

 19

Chapter 4

Post-processor

4.1 System Overview
 Because the number of multi-event rules in Snort has grown, the original

Detection Engine cannot handle its role efficiently. In this thesis, a novel architecture

is proposed to solve this problem. A SoC-based system is a better solution because it

incorporates both programmable software and application-specific logic circuit

hardware. Figure 4-1 shows a system overview diagram of a SoC-based

post-processor [30, 31].

Figure 4-1. The proposed novel NIDS architecture

Two special components are introduced below:

Pre-processor: The pre-processor is responsible for handling content match,

 20

URL filter and regular expression. The pre-processor sends

information (EvnetID, EventAddr) when a match condition

appears.

Post-processor: Like the original Snort detection engine, the CRME

(correlation match engine) is a post-processor which outputs

the Snort payload rule ID to the logging and alerting system

when it finds an appropriate correlation from pre-processor

information.

4.2 Relation between pre / post-processor
Figure 4-2 shows the relationship between the pre-processor and the

post-processor. The pre-processor sends information (EventID, EventAddr) when the

conditions are matched to the input buffer of the SoC system. The input buffer

consists of FIFO (first in first out) memory, which records all events that are triggered

by the same packet. The post-processor reads data from the input buffer to execute

correlation matching. The rule ID is sent out if the post-processor detects any

matches.

Figure 4-2. The relationship between pre-processor and post-processor

4.3 Post-processor overview
Incorporating the above features, the post-processor system diagram is shown in

Figure 4-3 [31], where:

Micro-Processor: The micro-processor is the control center of the

post-processor, and is used to maintain the data path and

 21

the control path on the SoC system. The main functions are

as follows:

1. Read (EventID, EventAddr) from input buffer

2. Filter out unnecessary and write necessary data to the

specific EventTable.

3. Receive information from the UART interface to control

the system.

 4. Read RuleID from the RuleResultBuffer.

EventTable: Stores several memory device records (EventID, EventOffset).

The micro-processor will write these to each EventTable

systematically.

RuleTable: Records Snort rules.

Match Engine: A user-defined logic circuit. In this thesis, we will design an

effective algorithm and implement the algorithm on such a

logic circuit.

RuleResultBuffer: Memory device that records the RuleID which is detected by

the ME.

UART: Universal Asynchronous Receiver/Transmitter.

This interface in used to control the SoC system.

Other IOs: Flash memory, LCD lights and buttons.

Figure 4-3. The architecture of SoC-based post-processor

 22

4.4 EGF algorithm (event group filter algorithm)
Based on the Snort rule characteristic of interdependence, events following the

first event, and in the same group as the first event, only need take action when the

first event occurs. A simple algorithm, below, is designed to determine if an extended

event needs to be processed by the post-processor.

First, a first event list (FEL) array is defined to record the first event when it

appears. Table 4-1 presents the format for an FEL entry, where:

fel_gid: GroupID of the first event.

fel_addr: Address of the first event.

fel_count: Number of extended events which are in the same GroupID

as events which have already occurred.

Table 4-1. The form of FEL entry
field fel_gid fel_addr fel_count

length 10 16 6

We devise a simple algorithm to filter out unnecessary events quickly and output

the values (FEL#, count, offset) which will determine the event table address where

the information will be recorded (Table 4-2).

Table 4-2. The input and output form of EGF algorithm
input/outp

ut
field Descript

EventID EventID is ID number for this event.
Input EventAdd

r
Location of which event appears.

FEL# Serial number of FEL entry is inserted by the first event.
count All zero

Output
(input is

first) offset All zero
FEL# Serial number of FEL entry belongs to extend event.
count Amount of extend event already appeared.

Output
(input is

extended) offset
The difference between EventAddr of input and the address
of the entry which input event belong to.

 23

The “offset” value returned is the relative address of the first event. Because

correlation matching detects the relationship between two events, the relative distance

between the two events is more important than their individual absolute address in the

payload. The flowchart of the EGF algorithm is shown in Figure 4-4.

Figure 4-4. The flowchart of EGF algorithm

Table 4-3 (a) to Table 4-3 (c) is a step by step example of the EFG algorithm for

the six (EventID, EventAddr) pairs.

Step0:
 Initial FEL.
Step1: input (0x 9006, 0x0006)

0x 9006 is first event insert to FEL#0, return (0x0, 0x0, 0x0)

Table 4-3(a). The content of FEL (step 1)
FEL (first event list)

Field fel_gid fel_addr fel_count
0 0x6 0x6 0x0

Step2: input (0x 1406, 0x000c)

0x 1406 is extended event and Group ID match FEL#0 offset=0xc-0x6=0x6;

 24

FEL#0 count one; return (0x0, 0x1, 0x0006)

Table 4-3(b). The content of FEL (step 2)
FEL (first event list)

Field fel_gid fel_addr fel_count
0 0x6 0x6 0x1

Step3: input (0x 2707, 0x 0013)

0x 2707 is extend event and group ID not match any FEL drop
Step4: input (0x A007, 0x 0032)

0x A007 is first event insert to FEL#1, return (0x1, 0x0, 0x0)
Step5: input (0x C008, 0x 0036)

0x C008 is first event; tag =1 and Event_Addr > 32 drop
Step6: input (0x 2707, 0x 0040)

0x 2707 is extended event and Group ID match FEL#1
offset =0x0040-0x0032=0x0008; count FEL#1, return (0x1, 0x1, 0x8)

Table 4-3(c). The content of FEL (step 6)

FEL (first event list)
field fel_gid fel_addr fel_count

0 0x6 0x6 0x1
1 0x7 0x0032 0x1

4.5 Event Table:
Definition 3:

Let EventBlock [i] be the set of all events when GroupID is i.

The relationship among input buffer, EGF and micro-processor is depicted in

Figure 4-5. After the EGF operation is executed, the (EventID, EventAddr) pair is in

the input buffer, and the EGF sends (fel#, count, offset) to the micro-processor to

access the corresponding (EventID, Offset) EventTable entry.

 25

{ Event_ID, Event_Addr }

input buffer

micro-
processor

EGF

{ fel#, count, offset }

{ ram_address, data }

…
EventBlock 2

EventBlock 1

EventBlock 0

Event Table

{ Event_ID, Event_Addr }

input buffer

micro-
processor

EGF

{ fel#, count, offset }

{ ram_address, data }{ Event_ID, Event_Addr }

input buffer

micro-
processor

EGF

{ fel#, count, offset }

{ ram_address, data }

…
EventBlock 2

EventBlock 1

EventBlock 0

Event Table
…

EventBlock 2

EventBlock 1

EventBlock 0

…
EventBlock 2

EventBlock 1

EventBlock 0

Event Table

Figure 4-5. Relationship between input buffer, EGF and micro-processor

According to the Snort rule character-group, it is unnecessary to match contents

that belong to different groups. The search domain of the original Snort Detection

Dngine contains all the events involved in the rule set. After dividing using the first

event, each EventBlock only needs to search the RuleGroup which is in the same

group (Figure 4-6). This method greatly reduces the amount of effort needed to match

and search all the rules in the Rule Group.

total rulecollection event

0x9006, 0x0006
0x1406, 0x000C

……

0xA007, 0x0032
0x2707, 0x0040

……
0x4808, 0x101A

EventBlk[6]

rule #1971, 2340,
1562, 1920, 1888

rule #1988, 1989,
1986, 540

rule # 2923

RuleGroup[6]

RuleGroup[7]

RuleGroup[8]

EventBlk[7]

EventBlk[8]

total rulecollection event

0x9006, 0x0006
0x1406, 0x000C

……

rule #1971, 2340,
1562, 1920, 1888

0xA007, 0x0032
0x2707, 0x0040

……
0x4808, 0x101A

EventBlk[6]

rule #1988, 1989,
1986, 540

rule # 2923

RuleGroup[6]

RuleGroup[7]

RuleGroup[8]

EventBlk[7]

EventBlk[8]

Figure 4-6. Group-based post-processor search domain

Collection:

In order to allocate the group event to the continuous space, the EventTable is

partitioned into several blocks. Each FEL entry maps directly to each block. This is

depicted in Figure 4-7.

 26

Figure 4-7. The relationship between FEL entry and EventBlock

4.6 Rule Table:
Each rule in the same RuleGroup can have a decision tree to correlate to each

event. Like the AC algorithm, the subsequent state depends on the present state and

the specific input. Each state has two types: accept state and non-accept state. Accept

state means a rule has been matched.

To construct a unique decision tree, we regulate the longer entries of the sub-tree

on the left side. Figure 4-8 is an example based on the rule set shown in Table 4-4.

Table 4-4. The example rule set

Rule ID Event 1 Event 2 Event 3 Event 4
Rule 1 Pa Pb; offset:12 Pc Pd
Rule 2 Pa Pe; depth:32 Pf
Rule 3 Pa Pg; offset:8; depth:32

non-accept state accept statenon-accept state accept state

Figure 4-8. The decision tree of the rule set in Table 4-4

 27

Definition 4:

For each state, parameters are defined as follows:

1. StatePrefix: A subset of the input traverses this state.

2. NextRuleState: The accept state on the right-side of the present

state.

3. NextRulePrefix: The StatePrefix of the NextRuleState.

4. CommonPrefix: (StatePrefix) ∩ (NextRulePrefix).

5. StatePrefixSize: The size of the StatePrefix.

6. CommonPrefixSize: The size of the CommonPrefix

7. pop: StatePrefixSize - CommonPrefixSize.

8. level: All conditions for each state have the same level

value.

In order to thoroughly check all rules with non-continuous input, the decision

tree must add an extra degree “drop”. This means dropping the present input and

traversing the present state again. For the same reason, an internal stack is also needed

to record the state prefix. When all inputs are traversed, popping several prefixes

allows backtracking to the next probable situation. The popping value is determined

by subtracting the CommonPrefixSize from the StatePrefixSize. A value less than or

equal to zero means that traversing the next probable situation is not required, and the

pop value is set to null.

For this reason, if we want to pop several prefixes we need extra memory (FIFO)

to store the StatePrefix. This storage is called “TraverseStack” and it records the

StatePrefix and state that have been traversed. Results calculated from the rule set in

Table 4-4 are shown in Table 4-5 and Figure 4-9.

 28

Table 4-5. Pop value of each state (CRM)
State StatePrefix NextRuleState NextRulePrefix CommonPrefix pop

1 Pa 6 Pa, Pe, Pf nil nil
2 Pa, Pb 6 Pa, Pe, Pf Pa 1
3 Pa, Pb, Pe 6 Pa, Pe, Pf Pa 2
4 Pa, Pb, Pc, Pd 6 Pa, Pe, Pf Pa 3
5 Pa, Pe 7 Pa, Pg Pa 1
6 Pa, Pe, Pf 7 Pa, Pg Pa 2
7 Pa, Pg nil nil nil nil

26

nil

1

3

2

1

Nil

Pop

3

2

4

7

5

1

State
Pb; offset 12

Pe; depth:3
Pc

Pf

Pd

state 4

state 3

state 6

state 2

state 1

state 5

state 7

Pg; offset 8; depth 32

Pa

26

nil

1

3

2

1

Nil

Pop

3

2

4

7

5

1

State

26

nil

1

3

2

1

Nil

Pop

3

2

4

7

5

1

State
Pb; offset 12

Pe; depth:3
Pc

Pf

Pd

state 4

state 3

state 6

state 2

state 1

state 5

state 7

Pg; offset 8; depth 32

Pa

Pb; offset 12

Pe; depth:3
Pc

Pf

Pd

state 4

state 3

state 6

state 2

state 1

state 5

state 7

Pg; offset 8; depth 32

Pa

non-accept state accept statenon-accept state accept state

Figure 4-9. The correlation match tree of the rule set in Table 4-4 (CRM); where
(Pb, offset: 12), (Pe, depth:32) and (Pg, offset:8; depth:32) are all at the same level.

This “correlation match tree” comprehensively represents the event relationship.

Construct the binary CRM (BCRM) tree:

 For efficient hardware design, it is preferable to have a binary CRM search tree.

This can be accomplished by converting the correlation tree to a binary search tree.

The conversion steps are as follows:

1. Each state of the binary search tree contains one event which consists of

an EventID and a relation.

2. For each state, the left son represents the first event in correlation tree,

and right son represents the other cases in correlation tree.

3. Each state which is at the same level of the correlation tree contributes to

 29

a circle link list on the binary correlation tree.

This search algorithm is similar to the search correlation tree algorithm. If the

input event matches the binary correlation match tree, we traverse to the left son and

take it as the next state, otherwise we drop or go to the right son. When all inputs are

traversed, the next rule state is traversed by popping the value from the stack. Each

item from the rule set in Table 4-4 is rearranged in Table 4-6 and Figure 4-10.

Table 4-6. Pop value of each state (BCRM)
State state prefix next rule state next rule prefix common prefix pop

A nil nil nil nil nil
B Pa nil nil nil nil
C Pa, Pb F Pa, Pe Pa 1
D Pa, Pb, Pc F Pa, Pe Pa 2
E Pa nil nil nil nil
F Pa, Pe G Pa Pa 1
G Pa Nil nil nil nil

nil0Pe;depth:32E

21PdD

11PfF

11PcC

nil1Pg;offset:8;
depth:32

G

nil0Pa;offset:12B

nil0PaA

popdropeventA

C

B

D

E

F
G

nil0Pe;depth:32E

21PdD

11PfF

11PcC

nil1Pg;offset:8;
depth:32

G

nil0Pa;offset:12B

nil0PaA

popdropeventA

B

C E

D G
F

Figure 4-10. The binary correlation search tree of rule set Table 4-6 (BCRM)

Although Snort rule relations are complicated, three parameters, ID, start, and

range, are extracted by analysis to cover event order and all of the content keywords

 30

(depth, offset, within, distance). These fields are introduced below:

name Description

ID Present this event’s ID.
start Present this event must appear how many bytes later after the previous event.

range

Present event must appear after “start” in how many bytes.
If range is 0, means the distance between present event and previous event is
just the “start” value.
If range is 255, means present event and previous event do not have to
consider the location.

ex:
alert tcp $HOME_NET 139 -> $EXTERNAL_NET any (

msg: "NETBIOS SMB repeated logon failure";…
content: "|ff|SMB"; offset:4; depth:4; content:"|73|"; distance:0; within:1;
content:"|6d0000c0|"; distance:0; within:4;…sid:2923; rev:1;

)
Singular form:

 header Payload
Length 4 4 0~1 1 0~4 4
Data tcp **** |ff|SMB * |73| **** |6D 00 00 C0|

We assume that,

Ph : |ff|SMB; Pi: |73|; Pj: |6d 00 00 C0|

Ph must occur at the 8th byte of the payload.

Pi must occur after Ph and the distance between them must be 0 or 1 byte.

Pj must occur after Pi the distance between them must be 4 to 8 bytes.

Convert RuleID 2923 to binary correlation tree as follows.

Event1: (Ph, 8, 0); Event2: (Pi, 0, 1); Event3: (Pj, 4, 4)

Table 4-7 is constructed using Table 4-4. Left field is the left state serial number,

right field is the right state serial number, drop field is the drop value of the state, pop

field is the pop value of the state and RuleID is the rule ID of the state.

 31

Table 4-7. The BCM table from example Table 4-4

Event ID Start depth true False drop pop rule ID
Pa 0 255 B A 0 nil 0
Pb 12 0 C E 0 nil 0
Pc 0 255 D C 1 1 0
Pd 0 255 B D 1 2 Rule 1
Pe 0 32 F G 0 nil 0
Pf 0 255 B F 1 1 Rule 2
Pg 8 32 B B 1 nil Rule 3

4.7 Binary Correlation Match Algorithm:
To implement a binary correlation match (BCM) operation, three pointers are

needed: prt, pet and pts. Prt points to input into the EventTable; prt points to the

present binary correlation tree state and pts points to the top of the TraverseStack.

Figure 4-11 represents the relationship among the EventTable, RuleTable,

TraverseStack and CRME (correlation match engine). They communicate with each

other via the shared bus.

Figure 4-11. The relationship between CRME and memory device

EventTable, RuleTable and TraverseStack input data to the binary correlation

match operation. Furthermore, CRME employs prt, pet and pts to control which data

 32

will be used in the next state. Figure 4-12 is a flowchart of the binary correlation

match algorithm.

Figure 4-12. The flowchart of Binary CRM algorithm

Table 4-8 illustrates an example of a binary correlation match algorithm. The

EventTable is taken from Table 4-9(a),(b).

Table 4-8. The content of EventTable

EventID Offset
0 P a 0x 4
1 P b 0x 8
2 P b 0x 10
3 P c 0x 20
4 P g 0x 30
5 P e 0x 34
6 P f 0x 3c
7 P d 0x 48
8 nil nil

 33

Table 4-9(a). Binary CRM step-by-step operation

present

state
input

next
state

detection action prefix

1 A (P a, 0) B match
prt left son
pet pet+1
push (Pa, 0)

P a,0

2 B (P b, 8) E
address-0<start

 mismatch
prt right son P a, 0

3 E (P b, 8) G mismatch prt right son P a, 0

4 G (P b, 8) B mismatch, drop=1
prt right son

pet pet+1
P a, 0

5 B (P b, 16) C match
pet pet+1

prt left son
P a, 0

P b, 16

6 C (P c, 32) D match
pet pet+1

prt left son

P a, 0
P b, 16
P c, 32

7 D (P g, 48) D
mismatch

drop
prt right son

pet pet+1

P a, 0
P b, 16
P c, 32

8 D (P e, 52) D
mismatch

drop
prt right son

pet pet+1

P a, 0
P b, 16
P c, 32

9 D (P f, 60) D
mismatch

drop
prt right son

pet pet+1

P a, 0
P b, 16
P c, 32

1
0

D (P d, 72) B match rule

pop two entries
prt go

pet last pop pet
return Rule1

P a, 0

1
1

B (P d,32) E mismatch prt right son P a, 0

1
2

E (P c, 32) G mismatch prt right son P a, 0

1
3

G (P c, 32) B mismatch, drop
prt right son

pet pet+1
P a, 0

1
4

B (P g, 48) E mismatch prt right son P a, 0

1
5

E (P g, 48) G mismatch prt right son P a, 0

1
6

G (P g, 48) B
(0x48-0)>(0x32+ 0x8),

 mismatch, drop
prt right son

pet pet+1
P a, 0

 34

Table 4-9 (b). Binary CRM step-by-step operation

1
7

B (P e, 52) B mismatch, drop
prt right son

pet pet+1
P a ,0

1
8

E (P e, 52) G
0x52 > 0x32

mismatch
prt right son P a, 0

1
9

G (P e, 52) B mismatch, drop
prt right son

pet pet+1
P a, 0

2
0

B (P f, 60) E mismatch prt right son P a, 0

2
1

E (P f, 60) G mismatch prt right son P a, 0

2
2

G (P f, 60) B mismatch, drop
prt right son

pet pet+1
P a, 0

2
3

B (P d, 72) E mismatch prt failure P a, 0

2
4

E (P d, 72) G mismatch prt failure P a, 0

2
5

G (P d, 72)
mismatch, end of input,
pop==7 end of search

end of search

In this example, all possible rules are perfectly checked in only 25 operations.

Because each RuleGroup is independent and the EventTable also stands alone,

binary correlation match operations are partitioned by GroupID. Figure 4-13 is an

example - the system was partitioned into four independent sub-systems. [23]

Figure 4-13. The relationship between each BCRM engine

