

1

Chapter 1

Introduction

As the Internet grows at a very rapid pace, so does the incidence of attack events

and documented unlawful intrusions. Recipes for these attacks are readily available,

often in a ready-to-run format, and recent incidents with global dimensions are clear

evidence that the average computer criminal is much less sophisticated than once was

believed. Security personnel must respond quickly and proactively to the increasing

number and severity of threats from viruses, worms and intrusion attacks. The

Network Intrusion Detection Systems (NIDSes) are designed to identify attacks

against networks or a host that are invisible to firewalls, thus providing an additional

layer of security. From 2002, the most important feature of an NIDS is to work in

inline mode, where all packets must pass through the device. The problem with

working inline is that there is always the potential to affect the performance and

reliability of the rest of the network. Another issue is broad and accurate attack

coverage. False positive alarms result in senseless waste in human resource while

false negative makes the network be compromised.

Generally two main methods are used for intrusion detection, namely Pattern

Matching and Statistical Analysis [39]. The former method applies a static set of

patterns and alerts to traffic sequences with known signatures. Meanwhile, the latter

method detects anomalous events statistically by gathering protocol header

information and comparing this traffic to known attacks, as well as by sensing

anomalies. Modern NIDSes usually supports both methods. However, the

performance of the NIDSes has been shown to be dominated by the speed of the

string matching algorithms used to compare packets with signatures. An NIDS must

employ an efficient string matching algorithm since an under-performing passive

2

system drops many packets and may miss many attacks, while an under-performing

inline system creates a bottleneck for network performance [11].

This dissertation presents three pattern search algorithms that conduct matching

sets of patterns in parallel. Generally speaking, most signatures in NIDSes are ASCII

codes while network traffic is composed in binary data and signature matches rarely

happen in real-world traffic. The more bytes we can skip during searching signatures

in packets, the more performance we gain. The first pattern search algorithm, FNP

[28], is a Network Processor-based algorithm and utilizes the hash engine of the

Network Processor to achieve high performance. The rule memory in this design is

too large to fit into local cache so that this algorithm is quite suitable for Network

Processors. Network Processors usually lack of cache memory so that accessing main

memory are quite expensive in this environment. Unfortunately, pattern matching

algorithms usually need to access memory quite frequently. For example, the

Aho-Corasick algorithm [1] needs to access main memory for every single byte in

packet payload. The proposed FNP [28] algorithm outperforms other alternatives in

this way so that its performance is quite good in our test.

The second algorithm we proposed is the FNP2 [30] algorithm. This algorithm is

not for Network Processor platform specifically but a general software-based solution.

The FNP2 algorithm is modified from Wu-Manber algorithm (MWM) [57] and needs

less memory access than MWM, especially when the size of shortest pattern is small.

According to current snort ruleset, there’re a lot of patterns whose size is less then

three, therefore FNP2 is quite suitable to be implemented into a software-based NIDS.

We implement FNP2 into a Network Processor platform also, and its performance is

better than other competitors according to our experiments.

Except to these two software-based pattern matching algorithm, we also proposed a

FNP-like TCAM-based searching algorithm named FTSE. With an ASIC/FPGA

3

running with our algorithm, a 2.25Mbit TCAM, and a DDR SDRAM which cost less

than fifty US dollars in total, we can achieve very high throughput in multiple gigabit.

The FTSE can process multiple packets in the same time and by this way the TCAM

latency could be hidden also. These characteristics make FTSE preferable to high-end

Network Processors to implement gigabit-level NIDS.

On the other hand, a sophisticated TCP processing engine is a prerequisite since the

attackers can use ambiguities in network protocol specifications to deceive network

security systems [16, 31, 39, 40]. This engine makes sure the NIDS sees the same

thing as the end system and prevents from ambiguities. In this TCP scrubbing engine,

we check the integrity of the TCP headers, tracks the TCP state transitions, and

reassembles TCP segments into meaningful data stream with a minimum cost. We

implement this engine and test this engine with the same methodologies as in the

evasion test of the most two reputable NIDS certificate (NSS [45] and OSEC [46]).

However, such a TCP processing engine itself might be vulnerable to Denial of

Service (DoS) attacks, more specifically, the SYN Flood attacks. Since the TCP

processing engine needs to allocate memory spaces for monitoring the whole lifetime

of TCP connections, it could be exhausted in memory resources under SYN Flood

attack. It has been shown that many security systems are vulnerable to SYN Flood

attacks themselves [40], and over 90% DoS attacks are SYN Flooding [53]. This

dissertation also presents an efficient mechanism, FSS filter, which can significantly

mitigate the damage and it can work in conjunction with other methods also. The FSS

filter can block and mitigate SYN Flood attacks, and it can co-work with other

methods like Semi-Transparent [25] method as well. In our experiments, we collected

18 famous SYN Flood attacks and FSS filter can block they attacks successfully and

immediately.

The rest of this dissertation is organized as follows, Chapter 2 introduces the SYN

4

Flood problem and several defending mechanisms and FSS filter as well. Next,

Chapter 3 explains why a sophisticated TCP processing engine is necessary, and

presents several mechanisms. Chapter 4 and Chapter 5 discuss two pattern matching

algorithms for Network Processor platforms, respectively. Chapter 6 presents a novel

hardware architecture to match patterns in multiple gigabit speed. Finally some

conclusions are given in Chapter 7.

