
Machine	Problem	3	–	CPU	scheduling	

Deadline:2016/12/18	23:59	

l Problem	description:	
The	default	CPU	scheduling	algorithm	of	Nachos	is	a	simple	round-robin	scheduler	
for	every	500	ticks.	The	goal	of	MP3	is	to	replace	it	with	a	multilevel	feedback	queue	
as	described	below.	
Ø There	are	3	levels	of	queues:	L1,	L2	and	L3.	L1	is	the	highest	level	queue,	and	L3	

is	the	lowest	level	queue.	The	next	scheduling	job	is	always	selected	from	the	
highest	level	queue	with	available	jobs.	

Ø All	processes	must	have	a	valid	scheduling	priority	between	0	to	149.	Higher	
value	means	higher	priority.	So	149	is	the	highest	priority,	and	0	is	the	lowest	
priority.	

Ø A	process	with	priority	between	0~49	is	in	L3	queue.	A	process	with	priority	
between	50~99	is	in	L2	queue.	A	process	with	priority	between	100~149	is	in	L1	
queue.	

Ø L1	queue	uses	a	SJF(shortest	job	first)	scheduling	algorithm.	The	job	execution	
time	is	approximated	using	the	equation:	 t(i) = 0.5 ∙ 𝑇 + 0.5 ∙ 𝑡(𝑖 − 1)	

Ø L2	queue	uses	a	priority	scheduling	algorithm.	
Ø L3	queue	uses	a	round-robin	scheduling	algorithm	with	time	quantum	100	ticks	

instead	of	500	ticks.	
Ø An	aging	mechanism	must	be	implemented,	so	that	the	priority	of	a	process	is	

increased	by	10	after	waiting	for	every	1500	ticks.	
Ø Allow	the	initial	priority	of	a	process	to	be	set	by	reading	the	input	

argument“-ep”	from	Nachos	command	line.	
E.g.,:	the	command	below	will	launch	2	processes:	test2	with	initial	priority	40,	

and	test3	with	initial	priority	80.	
“../build.linux/nachos	-ep	test2	40	-ep	test3	80”	

	 	



l Working	items:	
1. (30%)	L1	SJF	scheduling	algorithm	as	described	above.	
2. (15%)	L2	priority	job	scheduling	algorithm	as	described	above.	
3. (	5%)	L3	round-robin	scheduling	algorithm	as	described	above.	
4. (15%)	An	aging	mechanism	to	move	processes	among	the	queues	as	described	

above,	and	a	“-ep”	input	argument	for	setting	initial	priority.	
5. (5%)	Output	log	information	during	your	execution:	(you	must	follow	the	exact	

output	format	as	below)	
(1). Whenever	a	process	is	insert	into	a	queue:	

Tick	[current	tick	count]:	Thread	[thread	ID]	is	inserted	into	queue	L[queue	
level]	

(2). Whenever	a	process	is	removed	from	a	queue:	
Tick	[current	tick	count]:	Thread	[thread	ID]	is	removed	from	queue	
L[queue	level]	

(3). Whenever	a	process	changes	its	scheduling	priority:	
Tick	[current	tick	count]:	Thread	[thread	ID]	changes	its	priority	from	[old	
value]	to	[new	value]	

(4). Whenever	a	context	switch	occurs	
Tick	[current	tick	count]:	Thread	[new	thread	ID]	is	now	selected	for	
execution	 	
Tick	[current	tick	count]:	Thread	[prev	thread	ID]	is	replaced,	and	it	has	
executed	[tick	count]	ticks	

6. (15%)	Report	to	explain	your	implementation	and	basic	team	info.	
7. (15%)	Demo.	 	

(1). You	must	prepare	test	cases	yourself	to	demonstrate	the	correctness	of	
your	implementation	from	item1	to	item4.	One	test	case	per	working	item	
is	preferred.	

(2). The	correctness	of	your	demonstration	must	be	proven	ONLY	using	the	
output	log	information	from	working	item5.	 	

(3). Random	test	case	will	also	be	given	during	the	demo	to	verify	the	
correctness.	
	

l Hint:	 	
The	following	files	“may”	be	modified…	
1. threads/	main.*,	kernel.*,	threads.*,	scheduler.*,	alarm.*	
2. machine/	interrupt.*,	timer.*,	stats.*	

	


