

 3

Chapter 2

Background

2.1 A Popular NIDS: Snort
A popular open-source [10] (under the GNU license) NIDS, Snort, is a freely

available, lightweight NIDS that is configured with a list of rules, each defining a

signature and a corresponding event log description. Snort also has a plug-in

architecture that allows analysis to be performed and is currently used by

pre-processors to avoid some intended attacks. Snort is widely used and there is a

large, freely accessible and up-to-date database of signatures available on the Internet.

The Snort system is logically divided into multiple components [11], as shown in

Table 2-1. These components work together to detect attacks and to generate output

from the detection system, called the “Detection Engine”.

Table 2-1. Descriptions of all Snort components

Name Description
Packet decoder Prepares packet for processing.

Pre-processors or
 Input Plug-ins

Used to normalize protocol headers, to detect anomalies
(payload string, URL, RE), to packet reassembly and

TCP stream re-assembly.
Detection Engine Applies rules to packets.

Logging and Alerting
System

Generates alert and log messages.

Output Module Processes alerts and logs.

The organization of these components is shown in Figure 2-1 [12]. Any data

packet coming from the Internet enters the packet decoder. While making its way

towards the output modules, the data packet is either dropped, logged or an alert is

 4

generated.

Figure 2-1. The original architecture of NIDS

Packet Decoder:

The packet decoder takes packets from different types of network interfaces and

prepares the packets to be preprocessed or to be sent to the detection engine. The

interface may be Ethernet, SLIP or PPP, among others.

Preprocessors

Preprocessors are components or plug-ins that can be used with Snort to arrange

or modify data packets before the Detection Engine attempts to recognize whether the

packet is being used by an intruder. Hackers use different techniques to fool the IDS

in different ways. For example, you may have created a rule to find a signature

“scripts/iisadmin” in HTTP packets. This can easily be subverted by a hacker who

makes even a slight modification to this string. For example: [13]

1. “scripts/./iisadmin”
2. “scripts/examples/../iisadmin”

 5

3. “scripts\iisadmin” …

To complicate the situation, hackers can also insert web Uniform Resource

Identifier (URI) hexadecimal characters or unicode characters, which the web server

sees as perfectly legal. Note that the web servers usually understand all these strings

and are able to preprocess them to extract the intended string “scripts/iisadmin”. A

preprocessor can rearrange the string so that it is detectable by the IDS.

Preprocessors in Snort can de-fragment packets, re-assemble TCP streams and so

on. These functions are considered to be an essential part of the IDS.

Logging and Alerting System

Depending on what the Detection Engine finds inside a packet, the packet may

be used to log an activity or to generate an alert. Logs are kept in simple text files.

Output Modules

Snort output module or plug-ins, which control the type of output generated by

the system, can produce different results depending on the desired format of the

output generated by the logging and alerting systems.

2.2 Snort component-Detection Engine
The Detection Engine [14] is the most important part of Snort. The Detection

Engine’s role is to detect any intrusion activity in a packet. The Detection Engine

employs Snort rules to do this. The rules are read into internal data structures or

chains where they are matched against all packets. If a packet matches a rule, an

appropriate action is taken. Taking an appropriate action means either logging the

packet or generating an alert. Depending on the strength of the engine and the number

 6

of rules that are defined, the amount of time to needed respond to different packets

may vary.

Snort uses rules stored in text files and rules are grouped into categories. For

example, the file “web-iis.rules” stores all rules about Windows IIS attacks. Snort

reads these rules during start-up and then builds internal data structures or chains in

order to apply the rules to captured data.

All Snort rules have two logical parts: the rule header and the rule options. When

snort initializes and parses the rules, it creates a separate rule tree for TCP, UDP,

ICMP and IP. Within each rule tree, there is a separate three-dimensional linked list of

RTNs (dimension one), OTNs (dimension two) and function pointers (dimension

three). The RTNs include the IP address and port. An example of an RTN list and the

three-dimensional links are shown in Figures 2-2 and 2-3, respectively [15].

Src ANY Src ANY Src ANY Src ANY
Dst HOME_NET Dst HOME_NET Dst HOME_NET Dst HOME_NET

Src_P ANY Src_P ANY Src_P ANY Src_P ANY
Dst_P 80

Dst_P 23 Dst_P 25 Dst_P 21
Figure 2-2. The three-dimensional linked list (RTN list)

When Snort sends a packet through the Detection Engine, its first checks the

type of IP protocol of the packet, so that the packet can be sent to the correct rule tree.

Once the packet is sent to the correct tree for evaluation, it is checked against each

RTN, from left to right, until a match is found. When checking the RTNs, Snort first

looks at the IP addresses and then the port information, if necessary. If an RTN is

found that matches the current packet, it is then checked against the OTNs one by one

to see if a further match is found. Each OTN has a linked list of function pointers

(dimension three) to the tests that need to be carried out for a particular OTN.

 7

TCP
Src ANY

Dst HOME_NET
Src_P ANY
Dst_P 21

TCP
Src ANY

Dst HOME_NET
Src_P ANY
Dst_P 23

TCP
Src ANY

Dst HOME_NET
Src_P ANY
Dst_P 25

↓ ↓ ↓
Content: “forward” Content: “_RLD” content: “help”

↓ ↓ ↓
content:“uid”;

content:|28| web|29| content: “to su root” Uricontent:
“/bin/chmod”

↓ ↓
content:“uid”;

content:|28| nobody|29| content: “4Dgifts”

↓
content:”MSG”; depth:4

content:”content-TYype|3a|”
content:”text/x-msmsgsinvite|”

......

↓
content:”MSG”; depth:4

content:”content-TYype|3a|”
content:”text/x-msmsgsinvite|”

......

Figure 2-3. The three-dimensional linked list (RTN &OTN)

2.3 Snort rule payload keyword
In order to redesign the Detection Engine, we must understand all the important

keywords, especially those related to packet payload. The public Snort payload

keywords are content, uricontent, pcre, offset, depth, within and distance. These are

introduced below [16].

The content keyword

One of Snort’s important features is its ability to find data patterns inside packets.

The pattern may present as an ASCII string or as binary data in the form of

hexadecimal characters. Like viruses, intruders also have signatures and the content

keyword is used to find these signatures in the packet.

The following rule does the same thing but the pattern is listed in hexadecimal.

Hexadecimal number 47 is equal to ASCII character G, 45 is equal to E, and 54 is

 8

equal to T. You can also match both ASCII strings and binary patterns in hexadecimal

form inside one rule.

alert tcp any any any any (
msg: “GET matched”;
content: “|47 45 54|”; …

)

The uricontent keyword

The uricontent keyword is similar to the content keyword except that it is used to

look for a string only in the URI part of a packet.

The PCRE (perl compatible regular expression) keyword

It allows rules to be written using PERL compatible regular expressions.

The offset /depth keyword

The offset keyword is used in combination with the content keyword. Using this

keyword, we can start the search at a certain offset location relative to the start of the

data portion of the packet. We can use the depth keyword to define the point after

which Snort should stop searching for patterns in the data packets. The depth keyword

is also used in combination with the content keyword to specify an upper limit to the

pattern matching. The following rule tries to find the word “HTTP” between the 4th

character and 40th character of the data portion of the TCP packet:

alert tcp any any any any (
content: "HTTP"; offset: 4; depth: 40; …

)

This keyword is very important since we can use it to limit searching inside the

packet.

The distance/within keyword

The distance keyword allows the rule writer to specify, within the packet, that

the distance between the pattern and the previous pattern is at least N bytes. The

 9

within keyword is a content modifier that makes sure at most N bytes are between

previous pattern matches using the content.

alert tcp any any any any (
content: "ABC"; content: "DEF"; distance :1; within:10 ;

)
The payload form is as follows: (* is any 8-bits data).

 Payload
offset 1~10
data ABC * DEF *

2.4 SoC (System On Chip) platform
Today, System-on-Chip (SoC) [17,18,19] devices target high performance

applications in which rapid time-to-market is of great importance. On these platforms,

there is a tradeoff among performance, flexibility and time-to-market. A typical

platform usually combines a micro-processor, memory, user-defined logic circuits and

peripherals around standard bus architecture. Specific IP cores could be added to form

derivatives targeting specific applications. This procedure reduces design time and

increases flexibility.

 SoC systems are more powerful than pure software systems, because the

user-defined logic is the product of pure a software system, it can easily increase the

performance. The micro-processor simultaneously takes charge of the system. A

typical design flow for a SoC system is shown in Figure 2-4.

 10

Figure 2-4. SoC system design flow

2.5 Multi-pattern matching algorithms
Snort has a pattern-match approach that uses a multi-pattern matching algorithm

which is capable of finding different patterns simultaneously. Two multi-pattern

matching algorithms, one Aho-Corasick-based and the other TCAM-based, are

discussed below.

Aho-Corasick algorithm:

Roughly speaking, the Aho-Corasick [20] algorithm uses a finite automaton

structure that accepts all strings in the set. The automaton is structured so that every

prefix is represented by only one state, even if the prefix is part of multiple patterns.

When the next character in the text is not one of the expected next characters in the

pattern, a failure link is made to a state representing the longest prefix of a pattern that

is also the proper suffix of the current state. An example of an AC tree for patterns

{he, she, his, hers} is shown in Figure 2-5. The time complexity of the Aho-Corasick

algorithm is O(n); where n is total length of input data.

 11

0

1

2

8

9

6

7

3

4

5

h

e

r

s

i

s

s

h

e

0

1

2

8

9

6

7

3

4

5

h

e

r

s

i

s

s

h

e

Figure 2-5. An example of AC tree for pattern {he, she, his, hers} [21]

TCAM:

Ternary Content Addressable Memory (TCAM) is a type of memory that can

perform parallel searches at high speeds [22, 23, 24, 25]. TCAM consists of a set of

entries. The top entry in the TCAM has the smallest index and the bottom entry has

the largest. Each entry is a one-bit vector of cells, where each cell stores one bit.

Therefore, a TCAM entry can be used to store a string. TCAM works as follows:

given an input string, it compares this string against all entries in its memory, in

parallel, and reports one entry that matches the input [26, 27, 28].

