Machine Problem 3 — CPU scheduling

Deadline:2016/12/18 23:59

® Problem description:
The default CPU scheduling algorithm of Nachos is a simple round-robin scheduler

for every 500 ticks. The goal of MP3 is to replace it with a multilevel feedback queue

as described below.

>

A\

There are 3 levels of queues: L1, L2 and L3. L1 is the highest level queue, and L3
is the lowest level queue. The next scheduling job is always selected from the
highest level queue with available jobs.

All processes must have a valid scheduling priority between 0 to 149. Higher
value means higher priority. So 149 is the highest priority, and 0 is the lowest
priority.

A process with priority between 0749 is in L3 queue. A process with priority
between 50™~99 is in L2 queue. A process with priority between 100~149 is in L1
queue.

L1 queue uses a SJF(shortest job first) scheduling algorithm. The job execution
time is approximated using the equation: t(i) = 0.5 T +0.5-t(i — 1)

L2 queue uses a priority scheduling algorithm.

L3 queue uses a round-robin scheduling algorithm with time quantum 100 ticks
instead of 500 ticks.

An aging mechanism must be implemented, so that the priority of a process is
increased by 10 after waiting for every 1500 ticks.

Allow the initial priority of a process to be set by reading the input
argument“-ep” from Nachos command line.

E.g.,: the command below will launch 2 processes: test2 with initial priority 40,

and test3 with initial priority 80.

“../build.linux/nachos -ep test2 40 -ep test3 80”



P w N FE o

Working items:

(30%) L1 SJF scheduling algorithm as described above.

(15%) L2 priority job scheduling algorithm as described above.

(5%) L3 round-robin scheduling algorithm as described above.

(15%) An aging mechanism to move processes among the queues as described

above, and a “-ep” input argument for setting initial priority.

(5%) Output log information during your execution: (you must follow the exact

output format as below)

(1). Whenever a process is insert into a queue:

Tick [current tick count]: Thread [thread ID] is inserted into queue L[queue
level]

(2). Whenever a process is removed from a queue:

Tick [current tick count]: Thread [thread ID] is removed from queue
L[queue level]

(3). Whenever a process changes its scheduling priority:

Tick [current tick count]: Thread [thread ID] changes its priority from [old
value] to [new value]

(4). Whenever a context switch occurs
Tick [current tick count]: Thread [new thread ID] is now selected for
execution
Tick [current tick count]: Thread [prev thread ID] is replaced, and it has
executed [tick count] ticks

(15%) Report to explain your implementation and basic team info.

(15%) Demo.

(1). You must prepare test cases yourself to demonstrate the correctness of
your implementation from item1 to item4. One test case per working item
is preferred.

(2). The correctness of your demonstration must be proven ONLY using the
output log information from working item5.

(3). Random test case will also be given during the demo to verify the

correctness.

Hint:
The following files “may” be modified...
1. threads/ main.*, kernel.*, threads.*, scheduler.*, alarm.*

2. machine/ interrupt.*, timer.*, stats.*



