
Operating System:
Chap9 Virtual Memory
Management
National Tsing-Hua University
2016, Fall Semester

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 2

Overview
 Background
 Demand Paging
 Process Creation
 Page Replacement
 Allocation of Frames
 Thrashing
 Operating System Examples

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 3

Background
 Why we don’t want to run a program that is

entirely in memory….
Many code for handling unusual errors or conditions

 Certain program routines or features are rarely used

 The same library code used by many programs

Arrays, lists and tables allocated but not used

 We want better memory utilization

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 4

Background
 Virtual memory – separation of user logical memory
 from physical memory

 To run a extremely large process
Logical address space can be much larger than physical address space

 To increase CPU/resources utilization
higher degree of multiprogramming degree

 To simplify programming tasks
Free programmer from memory limitation

 To run programs faster
less I/O would be needed to load or swap

 Virtual memory can be implemented via
 Demand paging
 Demand segmentation: more complicated due to variable sizes

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 5

Virtual Memory vs. Physical Memory

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 6

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x9), AX
CALL print, (0x9)
POP AX
.END
.SPACE (8)

0 - i
1 - i
2 - i
3 - i
4 - i
5 - i
6 - i
7 - i
8 - i
9 - i
10 - i
11 - i
12 - i
13 - i
14 - i
15 - i

0
1
2
3
4
5
6
7
8
9
10
….
….
30
31
32

Page Table

Memory

MOVE AX, 3

3
8
6
5
1
31

………
………

PUSH AX

MULT AX, 7
MOVE (0x9), AX

CALL print, (0x9)

POP AX

VA PA

....
.…

………
……..

v
v
v
v
v
v

1. Initialize PCB, PC
 registers and
 Page Table.
2. Load Code into
 memory.
3. Running
4. Finish.

Valid bit

0
1
2
3
4
5
6

32 v

21

int data[8];
main() {
 data[3] = 3 * 7;
 print(data);
}

10 v

.END

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 7

Demand Paging

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 8

Demand Paging
 A page rather than the whole process is brought into

memory only when it is needed
 Less I/O needed Faster response
 Less memory needed More users

 Page is needed when there is a reference to the page
 Invalid reference abort
 Not-in-memory bring to memory via paging

 pure demand paging
 Start a process with no page
 Never bring a page into memory until it is required

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 9

Demand Paging
 A swapper (midterm scheduler) manipulates the

entire process, whereas a pager is concerned
with the individual pages of a process

 Hardware support
 Page Table: a valid-invalid bit

1 page in memory
0 page not in memory
Initially, all such bits are set to 0

 Secondary memory (swap space, backing store):
Usually, a high-speed disk (swap device) is use

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 10

.START
PUSH AX
MOVE AX, 3
MULT AX, 7
MOVE (0x9), AX
CALL print, (0x9)
POP AX
.END
.SPACE (8)

0 - i
1 - i
2 - i
3 - i
4 - i
5 - i
6 - i
7 - i
8 - i
9 - i
10 - i
11 - i
12 - i
13 - i
14 - i
15 - i

0
1
2
3
4
5
6
7
8
9
10
….
….
30
31
32

Page Table

Memory

MOVE AX, 3

3
8
6
5
1
31

………
………

PUSH AX

MULT AX, 7
MOVE (0x9), AX

CALL print, (0x9)

POP AX

VA PA

....
.…

………
……..

v
v
v
v
v
v

Valid bit

0
1
2
3
4
5
6

32 v

21

int data[8];
main() {
 data[3] = 3 * 7;
 print(data);
}

10 v

.END

Demand Paging

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 11

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 12

Page Fault

 First reference to a page will trap to OS
 page-fault trap
1. OS looks at the internal table (in PCB) to

decide
 Invalid reference abort
 Just not in memory continue

2. Get an empty frame
3. Swap the page from disk (swap space) into

the frame
4. Reset page table, valid-invalid bit = 1
5. Restart instruction

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 13

Page Fault Handling Steps

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 14

Page Replacement
 If there is no free frame when a page fault

occurs
 Swap a frame to backing store
 Swap a page from backing store into the frame
Different page replacement algorithms pick

different frames for replacement

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 15

Demand Paging Performance
 Effective Access Time (EAT): (1 – p) x ma + p x pft

 P: page fault rate, ma : mem. access time, pft : page fault time

 Example: ma = 200ns, pft = 8ms
 EAT = (1 - p) * 200ns + p * 8ms

 = 200ns + 7,999,800ns x p
 Access time is proportional to the page fault rate

 If one access out of 1,000 causes a page fault, then
 EAT = 8.2 microseconds. slowdown by a factor of 40!

 For degradation less then 10%:
 220 > 200+ 7,999,800 × p ,
 p < 0.0000025 one access out of 399,990 to page fault

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 16

Demand Paging Performance (Con’t)
 Programs tend to have locality of reference
 Locality means program often accesses memory

addresses that are close together
 A single page fault can bring in 4KB memory content
 Greatly reduce the occurrence of page fault

 major components of page fault time (about 8 ms)
1. serve the page-fault interrupt
2. read in the page from disk (most expensive)
3. restart the process
 The 1st and 3rd can be reduced to several hundred

instructions
 The page switch time is close to 8ms

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 17

Process Creation

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 18

Process & Virtual Memory
 Demand Paging: only bring in the page

containing the first instruction

 Copy-on-Write: the parent and the child
process share the same frames initially, and
frame-copy when a page is written

 Memory-Mapped File: map a file into the
virtual address space to bypass file system
calls (e.g., read(), write())

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 19

Copy-on-Write
 Allow both the parent and the child process to

share the same frames in memory
 If either process modifies a frame, only then a

frame is copied
 COW allows efficient process creation (e.g.,

fork())
 Free frames are allocated from a pool of

zeroed-out frames (security reason)
 The content of a frame is erased to 0

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 20

When a child process is forked
#include <stdio.h>
void main()
{
 int A;
 /* fork child process */
 A = fork();

 if (A != 0) {
 /* parent process */
 int test1=0;
 }
 printf(“process ends”);
}

Parent Child

Heap

Code

Stack

Heap

Code

Stack

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 21

After a page is modified

Heap

Code

Stack

Heap

Code

Stack

Parent Child
#include <stdio.h>
void main()
{
 int A;
 /* fork child process */
 A = fork();

 if (A != 0) {
 /* parent process */
 int test1=0;
 }
 printf(“process ends”);
}

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 22

Memory-Mapped Files
 Approach:

 MMF allows file I/O to be treated as routine memory access by
mapping a disk block to a memory frame

 A file is initially read using demand paging. Subsequent
reads/writes to/from the file are

 treated as ordinary memory accesses

 Benefit:
 Faster file access by using memory access rather than read()

and write() system calls
 Allows several processes to map the SAME file allowing the

pages in memory to be SHARED
 Concerns: Security, data lost, more programming efforts

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 23

Memory-Mapped File Example

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 24

int buf;
int fd = open(filename, O_RDWR);
lseek(fd, 1024, SEEK_SET);
read(fd, &buf, sizeof(int));
buf ++;
lseek(fd, 1024, SEEK_SET);
write(fd, &buf, sizeof(int));
close(fd);

int fd = open(filename, O_RDWR);
int* area = mmap(0, BUFSIZE,
 PROT_READ | PROT_WRITE,
 MAP_SHARED, fd, 1024);
area[0]++;
close(fd);
munmap(area, BUFSIZE);

User space VM

File:

kernel file cache
…

…

text

Initialized
data

heap

stack

1234

1234

Copy to
user

1 2 2234

2234

Copy to
kernel

1234 2234 Memory
mapped
portion

buf

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 25

Review Slides (I)
 Virtual memory? Physical Memory?
 Demand paging?
 Page table support for demand paging?
 OS handling steps for page fault?
 Page replacement?
 Copy-on-write? Usage?
 Memory-mapped file? Usage?

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 26

Page Replacement

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 27

Page Replacement Concept
 When a page fault occurs with no free frame
 swap out a process, freeing all its frames, or
 page replacement: find one not currently used

and free it
Use dirty bit to reduce overhead of page transfers –
only modified pages are written to disk

 Solve two major problems for demand paging
 frame-allocation algorithm:

Determine how many frames to be allocated to
a process

 page-replacement algorithm:
select which frame to be replaced

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 28

Page Replacement (Page Fault) Steps
1. Find the location of the desired page on disk

2. Find a free frame

 If there is a free frame, use it
 If there is no free frame, use a page replacement

algorithm to select a victim frame

3. Read the desired page into the (newly) free
frame. Update the page & frame tables

4. Restart the process

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 29

Page Replacement (Page Fault) Example

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 30

Page Replacement Algorithms
 Goal: lowest page-fault rate
 Evaluation: running against a string of

memory references (reference string) and
computing the number of page faults

 Reference string:
 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 31

Replacement Algorithms
 FIFO algorithm

 Optimal algorithm

 LRU algorithm

 Counting algorithm
 LFU
MFU

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 32

First-In-First-Out (FIFO) Algorithm

2

1

2
3

2

1

3
4

3

2

4
1

4

3

1
2

1

4

2
5

2

1

5
5

2

1

1
5

2

1

2
3

5

2

3
4

3

5

4
4

3

5

5

 The oldest page in a FIFO queue is replaced
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 3 frames (available memory frames = 3)
 9 page faults

1
1

head
(new)

tail
(old)

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 33

FIFO Illustrating Belady’s Anomaly

1 2 5 1 2 3 4 5
1
1

2

1

2
3

2

1

3
4

3

2

4
head
(new)

tail
(old)

1

4

3

2

1

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

 Does more allocated frames guarantee less page fault?
 Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 4 frames (available memory frames = 4)

 10 page faults!
 Belady’s anomaly

 Greater allocated frames more page fault

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 34

FIFO Illustrating Belady’s Anomaly

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 35

Optimal (Belady) Algorithm
 Replace the page that will not be used for the longest

period of time
 need future knowledge

 4 frames: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
 In practice, we don’t have future knowledge

 Only used for reference & comparison

1 2 5 1 2 3 4 5 1 2 3 4
1

head

tail

1

2

1

2

3

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

5

1

2

3

5

1

2

3

5

1

2

3

5

4

2

3

5

4

2

3

5

 6 page faults!

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 36

LRU Algorithm (Least Recently Used)
 An approximation of optimal algorithm:
 looking backward, rather than forward

 It replaces the page that has not been used
for the longest period of time

 It is often used, and is considered as quite
good

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 37

LRU Algorithm Implementations
 Counter implementation

 page referenced: time stamp is copied into the counter
 replacement: remove the one with oldest counter

linear search is required…
 Stack implementation

 page referenced: move to top of the double-linked list
 replacement: remove the page at the bottom
 4 frames: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1 2 5 1 2 3 4 5 1 2 3 4
1

head

tail

2
1

3
2
1

4
3
2
1

1
4
3
2

2
1
4
3

5
2
1
4

1
5
2
4

2
1
5
4

3
2
1
5

4
3
2
1

5
4
3
2

 8 page faults!

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 38

Stack Algorithm
 A property of algorithms
 Stack algorithm: the set of pages in memory for

n frames is always a subset of the set of pages
that would be in memory with n +1 frames

 Stack algorithms do not suffers from Belady's
anomaly

 Both optimal algorithm and LRU algorithm are
stack algorithm

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 39

LRU approximation algorithms
 Few systems provide sufficient hardware

support for the LRU page-replacement
 additional-reference-bits algorithm
 second-chance algorithm
 enhanced second-chance algorithm

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 40

Counting Algorithms
 LFU Algorithm (least frequently used)
 keep a counter for each page
 Idea: An actively used page should have a large

reference count
 MFU Algorithm (most frequently used)
 Idea: The page with the smallest count was

probably just brought in and has yet to be used
 Both counting algorithm are not common
 implementation is expensive
 do not approximate OPT algorithm very well

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 41

Allocation of Frames

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 42

Introduction
 Each process needs minimum number of frames
 E.g.: IBM 370 – 6 pages to handle Storage to

Storage MOVE instruction:
 Both operands are in main storage,
 the first operand is B1(Reg.ID)+D1,
 the second operand is B2(Reg. ID)+D2,
 L plus 1 is the length.
 instruction is 6 bytes, may span 2 pages
 Moving content could across 2 pages

Bits 0 7 8 15 16 19 20 31 32 35 36 47

Op code L B1 D1 B2 D2

instruction

B1+D1

B2+D2

6B

L

L

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 43

Frame Allocation
 Fixed allocation
 Equal allocation – 100 frames, 5 processes 20

frames/process
 Proportional allocation – Allocate according to the

size of the process

 Priority allocation
 using proportional allocation based on priority,

instead of size
 if process P generates a page fault

select for replacement one of its frames
select for replacement from a process with lower priority

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 44

Frame Allocation
 Local allocation: each process select from its

own set of allocated frames
 Global allocation: process selects a

replacement frame from the set of all frames
 one process can take away a frame of another

process
 e.g., allow a high-priority process to take frames

from a low-priority process
 good system performance and thus is common

used
A minimum number of frames must be

maintained for each process to prevent trashing

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 45

Review Slides (II)
 Page replacement steps?
 Place replacement algorithm goal?
 Dirty bit usage?
 Belady’s anomaly?
 FIFO? Optimal? LRU?
 Fixed vs. priority frame allocation?
 Global vs. local frame allocation?

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 46

Thrashing

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 47

Definition of Thrashing
 If a process does not have “enough” frames
 the process does not have # frames it needs to

support pages in active use
 Very high paging activity

 A process is thrashing if it is spending more
time paging than executing

thrashing

CPU utilization

degree of multiprogramming

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 48

Thrashing
 Performance problem caused by thrashing
 (Assume global replacement is used)
processes queued for I/O to swap (page fault)
 low CPU utilization
OS increases the degree of multiprogramming
 new processes take frames from old processes
 more page faults and thus more I/O
 CPU utilization drops even further

 To prevent thrashing, must provide enough frames
for each process:
Working-set model, Page-fault frequency

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 49

Working-Set Model
 Locality: a set of pages that are actively used

together
 Locality model: as a process executes, it moves

from locality to locality
 program structure (subroutine, loop, stack)
 data structure (array, table)

 Working-set model (based on locality model)
 working-set window: a parameter ∆ (delta)
 working set: set of pages in most recent ∆ page

references (an approximation locality)

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 50

Working-Set Example

 If ∆ = 10:

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 51

Working-Set Model
 Prevent thrashing using the working-set size
WSSi : working-set size for process i
D = ∑ WSSi (total demand frames)
 If D > m (available frames) ⇒ thrashing
 The OS monitors the WSSi of each process and

allocates to the process enough frames
if D << m, increase degree of MP
if D > m, suspend a process

: 1. prevent thrashing while keeping the degree of
 multiprogramming as high as possible

 2. optimize CPU utilization
 : too expensive for tracking

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 52

Page Fault Frequency Scheme
 Page fault frequency directly measures and

controls the page-fault rate to prevent thrashing
 Establish upper and lower bounds on the desired

page-fault rate of a process
 If page fault rate exceeds the upper limit

allocate another frame to the process

 If page fault rate falls below the lower limit
remove a frame from the process

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 53

Page Fault Frequency Scheme

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 54

Working Sets and Page Fault Rates
peak of new locality

 Memory has locality property
 When the process moves to a new WS, the PF

rate rises toward a peak

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 55

Review Slides (III)
 Thrashing definition?
 Process locality?
 When will thrashing happen? Solution?

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 56

Reading Material & HW
 Chap 9
 Problems
 9.2, 9.4, 9.6, 9.8, 9.9, 9.12, 9.14, 9.17, 9.19, 9.21

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 57

Backup

Chapter9 Virtual Memory Operating System Concepts – NTHU LSA Lab 58

Windows NT
 Uses demand paging with clustering. Clustering

brings in pages surrounding the faulting page
 Processes are assigned working-set minimums and

working-set maximums
 WS minimum: the minimum # of pages the process is

guaranteed to be in memory
 A process can have pages up to its WS maximum
 When the amount of free memory in the system falls

below a threshold, automatic working set trimming
is performed

 Working set trimming removes pages from processes
that have pages in excess of their WS minimum

	Operating System:�Chap9 Virtual Memory Management
	Overview
	Background
	Background
	Virtual Memory vs. Physical Memory
	投影片編號 6
	Demand Paging
	Demand Paging
	Demand Paging
	Demand Paging
	投影片編號 11
	Page Fault
	Page Fault Handling Steps
	Page Replacement	
	Demand Paging Performance
	Demand Paging Performance (Con’t)
	Process Creation
	Process & Virtual Memory
	Copy-on-Write
	When a child process is forked
	After a page is modified
	Memory-Mapped Files
	Memory-Mapped File Example
	投影片編號 24
	Review Slides (I)
	Page Replacement
	Page Replacement Concept
	Page Replacement (Page Fault) Steps
	Page Replacement (Page Fault) Example
	Page Replacement Algorithms
	Replacement Algorithms
	First-In-First-Out (FIFO) Algorithm
	FIFO Illustrating Belady’s Anomaly
	FIFO Illustrating Belady’s Anomaly
	Optimal (Belady) Algorithm
	LRU Algorithm (Least Recently Used)
	LRU Algorithm Implementations
	Stack Algorithm
	LRU approximation algorithms
	Counting Algorithms
	Allocation of Frames
	Introduction
	Frame Allocation
	Frame Allocation
	Review Slides (II)
	Thrashing
	Definition of Thrashing
	Thrashing
	Working-Set Model
	Working-Set Example
	Working-Set Model
	Page Fault Frequency Scheme
	Page Fault Frequency Scheme
	Working Sets and Page Fault Rates
	Review Slides (III)
	Reading Material & HW
	Backup
	Windows NT

