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Agenda

- Acoustics

- Impedance, reflectance, multi-tube modeling
- Linear prediction (LP)

- Relation to acoustics

- LP and spectral analysis
- Least-square formulation
- Formants: resonant peaks

- LP and speech synthesis
- LP and speech recognition



Acoustics: the iImpedance concept

- Canonical acoustic variables are
- Acoustic pressure P(x,t)
- Volume velocity U(x,t)
- Z = P/U Is the characteristic impedance
(and, how about Q = PU?)

- Based on continuity and Newton’s law, Z = pc/A
- p: Density of air
- C: Speed of sound (~340 m/s or 1 ft/ms)
- A: Cross-section area



More on Z = pc/A

- The characteristic impedance is frequency-
iIndependent (?!)

- This formula does not consider

- Dissipative loss

- Friction A $x4

- Viscosity ZE:% 1+
- Propagation modes
- Turbulence % ;&

- Other nonlinear effects



Continuity, Impedance mismatch, and

acoustic reflectance

- Now consider acoustic wave propagation through the
boundary between two tubes

- Due to impedance mismatch, a portion of the wave is
reflected and a portion crosses the boundary




Acoustic pressure

reflectance and transmittance
- Reflectance R can be defined as P, /P,*

- Based on continuity, we can show that
ro = (£1-2)[(Z,+2,)
- T = 1-ris called the transmittance




Two-port formulation

- Now consider reflected waves as a linear combination of
left- and right- going incident waves

- use volume velocity U as the input-output variable
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The multi-tube model
of the vocal tract
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Signal flow of the multi-tube model
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The entire multi-tube model with source and load
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Linear prediction: Vocal tract as an
all-pole IR filter
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P
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 This equation is called a linear prediction model

* P is the order of prediction
* a,'s are the linear prediction coefficients



Speech analysis and synthesis
based on LP

- Analysis:
- record x[n] o
- estimate a,’s that gives x[n]=>_ax[n—k]+Oye[n]
best prediction of Xx[n] k=1

- Best prediction is
formulated as a least-
square problem*

glottal source; outout
- Synthesis: Create e[n], excitation X[n]p
synthesize x[n] in real-time. e[n]
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LP analysis:
a least-square formulation

Can be formulated as a matrix

Find {a,}, k=1,2,...,P === inverse problem:
so as to minimize the sum of K . b
square of prediction error
e[n], defined as below, i{;} ﬁg} o ﬁglﬂ ~ i{g:g
e[n] = x[n]- ép_ ax[n- k] . |
= X[L] X[L+1] ... X[P+L] X[P+L]

Solution:
a = (KTK)1(KT™b)



A least-square solver:
MATLAB Ipc() function

LPC Linear Predictor Coefficients.
A = LPC(X,N) finds the coefficients,

A=[ 1 A(2) ... A(N+1) ], of an Nth order forward linear
predictor.

Xp(n) = -A(2)*X(n-1) - A(3)*X(n-2) - ... -
A(N+1)*X(n-N)

such that the sum of the squares of the errors

err(n) = X(n) - Xp(n)

is minimized.



Remarks on least-square prediction

- The resulting prediction error e[n] is spectrally maximally
flat
- The prediction “whitens” the signal

- Makes sense, for the white noise is uncorrelated from sample to
sample, which makes it impossible to predict further.

- In practice, because of spectral roll-off, one needs to pre-
emphasize* before LP analysis.



Pre-emphasis and de-emphasis

Linear
FISRLE- Prediction
emphasis : _
y[n] x[n] =~ Analysis e[n]: estimated source
find {a,, ... ap}
x[n] = y[n] — 0.95 y[n-1]
N Multi-tube N E)IeR N
synthesis :
e[n] x[n] emphasis y[n]

y[n] = 0.95 y[n-1] + x[n]




Source-filter separation

- Find {a,,..ap} such that energy of e[n] is minimized.
- Turns out that such e[n] will be maximally spectrally flat.

- This provides a source-filter separation:
- {a,,..ap}: vocal-tract filter

- e[n]: glottal source = {voiced, unvoiced}
- When voiced, use pulse train
- When unvoiced, use white noise

Noise
generator e[n] All-pole filter | S[n]
T {a,,..ap} ’
: Glottal L Speech signal
Pulse-train 5 source Vocal tract
generator




More on LP

- Speech synthesis: By replacing e[n] with a template,
speech compression achieves <8k bits/s.

- Codebook excited linear prediction (CELP)
- key technology for voice over internet and wireless networks.

- Speech recognition: From {a,,..a,}, we can estimate

- Vocal tract constriction
- Frequency-envelope; formant structure.

e[n] | All-pole filter s[n]

——

Glottal | 181,--8p} Speech signal
source

Vocal tract



LP finds an all-pole filter that provides spectral smoothing
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Formant frequencies and speech production
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