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John Smeaton (1724-1792) first used scale models for systematic 
experimentation. 

William Froude (1810-1871) first proposed laws for estimating 
ship hull drag from model tests.

Aimee Vaschy, Lord Rayleigh, D. Riabouchinsky, E. 
Buckingham all made significant contributions to dimensional 
analysis and similitude.

Jean B. J. Fourier (1768-1830) first formulated a theory of 
dimensional analysis.

Osborne Reynolds (1842-1912) first used dimensionless 
parameters to analyze experimental results.

Moritz Weber (1871-1951) assigned the name Reynolds number 
and Froude number.

HISTORICAL CONTEXT

Introduction



Introduction
There remain a large number of problems that rely on 
experimentally obtained data for their solution. 
The solutions to many problems is achieved through the 
use of a combination of analysis and experimental data. 
An obvious goal of any experiment is to make the results 
as widely applicable as possible. 
Concept of similitude 

model prototype 

V7.1 Real and model flies

It is necessary to establish the relationship between the laboratory 
model and the actual system, from which how to best conduct         
experiments and employ their results can be realized.



7.1 Dimensional Analysis7.1 Dimensional Analysis

Consider Newtonian fluid through a long smooth-walled, 
horizontal, circular pipe. 

Determine pressure drop pp
x
∂

Δ =
∂l

pressure drop per unit length 
( ), , ,p f D Vρ μΔ =l

How can you do for the last two cases?



Dimensional AnalysisDimensional Analysis

Consider two non-dimensional combinations of variables 

The results of the experiment could then be represented 
by a single universal curve. 
The curve would be valid for any combination of smooth 
walled pipe, and incompressible Newtonian fluid. 
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Dimensional AnalysisDimensional Analysis

To obtain this curve we could choose a pipe of 
convenient size and fluid that is easy to work with. 
The basis for this simplification lies in the consideration 
of the dimensions of the variable involved.

This type of analysis is called dimensional analysis 
which is based on Buckingham pi theorem. 
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7.2 Buckingham pi theorem7.2 Buckingham pi theorem
How many dimensionless products are required to replace 
the original list of variables? 

“If an equation involving k variables is dimensionally 
homogeneous,  it can be reduced to a relationship among 
k – r independent dimensionless products, where r is the 
minimum number of reference dimensions required to 
describe the variables.”
The dimensionless products are frequently referred to as “pi 
terms,” and the theorem is called the Buckingham pi theorem.
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The required number of pi terms is fewer than the number of original 
variables by r, where r is determined by the minimum number of 
reference dimensions required to describe the original list of variables.
MLT, FLT



7.3 Determination of pi terms7.3 Determination of pi terms

method of repeating variables 
1:  List all the variables that are involved in the problem.

Geometry of the system (such as pipe diameter)
Fluid properties        (ρ, μ)
External effects        (driving pressure, V)

It is important that all variables be independent.
2:  Express each of the variables in terms of basic 

dimensions.
MLT, FLT
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Determination of pi termsDetermination of pi terms

3:  Determine the required member of pi terms.
Buckingham pi theorem:
k variables
r reference dimensions (M, L, T, or θ)

k – r  independent dimensionless groups
4: Select a number of repeating variables, where the 

number  required is equal to the number of reference 
dimensions

Notes: 
1. Each repeating variable must be dimensionally

independent of the others.
2. Do not choose the dependent variable (e.g., Δp) as one

of the  repeating variables.

⇒



Determination of pi termsDetermination of pi terms

5:   Form a pi form by multiplying one of the 
nonrepeating variables by the product of the repeating 
variables, each raised to an exponent that will make 
the combination dimensionless.

6:   Repeat Step 5 for each of the remaining nonrepeating
variables.

7:   Check all the resulting pi terms to make sure they are  
dimensionless.

: nonrepeating variable

: repeating variables 

1 2 3, , ,a b c
iu u u u

iu
1 2 3, ,a b cu u u



Determination of pi termsDetermination of pi terms

8:   Express the final form as a relationship among the pi 
terms,  and think about what it means

The actual functional relationship among the pi terms 
must be determined by experiments.

( )1 2 3, , k rφ −Π = Π Π ΠL



Determination of pi termsDetermination of pi terms
Reconsider pipe pressure drop problem

k=5, basic dimensions: FLT r=3, pi terms: 5-3=2
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Determination of pi termsDetermination of pi terms



Ex 7.1 Determine dragEx 7.1 Determine drag
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V7.2 Flow past a flat plate



7.4.1 Selection of variables7.4.1 Selection of variables

If extraneous variables are included, then too 
many pi terms appear in the final solution.
If important variables are omitted, then an 
incorrect result will be obtained.
Usually, we wish to keep the problem as 
simple as possible, perhaps even if some 
accuracy is sacrificed.
A suitable balance between simplicity and 
accuracy is a desirable goal.



Selection of variablesSelection of variables

For most engineering problems, pertinent variables can be 
classified into three general groups.
Geometry: such as length, diameter, etc.
Material properties: 
External Effects:
Since we wish to keep the number of variables to a 
minimum, it is important that all variables are independent.
If we have a problem, 

and we know that 

then q is not required and can be omitted.  But it can be 
considered separately, if needed.

,ρ μ
,V g

( ), , , , , , 0f q r u v wρ =L

( )1 , , ,q f u v w= L



7.4.2 Determination of Reference7.4.2 Determination of Reference
DimensionsDimensions

The use of FLT or MLT as basic dimensions is 
the simplest.

Occasionally, the number of reference 
dimensions needed to describe all variables is 
smaller than the number of basic dimensions. 
(e.g., Ex. 7.2)

Ex. 7.2



7.4.3 Uniqueness of Pi Terms7.4.3 Uniqueness of Pi Terms

Consider pressure in a pipe 
Select D, V, ρas repeating variables

If instead choosing D, V, μ as repeating variables

Therefore there is not a unique set of pi terms
which arises from a dimensional analysis. 
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Uniqueness of Pi TermsUniqueness of Pi Terms

However, the required number of pi terms is fixed, and 
once a correct set is determined all other possible sets can 
be developed from this set by combinations of products of 
powers of the original set. 
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Uniqueness of Pi TermsUniqueness of Pi Terms

There is no simple answer to the question: 
Which form for the pi terms is best?

Usually, the only guideline is to keep the pi terms as 
simple as possible.

Also, it may be that certain pi terms will be easier to 
work with in actually performing experiments.



7.6 Common Dimensionless7.6 Common Dimensionless
Groups in Fluid MechanicsGroups in Fluid Mechanics



Froude number, Fr
V inertia forceFr

gravitational forceg
= =

l

I s

s s
s s

F a m
dV dVa V
dt ds

=

= =

where s is measured along the streamline 

Common DimensionlessCommon Dimensionless
Groups in Fluid MechanicsGroups in Fluid Mechanics



If Vs and s are expressed in dimensionless form 
* *,s
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For a problem in which gravity (or weight) is not important, the 
Froude number would not appear as an important pi term.

Common DimensionlessCommon Dimensionless
Groups in Fluid MechanicsGroups in Fluid Mechanics

V7.4 Froude number



Reynolds number

Euler number

inertia forceRe
viscous force

Vρ
μ

=
l

Re<<1: creeping flow
Large Re: the flow can be considered nonviscous

2 2

pressure forceEu
inertia force

p p
V Vρ ρ

Δ
= =

Some form of the Euler number would normally be used in 
problems in which pressure or the pressure difference between 
two points is an important variable. 

For problem in which cavitation is of concern,
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Common DimensionlessCommon Dimensionless
Groups in Fluid MechanicsGroups in Fluid Mechanics

V7.3 Reynolds number



www.boattest.com/images-gallery/News/prop_cav.jpg

www.amhrc.edu.au/images/cavtunnel-
propellor2.jpeg 

Cavitation is the formation of vapor bubbles of a flowing 
liquid in a region where the pressure of the liquid falls below 
its vapor pressure.
For example, cavitation may occur when the speed of the 
propeller tip is so high that the liquid pressure becomes lower 
than the vapor pressure
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Common DimensionlessCommon Dimensionless
Groups in Fluid MechanicsGroups in Fluid Mechanics

Cauchy Number and Mach Number
2

2
2

Ca , Ma

Ma Ca

EV V V c
E c E

V
E

υ

υ υ

υ

ρ ρ
ρ

ρ

= = = =

= =

When the Mach number is relatively small (less than 0.3), the 
inertial forces induced by the fluid motion are not sufficiently
large to cause a significant change in the fluid density, and in
this case the compressibility of the fluid can be neglected. 



Common DimensionlessCommon Dimensionless
Groups in Fluid MechanicsGroups in Fluid Mechanics

Strouhal Number
St

V
ω

=
l important in unsteady, oscillating flow problem in 

which the frequency of the oscillation is ω.

It represent a measure of the ratio of inertia forces due to the
unsteadiness of the flow (local acceleration,            ) to the       
inertia forces due to change in velocity from point to point 
in the flow field (convective acceleration,               ). 

singing wires 

V7.5 Strouhal number

tV ∂∂ /

/V V x∂ ∂



Common DimensionlessCommon Dimensionless
Groups in Fluid MechanicsGroups in Fluid Mechanics

Weber Number
2

We Vρ
σ

=
l

It is important when the surface tension at the interface between 
two fluids is significant.  Surface tension is a line force (F/L),  
whose effects become significant, even dominant, when the      
scale decreases to about < 100 μm.

V7.6 Weber number



7.7 Correlation of 7.7 Correlation of 
Experimental dataExperimental data

One of the most important uses of dimensional 
analysis is as an aid in the efficient handling, 
interpretation, and correlation of experimental 
data.
Dimensional analysis provide only the 
dimensionless groups describing the phenomenon, 
and not the specific relationship among the 
groups.
To determine this relationship, suitable 
experimental data must be obtained.



7.7.1 Problems with One Pi Term

1 CΠ = where C is a constant 

7.7.2 Problems with Two or More 
Pi Terms 

( )1 2φΠ = Π ( )1 2 3,φΠ = Π Π

Ex. 7.3 Flow with only one Pi term
Ex. 7.4 Dimensionless correlation of experimental data

V7.7 Stokes flow



77--8 Modeling and Similitude 8 Modeling and Similitude 
A model is a representation of a physical 
system that may be used to predict the 
behavior of the system in some desired 
respect.
The physical system for which the 
predictions are to be made is called the 
prototype.
Usually a model is smaller than the 
prototype. Occasionally, if the prototype 
is very small , it may be advantageous to 
have a model that is larger than the 
prototype so that it can be more easily 
studied. V7.9 Environmental models



7.8.1 Theory of models

It has been shown that
( )1 2 3, , nφΠ = Π Π ΠL

If the equation describes the behavior of a particular 
prototype, a similar relationship can be written for a 
model of this prototype, ie.

( )1 2 3, ,m m m nmφΠ = Π Π ΠL

where the form of the function will be the same as    
long as the same phenomenon is involved in both     
the prototype and the model.



Theory of models

Therefore, if the model is designed and operated 
under the following conditions,
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,
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Π = Π
M

model design condition or similarity 
requirement or modeling laws 

then with the presumption that the form of  is the 
same for model and prototype, it follows that

1 1mΠ = Π - prediction equation 
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Thus, to achieve similarity between model and prototype behavior,
all the corresponding pi terms must be equated between model 
and prototype.

Theory of models



Theory of models
Similarity:

Geometric similarity: (length scale)
A model and prototype are geometrically similar if and 
only if all body dimensions in all three coordinates have 
the same linear-scale rate. (including angles)
Kinematic similarity: (length scale and time scale, 
ie. velocity scale )
The motions of two systems are kinematically similar if 
homologous particles lie at homologous points at 
homologous times
Dynamic similarity
Model and prototype have the same length-scale ratio, 
time-scale ratio, and force-scale (mass-scale) ratio

Ex. 7.5 V7.10 Flow past an ellipse



7.8.2 Model Scales

The ratio of like quantities for the model and 
prototype naturally arises from the similarity 
requirements.
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7.8.3 Practical Aspects of Using 
Models

Validation of Model Design
It is desirable to check the design experimentally 
whenever possible.
May run tests with a series of models of different sizes.
Distorted Model

If one or more of the similarity requirements are not 
met, e.g.,              , then it follows that the prediction 
equation,               is not true, i.e.,               .

Models for which one or more of the similarity 
requirements are not satisfied are called distorted 
models.

1 1mΠ = Π
2 2mΠ ≠ Π

1 1mΠ ≠ Π

V7.12 Distorted river model



Practical Aspects of Using Models
e.g., open channel or free surface flow

Re ,V VFr
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The common fluid used is water, therefore the above 
requirement will not be satisfied.



7.9 Some Typical Model Studies7.9 Some Typical Model Studies
7.9.1 Flow Through Closed Conduits7.9.1 Flow Through Closed Conduits

Example: flow through valves, fittings, metering devices.
For low Mach numbers (Ma < 0.3), any dependent Pi term 
(such as pressure drop) can be expressed as,

il

Dependent pi term , ,i Vε ρφ
μ
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where ε: surface roughness;     : a particular length dimension;
, i=1,2, … : a series of length terms of the system

, ,im i m m m m

m m m

V Vε ρε ρ
μ μ

= = =
l l l l

l l l l

If the pressure drop is the dependent variable then,
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Ex. 7.6

l



For large Reynolds numbers, inertial forces >>viscous forces, 
and in this case it may be possible to neglect viscous effects;
i.e.,  it would not be necessary to maintain Reynolds number 
similarity between model and prototype.
However, both model and prototype have to operate at large 
Reynolds number, and the dependent pi term ceases to be 
affected by changes in Re. (will be shown later)
For flows cavitation phenomenon, then the vapor pressure      
becomes an important variable and an additional similarity 
requirement such as equality of the cavitation number is 
required

, where       is some reference pressure. 

pυ

21
2( ) /rp p Vυ ρ− rp

Flow Through Closed ConduitsFlow Through Closed Conduits



7.9.2 Flow Around Immersed Bodies
Flow around aircraft, automobiles, golf balls , and buildings.

Dependent pi term , ,i Vε ρφ
μ
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l l

Frequently drag         is of interest.D
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V7.14 Model airplane test in water



Flow Around Immersed Bodies

Fortunately, in many situations the flow characteristics are not
strongly influenced by Re over  the operating range of interest.
For high Re, inertial forces are dominant, and CD is essentially 
independent of Re (Fig. 7.7--CD for a sphere).
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NASA Ames 

40 × 80 ft       345 mil/hr

12 × 24 m       552 km/hr

test section

Flow Around Immersed Bodies

Ex. 7.7 V7.15 Large scale wind tunnel



For problem of high Mach number (Ma>0.3), compressibility 
effect grows significant.

In high speed aerodynamics the prototype fluid is usually air, 
c = cm, ν = νm,
and it is difficult to satisfy the above condition, for reasonable 
length scales.
Thus, models involving high speed flows are often distorted 
with respect to Reynolds number similarity, but Mach number 
similarity is maintained. 

m

m

V V
c c

=

Combined with Reynolds number similarity 
m

m m

c
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ν
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→ =
l

l

Flow Around Immersed Bodies



3/8 scale wind tunnel test for automobiles : 
→240km/h wind speed to match Re (no compressibility effect concern)

1/8 scale wind tunnel test for trucks or buses : 
→ 700km/h wind speed to match Re (compressibility effects arise!)

→ match of Re unwanted. (Incomplete similarity)

Then, how to solve this problem?  Use Re-independence of drag coeff. 
above a certain Re.

EX. 7.5 of Fox, et al. “Introduction to Fluid Mechanics,” 7th Ed., 2010.

--Incomplete Similarity: Aerodynamic Drag on a Bus

Incomplete Similarity: Incomplete Similarity: Automobile and Truck Tests



7.9.3 Flow with a Free Surface 7.9.3 Flow with a Free Surface 

Weber number

Dependent pi term
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Weber number: ( )2m mσ ρ λ
σ ρ

= l

For large hydraulic structures, such as dam spillways, the 
Reynolds numbers are large, viscous forces are small in 
comparison to the forces due to gravity and inertia. Therefore, 
Re similarity is not maintained and model designed on the 
basis of Froude number (why not Re?). 

Ex. 7.8

(7.15)

V7.19 Dam model



Model Tests (Fig. 7.2)

(a) Measure the total drag coeff. 

(CD,T)m from model tests at 

corresponding Fr

(b) Calculate analytically the 

friction drag coeff. (CD,F)m ,

(c) Find the wave drag coeff. 

(CD,W)m =(CD,T)m - (CD,F)m .

How to find the full-scale ship resistance from model test 
results? Follow the following procedure: (from Fox, et al. 
“Introduction to Fluid Mechanics”)

Incomplete Similarity: Flow with a Free SurfaceIncomplete Similarity: Flow with a Free Surface

V7.20 Testing of large yacht model



Prototype Predictions (Fig. 7.3)

(a) Match (CD,W)p = (CD,W)m at corresponding Fr (Froude no. scaling),

(b) Calculate analytically (CD,F)p ,

(c) Find (CD,T)p =(CD,W)p + (CD,F)p .

Note: Special treatment (adding studs) is needed for the ship model to 
stimulate turbulent boundary layer at proper position.

Flow with a Free SurfaceFlow with a Free Surface



7.10 Similitude Based on 7.10 Similitude Based on 
Governing Differential EquationsGoverning Differential Equations

Consider 2-D equation 
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u pu p
V V p
x y tx y t

υυ

τ
τ

= = =

= = = l
l l



Therefore,

2 2

2 2 2

* * *
* *

and
* * *

* * *

u Vu x V u
x x x x

u V u x V u
x x x x x

∂ ∂ ∂ ∂
= =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂⎛ ⎞= =⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

l

l l

Thus

{ {
{

2 2 2
0

2 2 2

2
0

* * 0
* *

* * * * * ** *
* * * * * *

* * * ** *
* * * *

G
I PIc

u
x y

pV u V u u p V u uu
t x y x x y

pV V p Vu g
t x y y

F
F FF

υ

ρ ρ μυ
τ

ρ υ ρ υ υ μυ ρ
τ

∂ ∂
+ =

∂ ∂

⎡ ⎤ ⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤⎡ ⎤ ⎡ ⎤+ + = − + +⎜ ⎟⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦⎝ ⎠⎣ ⎦ ⎝ ⎠
⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂⎡ ⎤⎡ ⎤ + + = − + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

l

l l l

l l
123 {

2 2

2 2 2

* *
* *

V

x y
F

υ υ⎛ ⎞∂ ∂⎡ ⎤ +⎜ ⎟⎢ ⎥ ∂ ∂⎣ ⎦ ⎝ ⎠l

inertia (local)   
force

inertia (convective)   
force

pressure   
force

gravity   
force

viscous   
force



2 2
0

2 2 2

2 2
0

2 2 2 2

* * * * * ** *
* * * * * *

* * * * * ** *
* * * * * *

pu u u p u uu
V t x y V x V x y

p p gu
V t x y V y V V x y

μυ
τ ρ ρ

υ υ υ μ υ υυ
τ ρ ρ

⎛ ⎞⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ + + = − + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎝ ⎠
⎛ ⎞⎡ ⎤ ⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤+ + = − + + +⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎝ ⎠

l

l

l l

l

a form of 
Strouhal number

Euler number reciprocal of
Froude number 
square

reciprocal of
Reynolds number

If two systems are governed by these equations, then the 
solutions (in terms of u*,υ*, p*, x*, y*, and t*) will be the 
same if the four parameters: 

(B.C.s must also be the same).

2
0

2, , ,p V V
V V g

ρ
τ ρ μ
l l

l
are equal for the two systems.
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