Complex Series

Hsiu-Hau Lin hsiuhau@phys.nthu.edu.tw (Mar 1, 2010)

The notes focus on complex series (Chap 2, Sections 6-10 in Boas) and its relation to elementary functions of complex variables.

Infinite series

Consider the following infinite series

$$S(z) = 1 - z + \frac{z^2}{2} - \frac{z^3}{3} + \frac{z^4}{4} + \dots$$
(1)

How can we know whether the infinite series S is convergent? The simplest method is to compare with the well-known geometric series, i.e. the ratio test. For the series S, the ratio test gives

$$\rho = \lim_{n \to \infty} \left| \frac{zn}{n+1} \right| = z.$$

Thus, the series is convergent for |z| < 1. This method can be generalized to more complicate series and helps us find out the radius of convergent.

Complex functions in series

Elementary functions of complex variable can often be expanded by complex series. For instance, the Taylor expansion for exponential function is

$$e^{z} = 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \dots = e^{x}(\cos y + i\sin y).$$
(2)

Make us of ratio test, one can show that the series is convergent for all z. As a side remark, the Taylor expansion does not always converges to the original function. For instance, the tunneling probability through a finite barrier is

$$P \sim e^{-2\alpha \Delta x/\hbar},\tag{3}$$

where $\alpha = \sqrt{2m(V_0 - E)}$. In the classical limit $(\hbar \to 0)$, the probability goes to zero as expected. However, the tunneling effect can never be reached by classical expansions. Writing the tunneling probability as

$$P(t) = e^{-1/t}$$

hedgehog's notes (February 28, 2010)

with $t = \hbar/(2\alpha\Delta x)$. It is straightforward to show that each single term in the Taylor expansion for P(t) is zero but the original function is certainly not zero!

• DeMoivre's theorem

In the previous lecture, we introduce Euler's formula, $e^{i\theta} = \cos\theta + i\sin\theta$. Using the rule of multiplication, the DeMoivre's theorem can be derived,

$$e^{in\theta} = \cos(n\theta) + \sin(n\theta) = (\cos\theta + i\sin\theta)^n.$$
 (4)

This theorem is quite useful for deriving trigonometric identities. For instance, choose n = 3 in the DeMoivre's theorem and compare the real parts on both sides,

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta.$$

The theorem also provides a natural way to compute roots of complex numbers,

$$z^{1/n} = \sqrt[n]{r} \left(\cos \frac{\theta}{n} + \sin \frac{\theta}{n} \right).$$
 (5)

However, subtleties arise for complex roots – there are more than one possible values. Therefore, when computing the n-th root of a complex numbers, there are n possible values.