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ABSTRACT

With the development of high-speed network, uni-processor
incapable of affording a large number of traffic can not satisfy what is
required by high performance network equipments. It can help improve
the performances. However, most network equipments such as network
intruson detection or protection systems need to inspect the packet
content and compare with its own signatures, and react appropriately.
Thus, the need for a faster algorithm for multi-pattern searching becomes
more and more urgent. It is the most crucia factor concerned with the
network performance.

Take Snort [18], a popular open-source network intrusion detection
system as an example, it uses the algorithm called “ A fast Algorithm For
Multi-Pattern Searching” proposed by Sun Wu, and Udi Manber
1994(denoted as WuM) [6]. The WuM algorithm can compare the input
text with the whole patterns concurrently, but the length of the shortest
pattern (denoted as L SP) can not be less than the block-size usualy equal
to 2. If LSP isless than the block-size, in snort, it compares the input text
with its own signatures sequentialy using the BM agorithm which is
proposed by Boyer R. S, and J. S. Moore 1977 [1]. Consequently, the
throughput is limited by matching patterns, and has the poor performance.

The purpose of the thesis is to improve the performance of WuM
algorithm, and to handle the length of the shortest pattern less than the
block size. Therefore, we can use the only one algorithm to perform
multi-pattern searching even the LSP is equal to 1. We concentrate on
typical searches rather than on worst-case behavior. It makes sense in
most network devices which need to compare incoming packets to its
own patterns. Malicious packets in network are aways less than legal

packets.



To verify the peformance of FVM, we use the signatures defined
by snort as the patterns, and use the packets downloaded from DEFCON
[17] astheinput to run the smulation. Finally, we got 15% - 25%

performance improvement.
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1. INTRODUCTION

1.1 The Use of Multi-Pattern Sear ching

Typically, many of the network devices such as network intrusion
detection system (NIDYS) try to detect anomalous behavior by inspecting
the incoming packets. Rapid growth of network traffic has made NIDS
become more important. In general, there are two main techniques used
for detecting the intrusion — one based on statistical analysis and the other
on signature The datistical analysis based technique usually determines
whether an incoming packet is anomalous by gathering protocol header
information and comparing it with the known attacks such as SYN
Flooding. The signature-based technique usually has its own rules or
signatures which are defined in advance to represent known intrusive
attacks such as M S.Blaster.Worm virus. When a packet comes, NIDS has
to compare it with al the signatures and determine whether or not it is an
intrusion. Unfortunately, successful detection is increasingly difficult due
to more and more fresh viruses and the modification of an old virus
detection. The performance of signature-based NIDS is serioudy
constrained by the speed of pattern matching agorithms. For example, as
mentioned in abstract, Snort uses the WuM algorithm [6] to compare
incoming packets with its signatures while the length of shortest pattern is
greater than or equal to 2. If there exists one signature whose length is
equal to 1, Snort will use only BM agorithm [1] to compare the incoming
packet with its al signatures sequentially. Thus, the number of signatures
Is the critical determinant of system performances. Only by implementing
an algorithm which can search pattern concurrently, unconstrained by
pattern number or length can upgrade the effectiveness of the NIDS
system.



1.2 Effect of Pattern Matching Algorithm

As mentioned in 1.1, the performance of pattern matching agorithm
affects the throughput of network device basing on incoming packets
examination such as Network Intrusion Detect System. A certain set of
signatures defines how a Network Intrusion Detect System functions. It
examines incoming packets and determines whether it is an intrusion.

Recent measurements of the snort NIDS show that as much as 31%
of total processing is used for pattern matching, as shown in Table 1.
Thus, without better efficiency, it is hard for the NIDS system to keep up
with soaring linking speed. In other words, more effective pattern
matching results in an increased throughput for the NIDS.

Prupose Routine Portion
String M atch mSear ch 31%
Packet Classification EvalHeader 8.5%
Packet Classification | CheckSrcl PNotEq 6.7%
Other Matching EvalOpts 5.8%

Table 1.1 Profile of Snort

1.3 Additional Applications

In fact, pattern matching technique has extended its applications
beyond network intrusion detection system. Web site and advertisement
e-mail filtering device are only two examples where pattern matching
technique is employed to prevent users receiving. The web site filtering
device parses the URL and compares with its own pattern by some

user-defined keywords usualy found in a pornographic site. And the



advertisement emil filtering device parses the sender or subject to filter
the garbage or advertisement e-mail.

Grep [8] is a wel-known tool in UNIX capable of searching the
whole file quichly and reporting the lines once a pattern is matched. It can
not only input the single pattern but also assign the multi-pattern from a
file with the parameter ‘f’.

Match-and-replace utility is used in many editors. Each pattern is
associated with a replacement pattern. When a pattern is matched, it is
replaced. But how long we must shift to avoid overlapping replacements,
it is aso a multi-pattern searching problem.

Another application is search engine in World Wide Web such as
Google, Openfind. Users may input some key words and the search
engine must find all the possible pages which contains the key words.



2. Previous Work

Aho and Corasick presented a linear-time agorithm (AC) [2] for
matching multiple strings. The algorithm is based on an automata
approach that accepts al strings in the set. It processes the input
characters, and follows the state transition diagram. If it reaches the fina
date, the input text makes a match. So, the performance depends on the
length of the input text rather than pattern length. The AC agorithm has
proven linear-time performance, and it’s optimal in the worst case.

Boyer-Moore is another powerful agorithm (BM) in single-pattern
searching. It can skip a large portion of the input text while searching. At
firg, it builds a table called bad character shift table, and then compares
the string with the input text starting from the right most character of the
string. If the mismatching character is in the search string, the search
string can be shifted to align with the rightmost position at which it
appears in the search string. If the mismatching character is not in he
search string, we can safely shift the maximum distance — the pattern
length. In average case, the BM algorithm is faster than linear algorithm.

Among the single pattern searching agorithm mentioned above, BM
agorithm is the fastest, but its worst case is dower than AC agorithm in
someworst cases. In sum, BM and AC agorithm are two best methodsin
single pattern search.

K. G. Anagnogtakis, M. Polychronakis, E. P. Markatos, and S.
Antonatos have designed an informal algorithm called exclusion-based
string matching denoted as ExB [10]. ExB is based on a smple logic. If
the input text ‘I’ contains a sring ‘S, then, Iif there is a least one
character which isinthe string ‘S and isnot ininput text ‘I’. Then ‘S is
notin ‘I’. Moreover, if every character of *S belongsto ‘I’ it still needs
another algorithm such as BM to confirm whether * S isasubstring of ‘I



E*XB [9] is based on ExB algorithm. The difference between ExB
and E®XB is the method used to denote a match. So the performance of
both ExB and E*XB decrease rapidly because of the increasing false
matching rates.

Wu-Manber is another widely used multi-pattern algorithm. In Unix,
the words searching tools such as grep [8], agrep using WuM agorithm to
reach the goa. The WuM agorithm is aso based on bad character
heuristic smilar to Boyer-Moore. But the WuM agorithm covers a
concept called block. It uses one or two-byte bad shift table by
pre-processing the al patterns, and performs a hash on the two-character
prefix of the input text to compute an index which is the location on the
bad shift table, as in Boyer-Moore. The performance of the WuM
algorithm also depends on the shortest length of the pattern (LSP). Its

maximum shift number equals to L SP minus one.



3. TheAlgorithm

3.1 Background

3.1.1 Network Processor

Network processor is a programmable device that has been designed
and highly optimized to perform networking functions. Because network
processors implement all packets processing in software, they are more
flexible. An NP based platform can be used a variety of packet
processing function, such as table lookup, parsing, classfication,
modification, and forwarding. Network processors use multiple
execution engines, each of which contains multiple contexts.
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Figure 3.1 Network Processor Architecture
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For example, Vitesse 1Q2000 [19] contains four packet processing
engines (PPE), each of which runs at 200MHz, and is RISC architecture.
Each packet processing engine contains DMA co-processors, five stage
pipelines, lookup co-processors, header buffers, and so on.

Network processors usudly use pipelining, pardleism and
multi-context to reduce latency. Network processors aso exploit
hardware accelerators for hashing, table lookup and forwarding. But the
most important the network processor differs greatly from generd
purpose CPU in L1, L2 cache. We dl know that genera purpose CPU
architecture usually exploits both the data and program locality, and has
cache architecture called L1, L2 cache. It makes the program run
smoothly. But in network processor architecture, it is not realy true.
Network processors usualy have no L1, L2 cache. It just exploits other
techniques such as mentioned above to increase its performance. We dso
use the specia characteristic to increase the performance for pattern
matching on network processor.

3.1.2 Wu Manber Algorithm

Sun Wu and Udi Manber proposed a fast algorithm for multi-pattern
searching on May 1994. We refer to it as WuM agorithm.

WuM agorithm aso uses the ideas developed Boyer-Moore and are
summarized as followed. Suppose that the pattern length is m, we can
compare the last character of the pattern against t, which is the nith
character of the input text. If there is a mismatch, then we can shift
according to the rightmost occurrence of t_. For example, if t . matches
the 1th character of the pattern, we can shift m1. If t_ matches the 2th
character of the pattern, we can shift m2. If there is no any match of the
pattern, we can safely shift the maximum m characters and so on.

7



Because BM agorithm can shift greater than one character, it can perform
well than linear time algorithm.

3.1.2.1 The Preprocessing Stage

BM dgorithm just can handle the single pattern. WuM agorithm
designs to handle multi-pattern  searching.  Suppose  Let
P={p,, P, Ps-, P} D€ @ st of patterns and Let T =t,t,,t,...,t, be an
input text. The first step by WuM method is to compute the minimum
length of a pattern (denoted as m). For each pattern we just consider only
the fist m characters and assume that al patterns have the same length m.
Thus, in case of there exists a very short pattern, say of length 2. We can
not shift more than 2 Therefore, WuM algorithm can not handle the case
iInwhichmisequa to 1.

Secondly, WuM algorithm is characterized by the idea called blocks
of size B, and usualy uses B=2 or B=3. Moreover, WuM algorithm also
includes a shift table which plays the same role as that in BM algorithm.
The only difference between WuM and BM is that WuM determines the
shift based on the last B characters rather than just one character. Thus,
the maximum shift character is equal to mB+1. We can say that BM isa
gpecial case of WuUM algorithm.

Thirdly, we need to determine the shift table. If the shift table
contains all the possible string of size B, it needsto allocate 2%® bytes to
store shift values. WuM actually uses a compressed table with severdl
strings mapped into the same entry (hash) to save space. To speed up the
performance, we hope that the hash vaue which is computed from the
characters in blocks can also be taken as an index of shift table. The
values in the shift table determine how far we can shift while we scan the

input text. Suppose let T=t,t,,t,.t, be the input text,

n



P=p,, p,..., P, e the pattern whose length is equal to m. We just consider
thefirst B characters {t,t,,...t;} intheblock. There are two cases:
1 {t,t,,...t;} appearsin some patterns.
In this case, if we find the rightmost occurrence of T in any of the

patterns, and it ends at position q of P,. We may have alot of g,

but we can just store the minimum g in the corresponding entry to
avoid false matching.
2. {t,t,,...t;} doesn't appear in any patterns.
In this case, we can store m-B+1 in the corresponding entry.
Let’ s take an example as follows:
P, ={abcdef}
Assumethat P, ={xyabz ,andB =2
P, ={wxyv}
Considering P: Incaseof ‘cd’, wecan shift 0
In case of ‘bc’, we can shift 1
Incaseof ‘ay, we can shift 2
Others, we can shift 3
Considering P,: Incaseof ‘&', we can shift O
Incaseof ‘ya, we can shift 1
Incaseof ‘xy’, we can shift 2
Others, we can shift 3
Considering R,: Incaseof ‘yv', we can shift O
Incaseof ‘xy’, we can shift 1
Incaseof ‘ux’, we can shift 2
Others, we can shift 3
In this casg, if we find ‘&’, we can shift 2 according to P, but we just

can shift 0 according to P,. Thus, we must shift the smaller one — ‘0 to

avoid fase matching. P, and P, belong to the same case If we find



‘xy’, we can shift 2 according to P,, but we should shift 1 according to

P,. If we find any string which is not a substring in any pattern, we can
shift 3that ism-B+1U 4-2+1=3.

Aslong as the shift value is greater than 0, we can shift and continue
the scan while we start to scan the input text. In general case, it happens
most of time, especidly in NIDS. |llegal packets are usualy less than
legal packets. If the shift value is O, it is possible that the current text
contains a substring in perfect match with some pattern in pattern list.
Thus, we need to compare the substring to suspected patterns. In WuM
algorithm , it uses hash function to classify al the patterns. As mentioned
above, WuUM uses a key which is computed with the substring in the
block to be an index of shift table. Thus, if the valueis equal to 0, we use
the same key to be a hash value for patterns classification. Patterns whose
suffixes are the same will have the same key. And they will be
accommodated to the same list.

We use shift table and hash table to speed up the matching. And we
use the suffix matching to represent a matching. But it is not random in
natural language texts. The suffixes such as ‘tive’, ‘tion’ or ‘ing’ are very
common. They also cause collisions n the hash table and increase the
number of patterns which we need to compare the text against the pattern
directly and the performanceis thus unfavorably affected.

To avoid collisons, WuM agorithm uses another table called prefix
table to reduce the probability of collisons. After scanning the text,
computing the index and looking up the shift table, if the shift value is
equal to zero (An indication that the text has the same suffix as some
pattern), we need to traverse pattern list to determine whether there is a
matching. Before traversing, we can check the prefix table. If there is till
a matching (Indicating that the text has the same prefix as some pattern),
then we compare the text againgt the pattern directly.

10



Initially: ptr < text start + block-size
end <text end
While ptr < end
Begin
hash value < (*ptr << hash_bit) + (*(ptr-1))
If block-size == 3 then
hash value < (hash_vaue << hash_hit) + (*(ptr-2))
shift value < SHIFT[hash_value]
If shift_ value ==
Begin
prefix_hash < (*(ptr-m+1)<<8) + (*(ptr-m+2))
[* we shift 8 bits to avoid collision in prefix table */
pat_ptr < Hash[hash value]
while pat_ptr 'I= NULL
Begin
If PREFIX[prefix_hash] !=text_prefix continue
p & pat_ptr[0]
p € text-m+1
while *(pt++) == *(q++)
if *(p-1) == 0 /* C-String */ &> Match
pat_ptr < pat_ptr->next
End
shift vaue < 1
End
ptr < ptr + shift_value
End

Figure 3.2 WuM pseudo code
3.1.2.2 The Scanning Stage

In scanning stage, we first compute a hash value h based on the
current B characters from the input text. (B is the block-size here).
Secondly, check the value of SHIFT[h]. If SHIFT[h] > O, shift the text
and repeat scanning. Otherwise, we need to compute the hash value of the
prefix of the text. Thirdly, if there is a matching in prefix, we can traverse
the pattern list which has the same hash value to determine whether
matching or not. WuM agorithm pseudo code is shown in the Figure 3.2



3.2 FWM algorithm

3.2.1 ThePrinciple

This work addresses the string matching problem: Let
P={p,, p,, P,.... p} be aset of patterns, which are strings of characters.

Let T=t,t,t,,..,t, bean input text. Patterns and text consists of either

ascii or binary strings. The string matching problem identifies the

substring of T which isidentical to P,.

As mentioned in section 3.1.2.1, we know that the WuM agorithm
runs faster than linear time agorithm by skipping a large portion of the
text while searching, and the maximum distance which it can skip is
equal to mB+1. In other words, it equas to the length of the shortest
pattern minus block-size and plus one. For example, if the length of the
shortest pattern is equal to 3 and the block-size is equal to 2. Thus, the
maximum distance that we can skip isequal to 3-2+1 = 2.

For the above reason, we know that WuM algorithm is sensitive to
the pattern length. If the length of the shortest pattern ‘m is larger, then
we can have the larger shift value. In other words, if there exists a pattern
whose length is equd to 2, we just can have the maximum shift value 1 in
spite of the rest of patterns whose length are very long.

As long as an algorithm can shift larger distance than other
agorithms, equally, it can run faster than others. According to maximum
shift distance of the WuM agorithm, there may be two method to
improve the shift distance. Clearly, we can increase the length of the
shortest pattern ‘m’ or useasmaller block size ‘B’ .

In WuM algorithm, suppose that M be the total size of al patterns
and c be the size o the aphabet. A good value of B is in the order of
log. 2M . In fact, the implementation of WuM agorithm in agrep [8] uses



only B=2 and B=3. If we decrease the B value, in other words, we set
B=1, there must be a number of collisons in ift table, and we must
more often check the text against the pattern directly, and reduce the
performance. Thus, decreasing B value isimpossible.

A possible solution is increasing the length of the shortest pattern
‘m’. Of course, we can diminate the pattern whose length is short. But
we need to keep two agorithms a hand to search patterns. Here we
propose a technique called look ahead to increase the length of the
shortest pattern. Example 1:

P, = {abcdef }
Assumethat P, ={xyabz and B=2
P, = {uxyv}
We can shift maximum distance 42+1=3, and have the shift table
shown as table 3.1

P1 P1&P2 Pl & P2 & P3
cae] ] [cose e [cse S
cd 0 cd 0 cd 0
bc 1 bc 1 bc 1
ab 2 ab 0 ab 0
ya 1 ya 1
Xy 2 Xy 1
yv 0
ux 2

Table 3.1 Shift Table of Example 1
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Now, we use example 1 and consider it with a look-ahead character.
Firstly, when we process P, substring ‘ao’ is the maximum shift value if
the substring in block is identical to ‘&b’ origindly. In other words, we
can safely shift 2 characters, and continue checking the next substring in
block. While considering a look-ahead character, we need to add an entry
‘*a to shift table where * is a wild card. Similarly, we process P, and
P, in the same way. Therefore, while using a look-ahead character, we
can change the pattern length of the shortest pattern from 3 into 4. The
newest shift table with alook-ahead character is shown in Table 3.2

Pl Pl & P2 Pl & P2 & P3
Case vSarI]:; Case \ZTSZ Case \ZT:;
cd 0 cd 0 cd 0
bc 1 bc 1 bc 1
ab 2 ab 0 ab 0
*a 3 ya 1 ya 1

Xy 2 Xy 1
*a 3 yVv 0)
*X 3 ux 2

*a 3
*X 3
*u 3

Table 3.2 Shift Table of Example 1 with a look-ahead character

Comparing Table 3.2 to Table 3.1, we can find that the maximum
vaueis 2 in Table 3.1, but is 3 in Table 3.2. Moreover, the wild card **’

14



means that we must enumerate all the possible ones in the character .
For example, we have a look-ahead character on PR, then we must fill all

the entries whose suffix are ‘a with the value 3. When we process PR,,

thereisa collisonon ‘ya. Smiliarly, we must choose the smaller one to
avoid falsematching. Thus, wefill the entry of ‘ya with the value 1.
When the length of the shortest pattern is very small, it would be
more advantageous with a look-ahead. If the length of the shortest pattern
Is equa to 2, then the rate of performance improvement is equa to

G- 2+2])'2(+21' 2+Y) :%:100%. If the LSP is equal to 3, the rate of the

performance improvement is equa to (4- 2 +31) 2 (+31' 241) _ % =50%, and

(5- 2+41) '2(+41‘ 2+) :é =33.33% with LSP = 4. Thus, we know that the

performance improvement is inverse proportion to the L SP.

How about increasing the block-size? Originally, we can shift the
maximum distance (m-B+1). If we fix the block-size to 2, then we can
shift the maximum distance (m-1). If including a look-ahead character,
we can shift the maximum distance ‘m’'. Now, let's increase the
block-size to 3 and take two look-ahead characters. We will have the
same maximum distance ‘m’ as the block-size fixed to 2.

We need another technique to raise the performance that makes it
insensitive to LSP. Thus, we build a table called occurrence table to
handle patterns whose length are less than block-size. Occurrence table is
extremely intuitive. We merge the shift table with the occurrence table. In
scanning stage, we compute a hash vaue based on the current B
characters from the text, and check the value of shift table. We can
determine whether we match some pattern whose length is less than
block-size with the shift vaue for some pattern whose length is greater

than block-gze in the same time.
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On generad purpose CPU architecture such as x86, the size of
occurrence table will affect the performance. If we use the block-size is
equa to 2, we need 2%? =32K bytes to store the table. But when the
block-size increases to 3, we will need 2%° =16M bytes to store the table.
We al know that CPU uses cache architecture to store the most important
data to avoid the access to externa memory and make the performance
better. The capacity of cache is usually less than 1M bytes. If we use a
very large table like 16M bytes, we may probably have inferior
performance. Fortunatdly, as mentioned in section 3.1.1, network
processors usualy don't have cache system, and the cost of memory is
much cheaper than others on the platform of network processor. Thus, we
can use masses of spaces to reduce the searching time.

3.2.2 Design

3.2.2.1 Shift Table

We use the shift table to determine shift value and whether matching
the short pattern while scanning the text. In order to reduce the access
time to memory, and use an occurrence table, we use a straightforward
hash function. For example, suppose let P, = abcde, and block-size be 2.
We can store the shift value of ‘ab’ inentry (a<<8)+b, and store the shift
valueof ‘bc’ inentry (b<<8)+c to avoid collisions. Thus, we can get the
shift value in one memory access. Again, we must emphasize that the

trick isonly work on network processor platform.
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We use the draightforward hash function to avoid collisions.
Another purpose is to point out whether it is matched or not for the small
patterns. Therefore, we split one byte into two parts. One is the shift value,
and the other is matching-flag as shownin Figure 3.3.

1 bit to mdxate whether

matching or not 7 bits to indicate shift value
A — R
| | | | | | | |
S— B
1 byte
2 bit to indicate the
number of matching & bits to indicate shift value
N A
r N —
| | | | | | | |
— _
S
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3.2.3 Implementation

During initialization, we must acquire the length of the shortest
pattern, and use it to compute the maximum shift value. If the block-size
is equal to 2, we will build a 32K bytes shift table, and hash table.
Similarly, if the block-size is equal to 3, we will build a 16M bytes shift
table, and hash table. All entries are set to the maximum shift value
‘m-B+1 in the shift table and sat to zero in the hash table. Initialization

pseudo code is shown as Figure 3.6.

Initialization:
If(FLAG_LOOK_AHEAD)
LSP += (BlockSize==3) ?2: 1;
If(BlockSize == 2) {
MAXSHIFT = MAXHASH = 0x10000;
HASH = (uchar*)malloc(MAXHASH* sizeof (char));
SHIFT = (uchar*)malloc(M AX SHIFT* sizeof(char));

}
ese
{
MAXSHIFT = MAXHASH = 0x1000000;
HASH = (uchar*)malloc(MAXHASH* sizeof (char));
SHIFT = (uchar*)malloc(MAX SHIFT* s zeof (char));
}

for(i=0; i< MAXSHIFT; i++) SHIFT[i] = LSP - BlockSize + 1;
for(i=0; i< MAXHASH; i++) HASH[i] = 0;

for(i=1; i<=PatNum; i++) prep_hash_shift(& Pattern[i][1]);
accumul ate();

for(i=1; i<=PatNum; i++) prep_hash_shift2(i, Pattern[i][0],

& Pattern[i][1]);

for(i=1; i<=PatNUMFNP; i++) prep_enumerate(i, PatFNFi][0],
& PatFNPI][1]);

Figure 3.6 FWM Initialization

After initiadlizing, we only handle the patterns whose lengths are greater
than block-size and fill the corresponding entry with individual shift

value. If a look-ahead character is considered, we need to compute the
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hash key with any characters and the prefix of a pattern. When a collision
happens, we aways fill the smaller one to avoid false matching. Then, we
start to handle the patterns whose lengths are less than block-size. For
these patterns, we need to enumerate all the possible. If the block-size is
equa to 2 and we have a pattern ‘@, we need to turn on the bit indicating
the match as long as the index of the entry is corresponding to ‘*a or ‘a*’.
Preprocessing pseudo code is shown in Figure 3.7.

Preprocess:
If(FLAG_LOOK_AHEAD) m = (BlockSize==3) ?LSP-2: LSP-1;
esem=LSP;
for(i=m-1; i>=BlockSize-1; i--) {
hash = (int)pat[i];
hash = (hash << Hhits) + (int)pat[i-1];
If( BlockSize == 3) hash = (hash << Hbits) + (int)pat][i-2];
If(SHIFT[hash] > m+i-1) SHIFT[hash] = m+i-1;
}
if (FLAG_LOOK_AHEAD) {
If(BlockSize == 2)
for(i=0; 1<=255; i++) {
hash = (int)pat[0];
hash = (hash << Hbits) +i;
if(SHIFT[hash] > m-1) SHIFT[hash] = m-1;
}
else /* BlockSize==3*/{
same as BlockSize == 2, expand the * and fill the table
}
}

i=m-1;

hash = (int)pat[i];

hash = (hash << Hbits) + (int)pat[i-1];

if( BlockSize == 3) hash = (hash << Hbits) + (int)pat[i-2];
HASH[hash]++;

Figure 3.7 FWM Preprocessing

After preprocessing, we start to scan the text. While scanning, we
compute the index and get the shift value. Concurrently, we check the
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matching bit to determine whether a matching occurs. If the shift value is
not zero, we shift and continue to scan. Otherwise, there may be a match
to occur. We check the prefix. If there is still a match, we traverse the list

to match a pattern. Scanning stage pseudo code is shown in Figure 3.8

Scanning Stage:
while(text <= textend)
{

hash = *text;

hash = (hash << Hbits) + *(text-1);

if( BlockSize == 3) hash = (hash << Hbits) + * (text-2);

shift = SHIFT[hash];

if((shift & 0x80) !'=0) {

num_match++; shift &= OX7F;

}
if( shift==0) {
hash2 = (* (text-m1) << Hbits) + *(text-m1+1);
p = HASH[hash];
p_end = HASH[hash+1];
while(p++ <p_end) {
If (prefix is not match) continue;
px = PatPtr[p];
gx = text - mi,
for(i=0; i<patternlen; i++) {
iIf(*px ==*gx) { px++; gx++:}
else bresk;
}
If(i == plen) MATCHED++;
}/* end of while p++ <p _end */
If(IMATCHED) shift = 1;
ese{
MATCHED =0;
shift = (m1-1) >0?(mi1-1) : 1;

}
}* end of if shift==0%*/
shift = shift > BlockSize ? BlockSize : shift;
text += shift;
}/* end of while text <= textend */

Figure 3.8 FWM Scanning Stage



4. Experiments

4.1 Environment

To evaluate the performance of our algorithm, we compare our
algorithmsto E*XB on aLinux RedHat 7.3 workstation (Pentium 4 CPU
2.0GHz) with 512MB memory, 20KB L1 cache, and 512KB L2 cache.
We perform two different kinds of experiments with the same input. One
Is to simulate the behavior on network processor. The other is to run
normally. For smulating the behavior on network processor, we turn off
the L1, L2 cache.

Each environment, we evaluate the performance by comparing the
time which is measured by running the simulation of individua algorithm.
In our smulations, we get the real traffic from DEFCON [17] to be the
input, and the signatures from snort [18] to be the patterns.
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Figure 4.1 Distribution of the signature length
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Figure 4.2 Accumulation of the pattern length

Figure 4.1 and Figure 4.2 show the distribution of the patterns. We
get the snort rules and transform these rules into our own patterns. We
use 2100 patterns to run the simulation. As Figure 4.1, we find that the
pattern whose length is equal to 4 is the most frequent. Moreover, there
are 177 patterns whose lengths are equal to or less than 2. There ae 233
patterns whose lengths are equal to or less than 3. These al affect the
performance of the agorithm. The text file we used for al experiments
was a collection of attacking traffic from DEFCON [17]. Thefile size of
the traffic is about 900Mbytes, and containstotal 575635 packets.

4.2 Performance Evaluation

4.2.1 Network Processor Simulation

To verify the effectiveness of the proposed FWM, we present
severa experiments in which our agorithm is compared to severa
algorithms and the effects of block-size, LSP, look-ahead and the
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number of rules on the performance are aso evaluated.
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Figure 4.3 Completion time comparison using LSP=1

Figure 4.3 reveds that the processing time different processing
techniques require. FWM algorithm, which is WuM agorithm with
occurrencetable, takes about 1700 seconds. Typica WuM algorithm can’ t
run on LSP=1. The running time of enlarging block-size to 3, labeled
BlockSize=3, is greater than FWM. Although enlarging block-size
increases the number of matching to the smaller patterns. But it aso
makes the maximum shift value decrease. As shown in Figure 4.1, most
patterns whose lengths are greater than 3. Therefore, FWM that use the
block-size = 2 has better performance than block-size = 3.

FWM with a look-ahead character, labeled LookAhead, has the
similar performance to the FWM. Although the LookAhead enlarges the
LSP, it may probably result in more collisions. It depends on what the
patterns we have. Another reason having lower performance is occurrence
table. As mentioned in section 3.2.1, the performance of LookAhead is
the reverse proportion to the LSP. But patterns whose lengths are smaller
than block-size are determined by the occurrence table. LookAhead
works to the patterns whose lengths are greater than 2. So the rate of
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performance improvement of L ookAhead IS

(4- 2(+31)-2 Er31; 2+1) :%:50%. (Because of the occurrence table, the

original LSPisequa to 3).
We combine the BlockSize=3 and LookAhead, |abeled Combination,

and have the best performance. As mentioned in section 3.2.1, when we

enlarge the block-size, we will have two look-ahead characters. The
combination of two techniques confer many advantages. It can increase
the maximum shift value and let more patterns be matched in block-size.
Having two look-ahead characters runs better than one look-ahead
character. LookAhead with two look-ahead characters may aso have
collisions. But because of the bigger block-size, it aso increases the

matching probability. Moreover, it changes the LSP into (LSP+2), then

(6-3+1)- (4-3+1) _2

the performance improvement will be =100%.
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Figure 4.4 Completion time comparison using LSP=2

Figure 4.4 shows the processing time with LSP=2. We have similar
result to the smulation with LSP=1.
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Figure 4.5 Completion time comparison using LSP=3, 4

Figure 4.5 shows the processing timewith LSP=3 and LSP=4. In this
experiment, FWM is equivaent to WuM agorithm. Because we only
use the occurrence table to match the patterns whose lengths are equal to
or less than the block-size. And the LSP is equal to 3 in this experiment.
Therefore, FVM agorithm takes less time while LSP=3 than LSP=2
because of no collisions.
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Figure 4.6 shows the processing time of FWM agorithm under
different LSP. We find that each of the processing time of FWM

algorithms seemsto be very close
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Figure 4.6 Completion time comparison on various L SP

4.2.2 CPU-Based Simulation

In section 4.2.1, we run the simulation to simulate the behavior of
network processor. As mentioned in section 3.2.1, whether FWM
algorithm improve the performance rely on occurrence table. If the
character set istoo big, we will need mass of memory spaces to store the
table. In network processor architecture, we can build occurrence table
directly in externa memory because there isno L1-L2 cache in it. But in
genera purpose CPU architecture, if the table size is too big, it may not
be stored in L1-L2 cache and will have poor performance. We run the

simulation on x86 architecture and compare it to the simulation based on

network processor.

28



100. pOO
LSP=1
85— —§ s —8
80. 0B8-6
[7p]
© 60. 0086 ——FWM
8; =Bl ock$i ze=3
40. 066 LookAfead
20 . 000 Combifati on
Q_’,/\f/# A
0. 0 66— ' ' ' '
100500900130070RP100O0
Rul e Numbers
100. 900
LSP=2
— = B g5 g =
80. 066
(7]
i 6 0. 086 ——F WM
) . _
40 . oloo —=-B| ock ®$i ze =3
LookAfead
20. 066 Combinfati on
— A
0. 0 66— ' ' ' '
100500900130070D2100
Rul e Number s

Figure 4.7 Completion time comparison using LSP=1, 2 with cache

Figure 4.7 shows the processing time using LSP=1 and LSP=2 with

cache. Obvioudly, we can know that if the block-size is equa to 3, it

must have poor performance. As mentioned in section 4.1, the sizeof L1
cache is 20Kbytes, and 512Kbytes to L2 cache. If the block-size is equal
to 2, the Size of shift tableis 2%% = 2'® =64Kbytes and the Size is less than

L2 cache. Thus, it has the better performance. If the block-size is equd

to 3, the size of shift tableis 2* =16Mbytes and the Size is greater than

512Kbytes. Thusit has poor performance.
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Figure 4.8 Completion time comparison using LSP=3, 4 with cache

Figure 4.8 shows the processing time using LSP=3 and LSP=4 with
cache. The running time of FWM islessthan that of othersin Figure 4.6.
FWM agorithm in Figure 4.8 is equivalent to typica WuM agorithm
because the LSP is greater than block-size. We know WuM algorithm
have better performance while having bigger LSP. Similarly, if the
block-sizeis equd to 3, it must have poor performance.
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Figure 4.9 Completion time comparison on various L SP with cache

Figure 4.9 shows the processing time of FWM agorithm under
different LSP. When LSP=4, it can shift the maximum characters and it
doesnit have any collisons by occurrence table, it has the best
performance.
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4.2.2 Comparison

We compare our agorithm aganst E*XB [9], The paper
“Performance Analysis of Content Matching Intruson Detection
Systems” [11] runs a simulation to compare the performance between
WuM and EZ*XB. According to the paper, E*’XB dgorithm has better
performance than does WuM agorithm. We run the smulation shown as
Figure 4.10.
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Figure 4.10 Comparing to E*XB
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Figure 4.11 Comparingto E*XB

According to reference [11], the performance of pattern matching

algorithm depends on the number of rules. Both WuM and E*XB

algorithms, the performance of each is proportion to the number of rules.

But we get dmost constant time in our experiment. According to the

principle of WuM, all patterns are processed to compute the shift value.

The size of shift table is insensitive to the number of rules. In other words,

no matter how many patterns, the size of shift table is fixed. Thisimplies

the running time is irrelevant to the number of rules. E*XB agorithm is

a searching algorithm for single pattern. If it would like to process
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multi-pattern, it must compare the text with al patterns sequentialy.
Therefore, E*XB agorithm must be sensitive to the number of rules.

Moreover, E*XB is dso sendtive to LSP. Figure 4.10 and Figure
4.11 show the relation under different LSP. When LSP increasing, the
running time of E*XB decreases. E*XB aso rely on BM agorithm to
check whether matching or not. Thus, bigger LSP will increase the
performance. Thisiswhy E?XB takes the least time while LSP=4 than
others.



5. Conclusion

This work shows how an improved pattern matching algorithm can
do for network devices based on inspecting incoming packets. We know
that while some agorithms such as BM, WuM move up the searching
speed by shifting to reduce the comparison, these algorithms can’'t run
when LSP is equa to 1. We proposed our agorithm that could further
enhance the performance of WuM agorithm.

We exploit the feature of NPU architecture which isno L1-L2 cache.
Thus, we can use occurrence table to match smaller patterns. Moreover,
we improve the performance of WuUM by increasing the length of the
shortest pattern and compare the performance with other search routines:
Big Block-size, LookAhead, and Combination.

Our experiments so far have led to several observations. First, we
have found that WuM agorithm is insensitive to the number of rules.
That's a marked difference from the finding listed n the reference [11].
According to our experiments, WuM agorithm spent amost the same
time with different LSP and the number of rules. Searching agorithm for
single pattern may be sendtive to the number of rules because it must
compare thetext to all patterns sequentidly.

Second, the size of occurrence table is limited. We can’t build an
occurrence table whose size is greater than the size of L1-L2 cache. If the
character set is large, we may not use occurrence table unless there is no
L1-L2 cache.

Third, we can increase the length of the shortest pattern to improve
the performance by shifting more characters. But using look-ahead may
result in collisions and make no effect. This is because we need to handle
* character. When we parse a * character, we need to enumerate al the
possible once and use aloop to expand * character.
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Fourth, we set block-size to 3 to let more patterns be matched in
block-size, and take two look-ahead characters to increase the length of
the shortest pattern. Thus, we can shift more characters.

Fifth, we speed up the performance by 15%-20% in terms of the
time spent in smulations. As illustrated in Table 1.1, the better

performance of pattern matching will also improve the throughput in
NIDS.
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