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Chapter 2 

Background 
 

2.1 A Popular NIDS: Snort 
A popular open-source [10] (under the GNU license) NIDS, Snort, is a freely 

available, lightweight NIDS that is configured with a list of rules, each defining a 

signature and a corresponding event log description. Snort also has a plug-in 

architecture that allows analysis to be performed and is currently used by 

pre-processors to avoid some intended attacks. Snort is widely used and there is a 

large, freely accessible and up-to-date database of signatures available on the Internet. 

The Snort system is logically divided into multiple components [11], as shown in 

Table 2-1. These components work together to detect attacks and to generate output 

from the detection system, called the “Detection Engine”. 

 
Table 2-1. Descriptions of all Snort components 

Name Description 
Packet decoder Prepares packet for processing. 

Pre-processors or 
 Input Plug-ins 

Used to normalize protocol headers, to detect anomalies 
(payload string, URL, RE), to packet reassembly and 

TCP stream re-assembly. 
Detection Engine Applies rules to packets. 

Logging and Alerting 
System 

Generates alert and log messages. 

Output Module Processes alerts and logs. 
 

The organization of these components is shown in Figure 2-1 [12]. Any data 

packet coming from the Internet enters the packet decoder. While making its way 

towards the output modules, the data packet is either dropped, logged or an alert is 
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generated. 

 

 
Figure 2-1. The original architecture of NIDS 

 

Packet Decoder: 

The packet decoder takes packets from different types of network interfaces and 

prepares the packets to be preprocessed or to be sent to the detection engine. The 

interface may be Ethernet, SLIP or PPP, among others. 

 

Preprocessors 

Preprocessors are components or plug-ins that can be used with Snort to arrange 

or modify data packets before the Detection Engine attempts to recognize whether the 

packet is being used by an intruder. Hackers use different techniques to fool the IDS 

in different ways. For example, you may have created a rule to find a signature 

“scripts/iisadmin” in HTTP packets. This can easily be subverted by a hacker who 

makes even a slight modification to this string. For example: [13] 

1. “scripts/./iisadmin” 
2. “scripts/examples/../iisadmin” 
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3. “scripts\iisadmin” … 

 

To complicate the situation, hackers can also insert web Uniform Resource 

Identifier (URI) hexadecimal characters or unicode characters, which the web server 

sees as perfectly legal. Note that the web servers usually understand all these strings 

and are able to preprocess them to extract the intended string “scripts/iisadmin”. A 

preprocessor can rearrange the string so that it is detectable by the IDS. 

Preprocessors in Snort can de-fragment packets, re-assemble TCP streams and so 

on. These functions are considered to be an essential part of the IDS. 

 

Logging and Alerting System 

Depending on what the Detection Engine finds inside a packet, the packet may 

be used to log an activity or to generate an alert. Logs are kept in simple text files. 

 

Output Modules 

Snort output module or plug-ins, which control the type of output generated by 

the system, can produce different results depending on the desired format of the 

output generated by the logging and alerting systems. 

 
 

2.2 Snort component-Detection Engine 
The Detection Engine [14] is the most important part of Snort. The Detection 

Engine’s role is to detect any intrusion activity in a packet. The Detection Engine 

employs Snort rules to do this. The rules are read into internal data structures or 

chains where they are matched against all packets. If a packet matches a rule, an 

appropriate action is taken. Taking an appropriate action means either logging the 

packet or generating an alert. Depending on the strength of the engine and the number 
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of rules that are defined, the amount of time to needed respond to different packets 

may vary. 

Snort uses rules stored in text files and rules are grouped into categories. For 

example, the file “web-iis.rules” stores all rules about Windows IIS attacks. Snort 

reads these rules during start-up and then builds internal data structures or chains in 

order to apply the rules to captured data. 

All Snort rules have two logical parts: the rule header and the rule options. When 

snort initializes and parses the rules, it creates a separate rule tree for TCP, UDP, 

ICMP and IP. Within each rule tree, there is a separate three-dimensional linked list of 

RTNs (dimension one), OTNs (dimension two) and function pointers (dimension 

three). The RTNs include the IP address and port. An example of an RTN list and the 

three-dimensional links are shown in Figures 2-2 and 2-3, respectively [15]. 

 

Src ANY Src ANY Src ANY Src ANY 
Dst HOME_NET Dst HOME_NET Dst HOME_NET Dst HOME_NET

Src_P ANY Src_P ANY Src_P ANY Src_P ANY 
Dst_P 80 

 

Dst_P 23 Dst_P 25 Dst_P 21 
Figure 2-2. The three-dimensional linked list (RTN list) 

 

When Snort sends a packet through the Detection Engine, its first checks the 

type of IP protocol of the packet, so that the packet can be sent to the correct rule tree. 

Once the packet is sent to the correct tree for evaluation, it is checked against each 

RTN, from left to right, until a match is found. When checking the RTNs, Snort first 

looks at the IP addresses and then the port information, if necessary. If an RTN is 

found that matches the current packet, it is then checked against the OTNs one by one 

to see if a further match is found. Each OTN has a linked list of function pointers 

(dimension three) to the tests that need to be carried out for a particular OTN. 
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TCP 
Src ANY 

Dst HOME_NET 
Src_P ANY 
Dst_P 21 

 

TCP 
Src ANY 

Dst HOME_NET 
Src_P ANY 
Dst_P 23 

 

TCP 
Src ANY 

Dst HOME_NET 
Src_P ANY 
Dst_P 25 

↓  ↓  ↓ 
Content: “forward”  Content: “_RLD”  content: “help” 

↓  ↓  ↓ 
content:“uid”; 

content:|28| web|29|  content: “to su root”  Uricontent: 
“/bin/chmod” 

↓  ↓   
content:“uid”; 

content:|28| nobody|29|  content: “4Dgifts”   

↓     
content:”MSG”; depth:4 

content:”content-TYype|3a|” 
content:”text/x-msmsgsinvite|” 

...... 

    

↓     
content:”MSG”; depth:4 

content:”content-TYype|3a|” 
content:”text/x-msmsgsinvite|” 

...... 

    

Figure 2-3. The three-dimensional linked list (RTN &OTN) 
 
 

2.3 Snort rule payload keyword  
In order to redesign the Detection Engine, we must understand all the important 

keywords, especially those related to packet payload. The public Snort payload 

keywords are content, uricontent, pcre, offset, depth, within and distance. These are 

introduced below [16]. 

 

The content keyword 

One of Snort’s important features is its ability to find data patterns inside packets. 

The pattern may present as an ASCII string or as binary data in the form of 

hexadecimal characters. Like viruses, intruders also have signatures and the content 

keyword is used to find these signatures in the packet. 

The following rule does the same thing but the pattern is listed in hexadecimal. 

Hexadecimal number 47 is equal to ASCII character G, 45 is equal to E, and 54 is 
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equal to T. You can also match both ASCII strings and binary patterns in hexadecimal 

form inside one rule. 

alert tcp any any  any any ( 
msg: “GET matched”; 
content: “|47 45 54|”;  … 

) 

The uricontent keyword 

The uricontent keyword is similar to the content keyword except that it is used to 

look for a string only in the URI part of a packet. 

The PCRE (perl compatible regular expression) keyword  

It allows rules to be written using PERL compatible regular expressions. 

The offset /depth keyword  

The offset keyword is used in combination with the content keyword. Using this 

keyword, we can start the search at a certain offset location relative to the start of the 

data portion of the packet. We can use the depth keyword to define the point after 

which Snort should stop searching for patterns in the data packets. The depth keyword 

is also used in combination with the content keyword to specify an upper limit to the 

pattern matching. The following rule tries to find the word “HTTP” between the 4th 

character and 40th character of the data portion of the TCP packet: 

alert tcp any any  any any ( 
content: "HTTP"; offset: 4; depth: 40;  … 

) 

This keyword is very important since we can use it to limit searching inside the 

packet.  

 

The distance/within keyword 

The distance keyword allows the rule writer to specify, within the packet, that 

the distance between the pattern and the previous pattern is at least N bytes. The 
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within keyword is a content modifier that makes sure at most N bytes are between 

previous pattern matches using the content. 

alert tcp any any  any any ( 
content: "ABC"; content: "DEF"; distance :1; within:10 ; 

) 
The payload form is as follows: (* is any 8-bits data). 
 

 Payload 
offset  1~10   
data ABC * DEF * 

 

2.4 SoC (System On Chip) platform 
Today, System-on-Chip (SoC) [17,18,19] devices target high performance 

applications in which rapid time-to-market is of great importance. On these platforms, 

there is a tradeoff among performance, flexibility and time-to-market. A typical 

platform usually combines a micro-processor, memory, user-defined logic circuits and 

peripherals around standard bus architecture. Specific IP cores could be added to form 

derivatives targeting specific applications. This procedure reduces design time and 

increases flexibility. 

 SoC systems are more powerful than pure software systems, because the 

user-defined logic is the product of pure a software system, it can easily increase the 

performance. The micro-processor simultaneously takes charge of the system. A 

typical design flow for a SoC system is shown in Figure 2-4. 
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Figure 2-4. SoC system design flow 
 

2.5 Multi-pattern matching algorithms 
Snort has a pattern-match approach that uses a multi-pattern matching algorithm 

which is capable of finding different patterns simultaneously. Two multi-pattern 

matching algorithms, one Aho-Corasick-based and the other TCAM-based, are 

discussed below.  

 

Aho-Corasick algorithm: 

Roughly speaking, the Aho-Corasick [20] algorithm uses a finite automaton 

structure that accepts all strings in the set. The automaton is structured so that every 

prefix is represented by only one state, even if the prefix is part of multiple patterns. 

When the next character in the text is not one of the expected next characters in the 

pattern, a failure link is made to a state representing the longest prefix of a pattern that 

is also the proper suffix of the current state. An example of an AC tree for patterns 

{he, she, his, hers} is shown in Figure 2-5. The time complexity of the Aho-Corasick 

algorithm is O(n); where n is total length of input data. 
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Figure 2-5. An example of AC tree for pattern {he, she, his, hers} [21] 
 

TCAM: 

Ternary Content Addressable Memory (TCAM) is a type of memory that can 

perform parallel searches at high speeds [22, 23, 24, 25]. TCAM consists of a set of 

entries. The top entry in the TCAM has the smallest index and the bottom entry has 

the largest. Each entry is a one-bit vector of cells, where each cell stores one bit. 

Therefore, a TCAM entry can be used to store a string. TCAM works as follows: 

given an input string, it compares this string against all entries in its memory, in 

parallel, and reports one entry that matches the input [26, 27, 28]. 

 

 


