

 35

Chapter 5

Implementation & Results

5.1 Pre-processor:
To calculate the memory size of each AC-tree, we use information from Table

5-1, which shows the number of bytes for each sub-AC and for each original AC.

Table 5-1. Memory size of modified AC

 Class Size (byte)
AC 0 http + anycase 150612
AC 1 Sql + anycase 207672
AC 2 tcp:110,119,139,443,445,53,25 + anycase 72384
AC 3 telnet, ssh, ftp + anycase 67416
AC 4 Udp + anycase 55644
AC 5 ip, icmp + anycase 60216
AC 6 Other tcp service + anycase 86532

modified
AC

total 700476
original AC 611772

To measure the reduction ratio of the original AC and the modified AC

multi-pattern match algorithm we looked at three types of network behavior including

an attack context, a normal context and a clean context. The attack profile is traffic

which includes 313 Snort rules where each packet has more than two attack intensions,

the normal case is real traffic from the Internet, and the clean traffic was sifted for all

attack intentions from real traffic. The numbers of the original AC pattern match and

numbers of the modified AC multi-pattern match are given in Table 5-2.

 36

Table 5-2. Number of matching patterns
Total number of matches Attack traffic Real traffic Clean traffic

original AC 4578349 1896436 1335860
modify AC 1334649 591039 452364

reduction rate 71.85% 68.83% 67.14%

After modifying the AC multi-pattern match algorithm, there is only a 10%

memory space increase, and 60~70% of the unnecessary pattern match information is

filtered. This substantially reduces the overhead of the post-processor.

5.2 Post-processor:
This system is implemented on an Altera development board Cyclone 1C20. The

specification is as follows in Table 5-3 [33].

Table 5-3. The specification of development platform
FPGA EP1C20FC400

Logic Element 20060
On-Chip memory 294 Kbits

I/ O pins 301
PLLs 2

micro-processor [34] 32-bits Nios processor (200 MHz)

com port

jtag SRAM

LED
flash

SDRAM EPM7128Cyclone 1c20

com port

jtag SRAM

LED
flash

SDRAM EPM7128Cyclone 1c20

Figure 5-1. The diagram of Cyclone(1C20)

 37

We implement software and hardware respectively.

SoC-based software:

 Four functions:

1. Read data from input buffer and filter by EGFE (EventGroupFilter Engine)

then forward to particular EventTable entry.

2. Read data from RuleResultBuffer.

3. Control CRME (correlation match engine) and other devices.

4, Receive the control command from UART interface.

 These four functions are implemented by the GNU-C.

EGF (Event Group Filter) logic:

 We attempt to implement the EGF algorithm using two approaches:

1. Software solution.

2. Customized instruction solution.

For the software-based solution, use the pseudo-code is as follows:
procedure CGF(var EventID, EventAddr of integer)
 if (EventID is first event) and (table not full)
 insert to table;

else if (EventID not first event)
find entry i from 1 to next_FEL-1 which FEL_GID[i]==EventID

 FEL_COUNT[i] FEL_COUNT[i] + 1;
end CGF;

The other solution is to add micro-instructions to the micro-processor. This

means that when we want to carry out an EGF operation, we only need to call the

macro “ALT_CI_EGFE (EventID, EventAddr);”. The user-defined logic has five

 38

states in the finite state machine (FSM). The state translation diagram is shown in

Figure 5-2.

idle

find group blockfind group block

check offset, count FCL
result (block#, extend#, offset)

write to FCL
result (block#,)

idle

find group blockfind group block

check offset, count FCL
result (block#, extend#, offset)

write to FCL
result (block#,)

Figure 5-2. The state translation diagram of hardware-based EFG algorithm

We used a software solution and a customized instruction solution to measure the

latencies for 500 EGF (EventGroupFilter) operations. This solution increased the

speed of the operations up to 30 times (Table 5-4).

Table 5-4. The latency of two solutions
 Software Customization Instruction speed up

latency 4.414 ms 0.1471 ms 30.02

BCRME: (Binary Correlation Match Engine)

We designed nine states in the finite state machine to execute the Binary

Correlation Match (BCRM) algorithm. The state translation diagram is shown in

Figure 5-3.

 39

Figure 5-3. The state translation diagram of CRM algorithm

Consider the FPGA gate count; we can only partition the system into four

parallel match engines. Four CRME can output RuleID to RuleResultBuffer at the

same time, so the system needs an additional logic circuit to handle the order (Figure

5-4). Ordering the logic is a FIFO (first in first output) device, which schedules all

RuleIDs that need to write to the RuleResultBuffer memory.

Figure 5-4. The logic circuit with CRME, ordering logic and Result Buffer

 40

Total system:

The following table (Table 5-5) shows the resource utility rate of this thesis.

Figure 5-5 shows the SoC-based system critical diagram.

Table 5-5. The resource utility rate

 Quantity Util. rate
Number of CRMEs 4

Number of customization instructions 4
LE 15146 75.50 %

On-chip memory 237696 80.85 %
I / O pins 176 58.47 %

PLLs 2 100 %

Nios processor
& memory

CRME0~3 & RuleTable

Ordering logic

ResultBuffer

SDRAM controller

Nios processor
& memory

SDRAM controller

CRME0~3 & RuleTable

Ordering logic

ResultBuffer

Figure 5-5. The SoC-based system critical diagram

 41

5.3 Result:
We constructed two systems: a SoC-based system and a pure software-based

system. This thesis uses the SoC-based system and the original Snort Detection

Engine employs a pure software-based system. They use the same processor

(200-MHz Nios processor) to execute correlation match operations.

First, we conducted an experiment to test the SoC-based system. We employed

the open-source software Snort using constructed attack packets which included 313

Snort rules. We did this to observe whether the SoC-based system can thoroughly

detect all rules which are similar to the Snort detection engine.

Second, we gathered the same amount of data under three types of network

traffic:

Case1: Attack traffic. Each packet contains two or more rules.

Case2: Real traffic. This case was real traffic from Defcon9.

Case3: Clean traffic. Guarantee there never have the attack intention.

Third, in order to observe how system performance changes under more

complicated conditions, we defined a variable to represent more complicated input

data. The formula is as follows:

| ComplexGroup |
ComplexRate =

| ComplexGroup | + | SimpleGroup |

Input buffer was partitioned into two different parts: simple blocks and complex

blocks. Simple blocks collect all events which are in the ComplexGroup, complex

block collect all events which are in the SimpleGroup. Therefore, we can use the

access ratio of the two block types to control the complexity of input data. Figure 5-6

shows the relationship between input buffer and complex rate.

 42

 Figure 5-6. The relationship between input buffer and complex rate

Under the SoC-based system and pure software system, we measure the latency

using three traffic types (Table 5-6(a), (b), (c), Figure5-7(a), (b), (c)), and to calculate

the increased speed of the SoC-based system (Table 5-7, Figure 5-8).

Table 5-6(a). Case1 latency (ms)

system
complex rate

Software-based SoC-based

0% 5527.9228 652.4575
12.5% 5547.2358 667.1900
25% 5773.4644 653.2501

37.5% 6000.5390 652.1861
50% 6371.2378 656.1399

67.5% 6773.7817 655.9780
75% 7311.4179 651.1978

87.5% 7895.2158 653.3099
100% 8710.4180 650.9666

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

0% 12.50% 25% 37.50% 50% 67.50% 75% 87.50% 100%
complex rate

la
te

nc
y

(m
s)

Software-based

Soc-based

attack traffic

Figure 5-7(a). Case1 latency (ms)

 43

Table 5-6(b). Case2 latency (ms)

system
complex rate

Software-based SoC-based

0% 2436.3835 286.9169
12.5% 2459.3342 287.0807
25% 2584.4908 291.7757

37.5% 2726.6644 287.4409
50% 2816.0556 288.8588

67.5% 3030.4799 288.9143
75% 3341.3897 286.8515

87.5% 3567.2007 287.8539
100% 3956.4293 286.9140

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500

0% 12.50% 25% 37.50% 50% 67.50% 75% 87.50% 100%
complex rate

la
te

nc
y

(m
s)

Software-based

Soc-based

real traffic

Figure 5-7(b). Case2 latency (ms)

Table 5-6(c). Case3 latency (ms)
system

complex rate
Software-based SoC-based

0% 2158.7727 251.6503
12.5% 2181.9585 249.4379
25% 2253.5591 251.4102

37.5% 2424.2959 250.7783
50% 2575.8865 251.9172

67.5% 2718.8455 249.9839
75% 2950.3328 251.7770

87.5% 3173.9909 250.9199
100% 3500.6228 251.0464

 44

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000

0% 12.50% 25% 37.50% 50% 67.50% 75% 87.50% 100%
complex rate

la
te

nc
y

(m
s)

Software-based

Soc-based

clean traffic

Figure 5-7(c). Case3 latency (ms)

Table 5-7. Speedup: (SoC-based / Software-based)

traffic
complex rate

attack flow Normal flow clean flow

0% 8.4725 8.4916 8.5785
12.5% 8.3143 8.5667 8.7475
25% 8.8380 8.8578 8.9637

37.5% 9.2007 9.4860 9.6670
50% 9.7102 9.7489 10.2251

67.5% 10.3262 10.4892 10.8761
75% 11.2276 11.6485 11.7180

87.5% 12.0849 12.3924 12.6494
100% 13.3807 13.7896 13.9441

7x
8x
9x

10x
11x
12x
13x
14x
15x

0% 12.50% 25% 37.50% 50% 67.50% 75% 87.50% 100%
complex rate

sp
ee

du
p

case 1
case 2
case 3

Figure 5-8. Speedup: (SoC-based / Software-based)

 45

We observe three results:

1. Because the real traffic has limited attack intention, case 2 and case 3 are very

similar.

2. On the pure software-based system, the event complexity is related to latency.

On the SoC-based system, latency is not related to content complexity. Even

with highly complex data, which contain group number increases, the

performance is better.

3. The SoC-based system is 8~14 times faster.

Ignoring the pre-processor effect, we calculate the maximum throughput of the

SoC-based system (Table 5-8). Max throughput is 400 Mbps, the lowest throughput

being 153 Mbps. In comparison, a pure software-based system can only achieve

50Mbps.

Table 5-8. SoC-based performance (Mbps)

traffic
complex rate

attack flow Normal flow clean flow

0% 153.2667 348.5329 397.3768
12.5% 149.8823 348.3341 400.0901
25% 153.0807 342.7290 397.7563

37.5% 153.3305 347.8976 398.7585
50% 152.4065 346.8990 396.9558

67.5% 152.4441 346.1234 400.0276
75% 153.5630 348.6124 397.1769

87.5% 153.0667 347.3985 398.5336
100% 153.6177 348.5365 398.3327

