
Operating System:
Chap7 Deadlocks

National Tsing-Hua University
2016, Fall Semester

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 2

Overview
 System Model
 Deadlock Characterization
 Deadlock Prevention
 Deadlock Avoidance
 Deadlock Detection
 Recovery from Deadlock

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 3

Deadlock Problem
 A set of blocked processes each holding some

resources and waiting to acquire a resource held by
another process in the set

 Ex1: 2 processes and 2 tape drivers
 Each process holds a tape drive
 Each process requests another tape drive

 Ex2: 2 processes, and semaphores A & B
 P1 (hold B, wait A): wait(A), signal(B)
 P2 (hold A, wait B): wait(B) , signal(A)

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 4

Necessary Conditions
 Mutual exclusion:

 only 1 process at a time can use a resource
 Hold & Wait:

 a process holding some resources and is waiting
 for another resource

 No preemption:
 a resource can be only
 released by a process voluntarily

 Circular wait:
 there exists a set {P0, P1, …, Pn}
 of waiting processes such that
 P0 → P1 → P2 → ... → Pn → P0

All four conditions must hold for possible deadlock!

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 5

System Model
 Resources types R1, R2, …, Rm
 E.g. CPU, memory pages, I/O devices

 Each resource type Ri has Wi instances
 E.g. a computer has 2 CPUs

 Each process utilizes a resource as follows:
 Request use release

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 6

Resource-Allocation Graph
• 3 processes, P1 ~ P3
• 4 resources, R1 ~ R4

• R1 and R3 each has one instance
• R2 has two instances
• R4 has three instances

• Request edges:
• P1R1: P1 requests R1

• Assignment edges:
• R2P1: One instance of R2
 is allocated to P1

P1 is hold on an instance of R2
and waiting for an instance of R1

P1 P2 P3

R2
R4

R1 R3

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 7

Resource-Allocation Graph w/ Deadlock

 If the graph contains a cycle, a deadlock may exist
 In the example:
 P1 is waiting for P2
 P2 is waiting for P3
 P1 is also waiting for P3
 Since P3 is waiting for P1 or P2,
 and they both waiting for P3
 deadlock!

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 8

RA Graph w/ Cycle but NO Deadlock
 If the graph contains a cycle, a deadlock may exist
 In the example:
 P1 is waiting for P2 or P3
 P3 is waiting for P1 or P4
 Since P2 and P4 wait no one
 no deadlock
 between P1 & P3!

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 9

Deadlock Detection
 If graph contains no cycle no deadlock
 Circular wait cannot be held

 If graph contains a cycle:
 if one instance per resource type deadlock
 if multiple instances per resource type

possibility of deadlock

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 10

Handling Deadlocks
 Ensure the system will never enter a deadlock state
 deadlock prevention: ensure that at least one of the 4

necessary conditions cannot hold
 deadlock avoidance: dynamically examines the

resource-allocation state before allocation

 Allow to enter a deadlock state and then recover
 deadlock detection
 deadlock recovery

 Ignore the problem and pretend that deadlocks
never occur in the system
 used by most operating systems, including UNIX.

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 11

Review Slides (I)
 deadlock necessary conditions?

 mutual exclusion
 hold & wait
 no preemption
 circular wait

 resource-allocation graph?
 cycle in RAG deadlock?

 deadlock handling types?
 deadlock prevention
 deadlock avoidance
 deadlock recovery
 ignore the problem

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 12

Deadlock Prevention &
Deadlock Avoidance

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 13

Deadlock Prevention
 Mutual exclusion (ME): do not require ME on

sharable resources
 e.g. there is no need to ensure ME on read-only files
 Some resources are not shareable, however (e.g.

printer)

 Hold & Wait:
When a process requests a resource, it does not hold

any resource
 Pre-allocate all resources before executing

 resource utilization is low; starvation is possible

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 14

Deadlock Prevention (con’t)
 No preemption
When a process is waiting on a resource, all its

holding resources are preempted
e.g. P1 request R1, which is allocated to P2, which in
turn is waiting on R2. (P1 → R1 → P2 → R2)
R1 can be preempted and reallocated to P1

Applied to resources whose states can be easily
saved and restored later

e.g. CPU registers & memory

 It cannot easily be applied to other resources
e.g. printers & tape drives

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 15

Deadlock Prevention (con’t)
 Circular wait
 impose a total ordering of all resources types
 a process requests resources in an increasing order

Let R={R0, R1, …, RN} be the set of resource types
When request Rk, should release all Ri, i ≥ k

 Example:
F(tape drive) = 1, F(disk drive) = 5, F(printer) = 12
A process must request tape and disk drive before printer

 proof: counter-example does not exist
P0 (R0) R1, P1 (R1) R2, …, PN(RN) R0
Conflict: R0 < R1 < R2 < … < RN < R0

PN hold RN, wait R0

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 16

Avoidance Algorithms
 Single instance of a resource type
resource-allocation graph (RAG) algorithm

based on circle detection

 Multiple instances of a resource type
banker’s algorithm based on safe sequence

detection

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 17

Resource-Allocation Graph (RAG) Algorithm
 Request edge: PiRj

 Process Pi is waiting for
 resource Rj

 Assignment edge: RjPi
 Resource Rj is allocated
 and held by process Pi

 Claim edge: PiRj
 process Pi may request Rj
 in the future

 Claim edge converts to request edge
 When a resource is requested by process

 Assignment edge converts to a claim edge
 When a resource is released by a process

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 18

Resource-Allocation Graph (RAG) Algorithm

 Resources must be claimed
a priori in the system

 Grant a request only if NO
cycle created

 Check for safety using a
cycle-detection algorithm,
O(n2)

 Example: R2 cannot be
allocated to P2

request assignment

assignment claim

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 19

Avoidance Algorithms
 Single instance of a resource type
resource-allocation graph (RAG) algorithm

based on circle detection

 Multiple instances of a resource type
banker’s algorithm based on safe sequence

detection

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 20

Deadlock Avoidance
 safe state: a system is in a safe state if there exists
 a sequence of allocations to satisfy requests by all

processes
 This sequence of allocations is called safe sequence

 safe state no deadlock
 unsafe state
 possibility of deadlock
 deadlock avoidance
 ensure that a system never
 enters an unsafe state

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 21

Safe State with Safe Sequence
 There are 12 tape drives
 Assuming at t0:
 Max Needs Current Holding
 P0 10 5
 P1 4 2
 P2 9 2
 <P1, P0, P2> is a safe sequence

Hint from
processes

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 22

Safe State with Safe Sequence
 There are 12 tape drives
 Assuming at t0:
 Max Needs Current Holding Available
 P0 10 5
 P1 4 2 3
 P2 9 2
 <P1, P0, P2> is a safe sequence

1. P1 satisfies its allocation with 3 available resources

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 23

Safe State with Safe Sequence
 There are 12 tape drives
 Assuming at t0:
 Max Needs Current Holding Available
 P0 10 5 5
 P1 4 0
 P2 9 2
 <P1, P0, P2> is a safe sequence

1. P1 satisfies its allocation with 3 available resources
2. P0 satisfies its allocation with 5 available resources

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 24

Safe State with Safe Sequence
 There are 12 tape drives
 Assuming at t0:
 Max Needs Current Holding Available
 P0 10 0
 P1 4 0
 P2 9 2 10
 <P1, P0, P2> is a safe sequence

1. P1 satisfies its allocation with 3 available resources
2. P0 satisfies its allocation with 5 available resources
3. P2 satisfies its allocation with 10 available resources

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 25

Un-Safe State w/o Safe Sequence
 Assuming at t1:
 Max Needs Current Holding Available
 P0 10 5
 P1 4 2 2
 P2 9 2 3
 if P2 requests & is allocated 1 more tape drive
 No safe sequence exist…
 this allocation enters the system into an unsafe state
 A request is only granted if the allocation leaves the

system in a safe state

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 26

Banker’s Algorithm
 Use for multiple instances of each resource type
 Banker algorithm:
 Use a general safety algorithm to pre-determine if

any safe sequence exists after allocation
 Only proceed the allocation if safe sequence exists

 Safety algorithm:
1. Assume processes need maximum resources
2. Find a process that can be satisfied by free

resources
3. Free the resource usage of the process
4. Repeat to step 2 until all processes are satisfied

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 27

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:3, B:3, C:2
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 28

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:5, B:3, C:2
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1, P3

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 29

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:7, B:4, C:3
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1, P3, P4

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 30

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:7, B:4, C:5
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1, P3, P4, P2

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 31

Banker’s Algorithm Example (Safety Algo.)

 Total instances: A:10, B:5, C:7
 Available instances: A:10, B:4, C:7
 Max Allocation Need(Max.-Alloc.)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 Safe sequence: P1, P3, P4, P2, P0

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 32

Banker’s Algorithm Example
 Total instances: A:10, B:5, C:7
 Available instances: A:3, B:3, C:2
 Max Allocation Need(Max-Alloc)
 A B C A B C A B C
P0 7 5 3 0 1 0 7 4 3
P1 3 2 2 2 0 0 1 2 2
P2 9 0 2 3 0 2 6 0 0
P3 2 2 2 2 1 1 0 1 1
P4 4 3 3 0 0 2 4 3 1

 If Request (P1) = (1, 0, 2): P1 allocation 3, 0, 2

 Enter another safe state (Safe sequence: P1, P3, P4, P0, P2)
 If Request (P4) = (3, 3, 0): P4 allocation 3, 3, 2

 enter into an unsafe state (no safe sequence can be found!)

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 33

Review Slides (II)
 deadlock prevention methods?
mutual exclusion
 hold & wait
 no preemption
 circular wait

 deadlock avoidance methods?
 safe state definition?
 safe sequence?
 claim edge?

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 34

Deadlock Detection &
Deadlock Recovery

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 35

Deadlock Detection
 Single instance of each resource type

 convert request/assignment edges into wait-for graph
 deadlock exists if there is a cycle in the wait-for graph

Resource-Allocation Graph Corresponding wait-for graph

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 36

Multiple-Instance for Each Resource Type

 Total instances: A:7, B:2, C:6
 Available instances: A:0, B:0, C:0
 Allocation Request
 A B C A B C
P0 0 1 0 0 0 0
P1 2 0 0 2 0 2
P2 3 0 3 0 0 0
P3 2 1 1 1 0 0
P4 0 0 2 0 0 2
 The system is in a safe state <P0, P2, P3, P1, P4>
 no deadlock
 If P2 request = <0, 0, 1> no safe sequence can be found
 the system is deadlocked

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 37

Deadlock Recovery
 Process termination
 abort all deadlocked processes
 abort 1 process at a time until the deadlock cycle

is eliminated
which process should we abort first?

 Resource preemption
 select a victim: which one to preempt?
 rollback: partial rollback or total rollback?
 starvation: can the same process be preempted

always?

Chapter7 Deadlocks Operating System Concepts – NTHU LSA Lab 38

Reading Material & HW
 Chap 7
 Problem Set
 7.6, 7.7, 7.8, 7.9, 7.12, 7.13

	Operating System:�Chap7 Deadlocks
	Overview
	Deadlock Problem
	Necessary Conditions
	System Model
	Resource-Allocation Graph
	Resource-Allocation Graph w/ Deadlock
	RA Graph w/ Cycle but NO Deadlock
	Deadlock Detection
	Handling Deadlocks
	Review Slides (I)
	Deadlock Prevention & Deadlock Avoidance
	Deadlock Prevention
	Deadlock Prevention (con’t)
	Deadlock Prevention (con’t)
	Avoidance Algorithms
	Resource-Allocation Graph (RAG) Algorithm
	Resource-Allocation Graph (RAG) Algorithm
	Avoidance Algorithms
	Deadlock Avoidance
	Safe State with Safe Sequence
	Safe State with Safe Sequence
	Safe State with Safe Sequence
	Safe State with Safe Sequence
	Un-Safe State w/o Safe Sequence
	Banker’s Algorithm
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example (Safety Algo.)
	Banker’s Algorithm Example
	Review Slides (II)
	Deadlock Detection & Deadlock Recovery
	Deadlock Detection
	Multiple-Instance for Each Resource Type
	Deadlock Recovery
	Reading Material & HW

