

 After plotting the Mandelbrot Set determined by thousands of

iterations:

For more information, please refer to lecture notes.

3

3 INPUT / OUTPUT FORMAT

3.1 Input specification
The input parameters are specified from the command line. There are no input files.

Your programs should accept the following srun command:

srun -n $procs -c $t ./exe $t $left $right $lower $upper $w $h $out

The meanings of the arguments are:

 $procs – int; [1, 48]; number of processes. Always 1 for the OpenMP version.

 $t – int; [1, 12]; number of threads per process. Always 1 for the MPI

versions. (technically, this is the number of CPUs you can use per process;

you are allowed to use more or fewer threads)

 $left – double; [-10, 10]; inclusive lower bound of the real axis.

 $right – double; [-10, 10]; non-inclusive upper bound of the real axis.

 $lower – double; [-10, 10]; inclusive lower bound of the imaginary axis.

 $upper – double; [-10, 10]; non-inclusive upper bound of the imaginary axis.

 $w – int; [1, 16000]; number of points in the x-axis for output.

 $h – int; [1, 16000]; number of points in the y-axis for output.

 $out – string; the path to the output file.

4

3.2 Output specification

Your programs should produce a PNG image at $out, visualizing the Mandelbrot

Set in the given range.

We provide a sequential version to show how the pixels are rendered.

Example 1: srun ./exe $threads -2 2 -2 2 400 400 $out

x axis:[-2 2), 400 pints = {-2, -1.99, -1.98, … 1.98, 1.99}

Example 2: srun ./exe $threads 0 2 -2 2 800 400 $out

5

4 REPORT

Your report must contain the following contents, and you can add more as you

like.

1. Title, name, student ID

2. Implementation

Explain your implementations, especially in the following aspects:

 How you implement each of requested versions, especially for the

hybrid parallelism and dynamic scheduling algorithm.

 How do you partition the task?

 What technique do you use to reduce execution time and increase

scalability?

 Other efforts you made in your program

3. Experiment & Analysis

Explain how and why you do these experiments? Explain how you collect

those measurements? Show the result of your experiments in plots, and

explain your observations.

i、 Methodology

(a). System Spec (If you run your experiments on your own machine)

Please specify the system spec by providing the CPU, RAM,

storage and network (Ethernet / InfiniBand) information of the

system.

(b). Performance Metrics

How do you measure computing time of your programs? How do

you compute the values in the plots?

ii、 Plots: Scalability & Load Balancing

(a). Conduct strong scalability experiments, and plot the speedup.

The plot must contain at least 4 different scales (number of

processes, threads) for both single node and multi-node

environments.

(b). Design your own experiments to show how balance it is in each of

your experiments by plots.

(c). Make sure your plots are properly labeled and formatted.

(d). You are recommended to choose a proper problem size to ensure

the experiment results are accurate and meaningful.

6

iii、 Discussion (must base on the results in the plots)

(a). Compare and discuss the scalability of your implementations.

(b). Compare and discuss the load balance of your implementations.

iv、 Others

Conduct more interesting experiments to analyze performance. For

example:

 In the hybrid version, what is the best distribution between MPI

tasks & threads, why?

 What’s the best distribution of cores between nodes, why?

4. Experience & Conclusion

It could include these following aspects:

 Your conclusion of this assignment.

 What have you learned from this assignment?

 What difficulty did you encounter in this assignment?

 If you have any feedback, please write it here. Such as comments for

improving the spec of this assignment, etc.

5 GRADING

1. Correctness (50%)

You are required to implement four different versions of Mandelbrot Set:

 mpi_static – MPI with static scheduling (10%)

 mpi_dynamic – MPI with dynamic scheduling (15%)

 omp – OpenMP with scheduling of your choice (10%)

 hybrid – MPI + OpenMP with scheduling of your choice (15%)

7

We will use several test cases to test your implementations. You get full

points for an implementation if you passed all the test cases, no points for it

otherwise.

For each test case, your implementation will be considered correct if:

 Your implementation produced a valid PNG image.

 At least 99.6% of the pixels in your output image are the identical to

the corresponding pixel produced by the sequential version.

 The execution time of your implementation is shorter than:

 the execution time of the sequential version + 30 seconds

2. Performance (15%)

We will use several different test cases (denoted C) to run your code.

Your performance score will be given by:

∑𝑆(𝐶) ×
𝑇𝑏𝑒𝑠𝑡(𝐶)

𝑇𝑦𝑜𝑢𝑟𝑠(𝐶)

 C is a test case: the set of input parameters excluding parallelism
settings. e.g. $left, $right, $lower, $upper, $w, $h.

 𝑆(𝐶) is the score allocated to the test case.

 𝑇𝑏𝑒𝑠𝑡(𝐶) is the shortest execution time of all students for the test case,

excluding incorrect implementations.

 𝑇𝑦𝑜𝑢𝑟𝑠(𝐶) is your shortest execution time of {mpi_static, mpi_dynamic,

openmp, hybrid} for the test case, excluding incorrect implementations.

 ∑𝑆(𝐶) = 15

3. Report (25%)

Grading is based on your evaluation, discussion and writing. If you want to

get more points, design or conduct more experiments to analyze your

implementation.

4. Demo (10%)

i、 Explain your implementations.

ii、 Explain the key results and findings from your report.

iii、 (Optional) Your extra efforts. (Why do you deserve more bonus

points?)

8

6 SUBMISSION

Upload these files to apollo31, and place them under ~/homework/hw2/:

 mpi_static.c

 mpi_dynamic.c

 omp.c

 hybrid.c

 Makefile

Upload this file to iLMS:

 report.pdf

Note:

1. You can also write your code in C++ by submitting *.cc files.

2. Your Makefile must be able to build the corresponding targets of the

implementations: mpi_static, mpi_dynamic, openmp, hybrid. If you’re

unsure how to write a Makefile, you can use the provided example Makefile

as-is.

3. Your submission time for your source code will be based on the time on

apollo31 and your submission time for your report will be based on iLMS.

4. Late submission policy:

score *= 1 Before deadline
score *= 0.95 After deadline Before deadline+3days
score *= 0.9 After deadline+3days Before deadline+7days
score *= 0 After deadline+7days

7 REMINDER

1. Refer to iLMS for the location of the sequential version of Mandelbrot Set,

Makefile and test cases.

2. Since we have limited resources, please start your work ASAP. Do not leave

it until the last day!

3. 0 will be given to cheaters (even copying code from the Internet), but

discussion on code is encouraged.

4. Asking questions through iLMS is welcomed!

