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Overview 
 System Model 
 Deadlock Characterization 
 Deadlock Prevention 
 Deadlock Avoidance 
 Deadlock Detection 
 Recovery from Deadlock 
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Deadlock Problem 
 A set of blocked processes each holding some 

resources and waiting to acquire a resource held by 
another process in the set 

 Ex1: 2 processes and 2 tape drivers 
 Each process holds a tape drive 
 Each process requests another tape drive 

 Ex2: 2 processes, and semaphores A & B 
 P1 (hold B, wait A): wait(A), signal(B) 
 P2 (hold A, wait B): wait(B) , signal(A) 
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Necessary Conditions 
 Mutual exclusion:  

 only 1 process at a time can use a resource 
 Hold & Wait:  

 a process holding some resources and is waiting  
 for another resource 

 No preemption:  
 a resource can be only  
 released by a process voluntarily 

 Circular wait:  
 there exists a set {P0, P1, …, Pn}  
 of waiting processes such that  
 P0 → P1 → P2 → ...  → Pn → P0 

All four conditions must hold for possible deadlock! 
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System Model 
 Resources types R1, R2, …, Rm 
 E.g. CPU, memory pages, I/O devices 

 Each resource type Ri has Wi instances 
 E.g. a computer has 2 CPUs 

 Each process utilizes a resource as follows: 
 Request  use  release 
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Resource-Allocation Graph 
• 3 processes, P1 ~ P3 
• 4 resources, R1 ~ R4 

• R1 and R3 each has one instance 
• R2 has two instances 
• R4 has three instances 
 

• Request edges: 
• P1R1: P1 requests R1 

• Assignment edges: 
• R2P1: One instance of R2  
   is allocated to P1 

P1 is hold on an instance of R2 
and waiting for an instance of R1 

P1 P2 P3 

R2 
R4 

R1 R3 
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Resource-Allocation Graph w/ Deadlock 

 If the graph contains a cycle, a deadlock may exist 
 In the example: 
 P1 is waiting for P2 
 P2 is waiting for P3  
 P1 is also waiting for P3 
 Since P3 is waiting for P1 or P2, 
 and they both waiting for P3 
 deadlock! 
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RA Graph w/ Cycle but NO Deadlock 
 If the graph contains a cycle, a deadlock may exist 
 In the example: 
 P1 is waiting for P2 or P3 
 P3 is waiting for P1 or P4  
 Since P2 and P4 wait no one 
 no deadlock  
     between P1 & P3! 
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Deadlock Detection 
 If graph contains no cycle  no deadlock 
 Circular wait cannot be held 

 If graph contains a cycle: 
 if one instance per resource type  deadlock 
 if multiple instances per resource type  

possibility of deadlock 
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Handling Deadlocks 
 Ensure the system will never enter a deadlock state 
 deadlock prevention: ensure that at least one of the 4 

necessary conditions cannot hold 
 deadlock avoidance: dynamically examines the 

resource-allocation state before allocation 

 Allow to enter a deadlock state and then recover 
 deadlock detection 
 deadlock recovery 

 Ignore the problem and pretend that deadlocks 
never occur in the system 
 used by most operating systems, including UNIX. 
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Review Slides ( I ) 
 deadlock necessary conditions? 

 mutual exclusion 
 hold & wait 
 no preemption 
 circular wait 

 resource-allocation graph? 
 cycle in RAG  deadlock? 

 deadlock handling types? 
 deadlock prevention 
 deadlock avoidance 
 deadlock recovery 
 ignore the problem 
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Deadlock Prevention & 
Deadlock Avoidance 
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Deadlock Prevention 
 Mutual exclusion (ME): do not require ME on 

sharable resources 
 e.g. there is no need to ensure ME on read-only files 
 Some resources are not shareable, however (e.g. 

printer) 

 Hold & Wait:  
When a process requests a resource, it does not hold 

any resource 
 Pre-allocate all resources before executing 

 resource utilization is low; starvation is possible 
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Deadlock Prevention (con’t) 
 No preemption 
When a process is waiting on a resource, all its 

holding resources are preempted 
e.g. P1 request R1, which is allocated to P2, which in 
turn is waiting on R2.  (P1 → R1 → P2 → R2) 
R1 can be preempted and reallocated to P1 

Applied to resources whose states can be easily 
saved and restored later 

e.g. CPU registers & memory 

 It cannot easily be applied to other resources 
e.g. printers & tape drives 
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Deadlock Prevention (con’t) 
 Circular wait 
 impose a total ordering of all resources types 
 a process requests resources in an increasing order 

Let R={R0, R1, …, RN} be the set of resource types 
When request Rk, should release all Ri, i ≥ k 

 Example: 
F(tape drive) = 1, F(disk drive) = 5, F(printer) = 12 
A process must request tape and disk drive before printer 

 proof: counter-example does not exist 
P0 (R0)  R1,  P1 (R1)  R2, …, PN(RN)  R0 
Conflict: R0 < R1 < R2 < … < RN < R0 

PN hold RN, wait R0 
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Avoidance Algorithms 
 Single instance of a resource type   
resource-allocation graph (RAG) algorithm 

based on circle detection 
 

 Multiple instances of a resource type 
banker’s algorithm based on safe sequence 

detection 
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Resource-Allocation Graph (RAG) Algorithm 
 Request edge: PiRj 

 Process Pi is waiting for  
 resource Rj 

 Assignment edge: RjPi 
 Resource Rj is allocated  
 and held by process Pi 

 Claim edge: PiRj 
 process Pi may request Rj  
 in the future 

 Claim edge converts to request edge 
 When a resource is requested by process 

 Assignment edge converts to a claim edge 
 When a resource is released by a process 



Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 18 

Resource-Allocation Graph (RAG) Algorithm 

 Resources must be claimed 
a priori in the system 

 Grant a request only if NO 
cycle created 

 Check for safety using a 
cycle-detection algorithm, 
O(n2) 

 Example: R2 cannot be 
allocated to P2 

request assignment 

assignment claim 
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Avoidance Algorithms 
 Single instance of a resource type   
resource-allocation graph (RAG) algorithm 

based on circle detection 
 

 Multiple instances of a resource type 
banker’s algorithm based on safe sequence 

detection 
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Deadlock Avoidance 
 safe state: a system is in a safe state if there exists  
 a sequence of allocations to satisfy requests by all 

processes 
 This sequence of allocations is called safe sequence 

 safe state  no deadlock 
 unsafe state   
 possibility of deadlock 
 deadlock avoidance   
 ensure that a system never  
 enters an unsafe state 
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Safe State with Safe Sequence 
 There are 12 tape drives 
 Assuming at t0: 
    Max Needs    Current Holding 
 P0     10       5 
 P1  4     2 
 P2  9     2 
  <P1, P0, P2> is a safe sequence 
  

Hint from 
processes 
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Safe State with Safe Sequence 
 There are 12 tape drives 
 Assuming at t0: 
    Max Needs    Current Holding    Available 
 P0     10       5 
 P1  4     2                          3 
 P2  9     2 
  <P1, P0, P2> is a safe sequence 

1. P1 satisfies its allocation with 3 available resources 
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Safe State with Safe Sequence 
 There are 12 tape drives 
 Assuming at t0: 
    Max Needs    Current Holding    Available 
 P0     10       5                          5 
 P1  4     0                           
 P2  9     2 
  <P1, P0, P2> is a safe sequence 

1. P1 satisfies its allocation with 3 available resources 
2. P0 satisfies its allocation with 5 available resources 
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Safe State with Safe Sequence 
 There are 12 tape drives 
 Assuming at t0: 
    Max Needs    Current Holding    Available 
 P0     10       0                           
 P1  4     0                           
 P2  9     2                         10 
  <P1, P0, P2> is a safe sequence 

1. P1 satisfies its allocation with 3 available resources 
2. P0 satisfies its allocation with 5 available resources 
3. P2 satisfies its allocation with 10 available resources 
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Un-Safe State w/o Safe Sequence 
 Assuming at t1: 
    Max Needs    Current Holding  Available 
 P0     10       5 
 P1  4     2                        2 
 P2  9   2  3 
  if P2 requests & is allocated 1 more tape drive  
 No safe sequence exist… 
  this allocation enters the system into an unsafe state 
 A request is only granted if the allocation leaves the 

system in a safe state 
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Banker’s Algorithm 
 Use for multiple instances of each resource type 
 Banker algorithm:  
 Use a general safety algorithm to pre-determine if 

any safe sequence exists after allocation 
 Only proceed the allocation if safe sequence exists 

 Safety algorithm: 
1. Assume processes need maximum resources 
2. Find a process that can be satisfied by free 

resources 
3. Free the resource usage of the process 
4. Repeat to step 2 until all processes are satisfied 
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Banker’s Algorithm Example (Safety Algo.) 

 Total instances: A:10, B:5, C:7 
 Available instances: A:3, B:3, C:2 
    Max  Allocation        Need(Max.-Alloc.) 
  A  B  C     A  B  C                      A  B  C 
P0  7   5  3      0   1   0                    7  4   3                   
P1         3   2  2      2   0   0                    1  2   2   
P2         9   0  2      3   0   2                    6  0   0 
P3         2   2  2      2   1   1                    0  1   1 
P4         4   3  3      0   0   2                    4  3   1 
 
 Safe sequence: P1 
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Banker’s Algorithm Example (Safety Algo.) 

 Total instances: A:10, B:5, C:7 
 Available instances: A:5, B:3, C:2 
    Max  Allocation        Need(Max.-Alloc.) 
  A  B  C     A  B  C                      A  B  C 
P0  7   5  3      0   1   0                    7  4   3                   
P1         3   2  2      2   0   0                    1  2   2   
P2         9   0  2      3   0   2                    6  0   0 
P3         2   2  2      2   1   1                    0  1   1 
P4         4   3  3      0   0   2                    4  3   1 
 
 Safe sequence: P1, P3 
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Banker’s Algorithm Example (Safety Algo.) 

 Total instances: A:10, B:5, C:7 
 Available instances: A:7, B:4, C:3 
    Max  Allocation        Need(Max.-Alloc.) 
  A  B  C     A  B  C                      A  B  C 
P0  7   5  3      0   1   0                    7  4   3                   
P1         3   2  2      2   0   0                    1  2   2   
P2         9   0  2      3   0   2                    6  0   0 
P3         2   2  2      2   1   1                    0  1   1 
P4         4   3  3      0   0   2                    4  3   1 
 
 Safe sequence: P1, P3, P4 
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Banker’s Algorithm Example (Safety Algo.) 

 Total instances: A:10, B:5, C:7 
 Available instances: A:7, B:4, C:5 
    Max  Allocation        Need(Max.-Alloc.) 
  A  B  C     A  B  C                      A  B  C 
P0  7   5  3      0   1   0                    7  4   3                   
P1         3   2  2      2   0   0                    1  2   2   
P2         9   0  2      3   0   2                    6  0   0 
P3         2   2  2      2   1   1                    0  1   1 
P4         4   3  3      0   0   2                    4  3   1 
 
 Safe sequence: P1, P3, P4, P2 
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Banker’s Algorithm Example (Safety Algo.) 

 Total instances: A:10, B:5, C:7 
 Available instances: A:10, B:4, C:7 
    Max  Allocation        Need(Max.-Alloc.) 
  A  B  C     A  B  C                      A  B  C 
P0  7   5  3      0   1   0                    7  4   3                   
P1         3   2  2      2   0   0                    1  2   2   
P2         9   0  2      3   0   2                    6  0   0 
P3         2   2  2      2   1   1                    0  1   1 
P4         4   3  3      0   0   2                    4  3   1 
 
 Safe sequence: P1, P3, P4, P2, P0 
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Banker’s Algorithm Example 
 Total instances: A:10, B:5, C:7 
 Available instances: A:3, B:3, C:2 
    Max  Allocation        Need(Max-Alloc) 
  A  B  C     A  B  C                      A  B  C 
P0  7   5  3      0   1   0                    7  4   3                   
P1         3   2  2      2   0   0                    1  2   2   
P2         9   0  2      3   0   2                    6  0   0 
P3         2   2  2      2   1   1                    0  1   1 
P4         4   3  3      0   0   2                    4  3   1 

 
 If Request (P1) = (1, 0, 2): P1 allocation  3, 0, 2 

 Enter another safe state (Safe sequence: P1, P3, P4, P0, P2) 
 If Request (P4) = (3, 3, 0): P4 allocation  3, 3, 2 

 enter into an unsafe state (no safe sequence can be found!) 
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Review Slides ( II ) 
 deadlock prevention methods? 
mutual exclusion 
 hold & wait 
 no preemption 
 circular wait 

 deadlock avoidance methods? 
 safe state definition? 
 safe sequence? 
 claim edge? 
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Deadlock Detection & 
Deadlock Recovery 
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Deadlock Detection 
 Single instance of each resource type 

 convert request/assignment edges into wait-for graph 
 deadlock exists if there is a cycle in the wait-for graph 

Resource-Allocation Graph Corresponding wait-for graph 
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Multiple-Instance for Each Resource Type 

 Total instances: A:7, B:2, C:6 
 Available instances: A:0, B:0, C:0 
  Allocation Request 
    A  B  C   A  B   C  
P0     0   1  0         0   0   0 
P1      2   0  0   2   0   2  
P2      3   0  3  0   0   0 
P3      2   1  1  1   0   0 
P4      0   0  2  0   0   2 
 The system is in a safe state  <P0, P2, P3, P1, P4> 
  no deadlock 
 If P2 request = <0, 0, 1>  no safe sequence can be found 
 the system is deadlocked 
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Deadlock Recovery 
 Process termination 
 abort all deadlocked processes 
 abort 1 process at a time until the deadlock cycle 

is eliminated 
which process should we abort first? 

 Resource preemption 
 select a victim: which one to preempt? 
 rollback: partial rollback or total rollback? 
 starvation: can the same process be preempted 

always? 
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Reading Material & HW 
 Chap 7 
 Problem Set 
 7.6, 7.7, 7.8, 7.9, 7.12, 7.13 
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