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Musical signals primarily comprise of time-varying sinusoidal components plus noise.
To encode musical signals, one may calculate the amplitude, phase, and frequency of all
sinusoidal components for each frame (i.e., a windowed block of samples). When doing
so, we need to consider the theoretic limitation that prevents us from achieving perfect
estimation. There are two related but different concepts: resolution vs. accuracy.

1 The time-frequency resolution trade-off

1.1 A stationary two-tones complex

Let us consider the case of two tones whose frequencies f1, f2 are nearby. For the simplest
case, assume that the tones sustain forever and their frequencies never change. We are
asked to estimate their frequencies without waiting till the end of time. Now, the discrete-
time signal can be written as

x[n] = A1e
j(2πf1nT+φ1) + A2e

j(2πf2nT+φ2),

where T = 1/fs is the sampling period. From what we’ve studied previously, we can mul-
tiply x[n] with a certain window function w[n], and then look for peaks in the magnitude
spectrum of x[n]w[n]. The DTFT of w(n)x(n) can be written as

Xw(ω) = A1e
jφ1W (ω − 2πf1T ) + A2e

jφ2W (ω − 2πf2T ), (1)

where W (ω) is the DTFT of w[n].

Exercise: If A1 = 2A2 and φ1 = φ2 = 0, draw a sketch of Xw(ω) in Eq. 1 assuming
w(n) is the rectangular window.
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To estimate the frequencies (and amplitudes) of two tones, we can look for the two
highest peaks in the magnitude spectrum. Figure 1 shows that the two peaks are well-
resolved only if the window is sufficiently long, and the minimum peak-resolving length
depends on the type of window — whether it is rectangular or Hann in this case. Further,
Fig. 2 shows that how well the two peaks are resolved also depends on the relative phase
of the two sinusoids.

1.2 Practical considerations

1.2.1 Choosing the window length

The stationarity assumption is an idealization of audio signals in the real world. Signal
characteristics always change in time. Therefore, we are always facing this dilemma when
choosing the size of the window: on one hand, a shorter window is preferred in favor of
following rapid changes in time. On the other hand, a longer window is preferred in favor
of resolving neighboring sinusoids in frequency. This is the classical trade-off in time-
frequency analysis. The rule of thumb is: Resolution in time ∆t is inversely proportional
to resolution in frequency ∆ω.

1.2.2 Spectral splattering

Note that in Fig. 1 we have two magnitude peaks representing two spectral components.
Unfortunately, we also have sidelobes extended to the left and to the right. These sidelobes
make it difficult to judge how many tones there actually are. This is called spectral
splattering, meaning that energy is spread spectrally when the signal is windowed in time.
The rectangular window has the best spectral resolution but the worst spectral splattering
— the height of the sidelobe is just about 13 dB lower than the mainlobe. Other types of
windows, such as Hann, Blackman, or the Kaiser family, have better sidelobe suppression
ratios. In fact, the Kaiser family of windows are parameterized so that you can fine-tune
to trade spectral resolution for sidelobe suppression. However, Kaiser windows do not
satisfy the constant overlap-add constraints. More interested readers can refer to [4].

2 The accuracy limit due to the presence of noise

2.1 Modeling a single tone in noise

In certain situations we desire not only to resolve multiple peaks in the spectrum, but
also to estimate the frequencies (and amplitudes) of them accurately. Let us consider the
simplest case first: a single tone in noise.

The problem of tone estimation is stated as follows. We are looking for a tone that
might be contaminated by noise. The tone is a pure tone, so we write

s(n;A, ω) = Aejωn, (2)

where A is an arbitrary complex number. Were there no noise, the amplitude of this
tone would simply be computed as the absolute value at any time n, and the frequency
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Figure 1: Short vs. long windows in spectral analysis. Panels show summed spectra of
two equal-intensity tones at 1000 and 1050 Hz, respectively. A, B: window length = 25
ms. C, D: 50 ms. E, F: 100 ms. Panels A, C, E are obtained using the rectangular
window while B, D, F are obtained using the Hann window.
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Figure 2: Spectral separation of two tones depends on their relative phase. Using Eq. (1),
assume that f1 = 1000 Hz, f2 = 1050 Hz, and A1 = A2. Panels on the left are obtained
by Hann window of length 50 ms, and on the right, 100 ms. Each row was obtained by a
different relative phase. A, B: φ2 − φ1 = 0. C, D: φ2 − φ1 = π/4. E, F: φ2 − φ1 = π/2.
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Figure 3: A tone interfered by noise. Red: the observed noisy signal. Blue: the ideal
sinusoid to extract.

could be figured out in a straightforward manner (how?). However, when the signal
is added with noise, we cannot directly observe s(n). Instead, we might be looking at
x(n) = s(n) + u(n), where u(n) is a noise signal. Our task is to estimate its frequency
(and amplitude). Figure 3 illustrate the situation we are facing. We look at the noisy
signal (in red) and hope to recover a pure signal underlying there (in blue). How should
we do it?

To formulate this estimation problem rigorously, we need to assume that the noise
obeys certain statistics. A simple example is the Gaussian noise. Let us assume that u(n)
is i.i.d.1 Gaussian with zero mean and variance σ2. Next section presents a simple method
for frequency estimation of a single tone in noise.

2.2 Quadratic interpolation in magnitude spectrum

The QI-FFT (quadratic interpolation of FFT) method involves four steps:

• Windowing

• Zero-padding to about 8–16 times the window length

• FFT

• Quadratic interpolation near the peak of the logarithmic magnitude spectrum

1independent identically distributed
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We’ve covered the first three steps in class. To complete the fourth step, we need to
identify the maximum in the magnitude spectrum. Let us denote the maximum as
L = 20 log10 |Xk|, i.e., the peak is located at the kth frequency. Then we fit a parabola
near the peak (fk, L); that is, assuming that the peak and the point to its left and to its
right are on a parabola L(f) = −a(f − f̂)2 +Lmax. Then, Lmax is an estimate of the tone
level (intensity) and f̂ is an estimate of the tone frequency.

Exercise: Derive a formula for f̂ and Lmax.

The QI-FFT method is intuitive. To evaluate its performance, we need to compare
against a limit in theory. The limit is the Cramér-Rao lower bound (CRB).

2.3 Fisher information and the Cramér-Rao bound (CRB)

Assume that we know the signal comes from a family of signals and the family of signal
is parameterized by a real-valued index θ. For example, the amplitude A is known, then
Eq. (2) describes a family of signal parameterized by frequency ω. Assume that the signal
is contaminated with noise of known statistics; i.e., x(n) = s(n) + u(n) and we know
the multi-variate probability density function of u(n). Also, assume that we observe x(n)
from time n = 0 to N − 1. Define

V =
∂

∂θ
log f(x; θ) =

∂
∂θ
f(x; θ)

f(x; θ)

where f(x; θ) is the probability density function of x = [x(0), x(1), ..., x(n− 1)]T .

The Fisher information J(θ) is defined as the variance of V [2]:

J(θ) = E

[

∂

∂θ
log f(x; θ)

]2

It can be shown that, for any unbiased estimator θ̂ = T (x), the mean-square error
(MSE) of parameter estimation is lower bounded,

E(θ̂ − θ)2 ≥
1

J(θ)
. (3)
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For each θ, the quantity 1/J(θ) is called the CRB. It gives a theoretic limit for any method
that estimates θ unbiasedly.

Under this framework, it can be derived that the Fisher information of frequency
estimation is proportional to N3A2/σ2 [3, 5]. Note that A2/σ2 is the signal to noise
ratio, and the fact that the CRB decreases by the factor N3 tells us that the accuracy of
frequency estimation improves beyond linearly in time.

To compare, the frequency resolution of FFT improves linearly with respect to time. It
is important to tell the difference. Often, a frequency estimating scheme that achieve the
time dependence of mean-square error at N−3 is called a “coherent frequency estimator”.

It has been shown that the QI-FFT method achieves coherent estimation for a rea-
sonable range of SNR (say SNR ≥ 5 dB) at a reasonably chosen window length. More
interested reader can refer to [1] for details of performance analysis.
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