
1  

CS542200 Parallel Programming  
Homework 5: PageRank 

 
Due: 1/13, 2019 (No Late Submission) 

1 GOAL	
This assignment helps you get familiar with Apache Hadoop MapReduce API by 
implementing PageRank algorithm. 

2 PROBLEM	DESCRIPTION	
In this assignment, you are required to implement PageRank algorithm using Hadoop. 
PageRank is a link analysis algorithm previously used by Google Search to rank websites 
in their search engine results, so that more important pages have higher ranks. It works by 
counting the number and quality of links to a page to determine a rough estimate of how 
important the website is. A page is considered more important if it has more incoming 
links and is also pointed by other important pages. 
PageRank assigns a numerical weighting to each element	𝐸 of the set of pages. The 
weighting is referred to as the PageRank of 𝐸, denoted by 𝑃𝑅 𝐸 . 
We can think of pages as vertices, and links between pages as edges. A set of hyperlinked 
pages can form a directed multigraph. 
Given page 𝑥 with 𝑛 direct predecessor {𝑡(, 𝑡*, … , 𝑡,}, then 

𝑃𝑅 𝑥 = 1 − 𝛼
1
𝑁

+ 𝛼
𝑃𝑅 𝑡4
𝐶 𝑡4

,

46(

+ 𝛼
𝑃𝑅 𝑑8
𝑁

9

86(

 

 
where 

• 𝐶 𝑡  denotes the out degree of page 𝑡 

• 𝛼 (set to 0.85) is the damping factor, 1 − 𝛼  is the probability of random jump 

• 𝑁 is the total number of pages (nodes) 

• 𝒅 denotes a dangling node, which has no outgoing links 

• 𝑚 is the total number of dangling nodes 

 
We will use power iteration method to compute the correct weight for all pages. Let 
𝑃𝑅 < 𝑥  denotes the PageRank of 𝑥 at 𝑘-th iteration. We define: 

𝑃𝑅 > 𝑥 =
1
𝑁
	∀𝑥 

 



2  

Then, we are able to compute PageRank iteratively as follows 

𝑃𝑅 < 𝑥 = 1 − 𝛼
1
𝑁

+ 𝛼
𝑃𝑅 <@( 𝑡4

𝐶 𝑡4

,

46(

+ 𝛼
𝑃𝑅 <@( 𝑑8

𝑁

9

86(

 

 
In order for you to understand this algorithm better, the execution flow of PageRank is 
illustrated step by step as below:  

1. [Build a graph] First, you need to extract links in the input file and build a graph.         
(N = 100 for example) 

 

• Notice: Remove missing links from the graph. 
In the example below, there is an out-link which points to nowhere! We 
need to remove it before moving on to the next step. 

 
 
 

<page><title>America</title>…<text	…>America	is	…[[Europe]]…</text>…</page>	 
<page><title>Europe</title>…<text	…>		…[[Asia]]…</text>…</page>	 
<page><title>Taiwan</title>…<text	…>…officially	..[[Taipei]]..[[HsinChu]]..</text>…</page> 

…. 

Extract 
Links 

America 

Title 

Europe 

Taiwan 

PageRank Links 

0.01 

0.01 

0.01 

Europe 

Asia 

Taipei Hsinchu
u … 

America 0.01 Europe Non-existent title 



3  

2. [Calculate PageRank] Initialize the PageRank of all pages to 1/𝑁 where 𝑁 is 
total number of pages. Compute the PageRank of pages iteratively until the values 
converge. 

Please use double precision numbers while calculating the PageRank weights, 
otherwise your result might be considered incorrect. 

The error between 𝑘-th and (𝑘 − 1)-th iteration is defined as  

𝑒𝑟𝑟 𝑘 = 𝑃𝑅 < 𝑥4 − 𝑃𝑅 <@( 𝑥4

F

46(

 

Iterate until 𝒆𝒓𝒓(𝒌) < 𝟎. 𝟎𝟎𝟏	(s	i.e. convergence is assumed). 

3. [Sort the result] Sort the resulting ranks in a descending order and filter the result 

so that only the page title and its PageRank weight are listed in the final output. 

 

If there are multiple pages and values with the same PageRank value, please 
sort them lexicographically in ascending order.	  

America 

Title 

Europe 

Taiwan 

PageRank Links 

0.08 

0.12 

0.01 

Europe 

Asia 

Taipei Hsinchu 
… 

Europe 

Title 

America 

Taiwan 

PageRank 

0.12 

0.08 

0.01 
… 

Europe<TAB>0.12 
America<TAB>0.08 
Taiwan<TAB>0.01 
… 

Write to HDFS 

Filter 
&  

Sort 



4  

3 INPUT	/	OUTPUT	FORMAT	
The input/output format requirements are specified as follows: 
1. Your programs are required to read an input file from HDFS, and generate output in 

another file. 

2. Your execute.sh should accept 2 parameters. They are:  

i、 (String) the input file size on HDFS  

i. One of the 4 values: 100M/1G/10G/50G 

ii、 (Integer) number of iterations. (-1: iterate until converges)	 

And execute.sh should also generate pagerank_{100M/1G/10G/50G}.out in the end. 
 

3. The input file on HDFS is a normal text file in wikitext format with multiple lines. 
Each line contains one page which is enclosed in <page> and </page>. There are 
only two attributes we need to consider: page title and page links. 

• Page title will be placed between “<title>” and “</title>”. The first 
character of a title is always in upper case (no need to capitalize it). 

Since title is part of an XML text, the real title text need to be un-escaped as 
follows: 

input	string	in	title	text	 un-escaped	character	

&lt; < 

&gt; > 

&amp; & 

&quot; " 

&apos; ' 

 

For example, the title string Ulmus &apos;Nire-keyaki&apos; need to 
be converted to Ulmus 'Nire-keyaki' 

• A link will be placed between “[[” and “]]”, which defines what page it 
points to and the shown text of the link. But there are some exceptions which 
make it not so trivial to parse. 

To simplify the processing and be more specific, we define a link to another 
page as follows: 

Ø “[[” means what follows is a target page title. 



5  

Ø The page title is case-sensitive except the first character. (The first 
character of page titles is always in upper case) 

Ø Only capitalize	the first character if it’s from a - z 

Ø The first “]]”, vertical bar “|” or sharp sign “#” it meets afterwards 
means the end of the target page title. 

Ø Note that links which points to a nonexistent page is considered 
invalid as a missing link. 

For instance, all the following links point to the page titled “Texas”: 

A. [[Texas]] 

B. [[texas]] 

C. [[Texas|Lone Star State]] 

D. [[Texas#Geography]] 

But note that the text [[TEXAS]] does NOT link to “Texas” since the target 
name of a page link is case-sensitive. 
 
Also, since links are also part of the XML text, please un-escape them using 
the method we mentioned in title string processing part.  
Check ParseMapper.java for example. 
 

4. The output on HDFS naturally consists of one or several part-xxxxx or part-r-xxxxx 
files which represent the total view of the final output when combined in order. 

The output should contain 𝑁 lines where 𝑁 is the total number of pages in the input 
file. Each line has the page title and the corresponding PageRank value separated 
by a Tab character. These lines are sorted by PageRank weights in descending order. 

Sample Output: 

 

Merge your final output with  

Europe<TAB>0.000473036896878 
America<TAB>8.72925041381e-05 
Taiwan<TAB>3.97693378405e-05 
… 

$ hdfs dfs –getmerge {hdfs_output_dir} homework/HW5/pagerank_{100M/1G/10G/50G}.out 



6  

4 PROVIDED	TEST	CASES	
• Input files are collected from wiki-dump, there are many types of links. If you like 

to learn more about that, you can refer to: 

Ø http://en.wikipedia.org/wiki/Wikipedia:Database_download 

Ø http://en.wikipedia.org/wiki/Wikipedia:Free_links#Free_links 

• Input files and sample output files are placed in hdfs:///	user/ta/PageRank 

• There are 4 sizes of input: input-100M, input-1G, input-10G and input-50G 

• Please do not copy large input test cases (10G, 50G) into the local disk, we 
will run out of disk space! 

• The limit of disk capacity is set to 50G for each of you.	

5 WORKING	ITEMS	
You are required to implement PageRank with Hadoop MapReduce.  
 
In your implementation, the number of reducers should be between 4 and 32 
inclusive, i.e. [4, 32], in parsing and calculating rank phases. 
 
Besides, you are required to write a report which contains all the following contents. 
l Title, name, student ID 

l Instruction 
Indicate how to compile & run your program. 

l Implementation  
Describe your implementation in detail using diagrams, figures and sentences. 

l Performance Optimization 
List any optimization that you did for better performance in parsing, calculating or 
sorting 

l Experiment & Analysis  
Try to use all the test cases as the input for all the following experiments.  

A. Analyze the converge rate 
Draw a diagram to show how PageRank converges with number of 
iterations. Like shown below: 



7  

 
Please compute the error according the formula above. 

l  Experience & Conclusion 

l  Feedback (Optional) 
 What do you think about this assignment or this course? Any feedback is welcome! 

6 GRADING	
1. Correctness (80%) 

i、 Grading is according to the final convergence result. And partial grades are 
given based on the error. 

l Can handle 100M test case [15%] 

l Can handle 1G test case [15%] 

l Can handle 10G test case [20%] 

l Can handle 50G test case [20%] 

ii、 Implementation [10%] 

2. Performance optimization (10%) 

i、 List any optimization that you did for better performance in parsing, calculating 
or sorting in your report. 

3. Report & Demo (10%) 

i、 Run 10 iterations in Demo time.  

ii、 Grading is based on your evaluation results, discussion and writing. 

0.0005
0.001
0.002
0.004
0.008
0.016
0.032
0.064
0.128
0.256
0.512
1.024

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Er
ro
r

Iteration	Number

Convergence	of	PageRank

100M 1G 10G 50G



8  

7 REMINDER	
1. Please upload these files to our server 

l Source codes 

l Makefile  

l execute.sh 

Make sure your compile script can execute correctly and your code has no compile 
error, and copy to homework/HW5 directory under your home directory in our 
server before 1/13 (SUN) 23:59 
 

2. HW5_{student ID}_report.pdf upload to iLMS before 1/13 (SUN) 23:59 

3. 0 will be given to cheaters, do not copy & paste! 

4. Since we have limited resources for you guys to use, please start your work ASAP. 
Do not leave it until the last day! There is NO late submission permitted. 

5. Limit for the number of reducers is 32 and for the disk capacity is 50G. Please do 
not exceed the limit and also make a good use of them. 

6. Asking questions through iLMS or email are welcome! 

8 HINT	
l Reference Java regex 

o For title: "<title>(.+?)</title>" 

o For link: "\\[\\[(.+?)([\\|#]|\\]\\])" 

l StringBuffer for string concatenation 

o String class is immutable: slow and consumes more memory 

o StringBuffer class is mutable: fast and consumes less memory 

l Counter for recording some specific values 
(http://hadoop.apache.org/docs/stable/api/org/apache/hadoop/mapreduce/Counter.html) 

o To write counter, use  

§ context.getCounter().increment()/setValue() 

o To read counter: 

§ job.getCounters().findCounter().getValue() 


