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Last time, we defined the discrete-time Fourier transform as a time-to-frequency map-
ping for any signal in time whose duration might run from −∞ to ∞. This is simple
definition, and it leads to several nice properties such as the convolution theorem. How-
ever, to apply DTFT in the analysis of speech or musical sounds, we face the reality that
these audio signals are non-stationary. The resulting DTFT is affected by all samples
in time and is therefore not easy to recognize — for example, we might be interested in
looking at the signal and answer questions like the followings,

• Which notes are being played on the guitar?

• What words are spoken?

• When is a kick-drum hit upon and what is the beat pattern?

Answers to these questions involves determining short-time properties, rather than cal-
culating long-term averages. Consequently, we often need to trade between time- and
frequency-resolutions. This can be accomplished by choosing the right length of Fourier
transform. So we shall study short-time Fourier transform this week. The basic idea is
to process the samples in a block-by-block manner. In this course, the retrieved block of
samples is called a frame.

1 The Discrete Fourier transform (DFT)

1.1 DFT as DTFT sampled in frequency

Let L be the length of a block of samples s = [s0, s2, ..., sL−1]
T . Then, the discrete Fourier

transform(DFT) of s is defined as a length-L vector ~S whose components are

Sk =

L−1
∑

n=0

sn exp

(

−jk
2π

L
n

)

, k = 0, 1, 2, ..., L− 1.

When the above definition is compared to the definition of DTFT, we find that DFT is
DTFT sampled in frequency. This can be understood by recognizing that

Sk = S(ω)
∣

∣

∣

ω=k 2π

L

, (1)
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where ω is the frequency variable in the DTFT of a discrete-time signal s(n) whose values
are s0, s1, ..., sL−1 from n = 0 to n = L− 1, and s(n) = 0 elsewhere.

In other words, we can think of the DFT of a block of samples as the DTFT of that
block calculated at L equally spaced frequencies ωk = kω0, where ω0 = 2π/L, and
k = 0, 1, 2, ...L− 1.

Conversely, we can obtain the DTFT of a signal that has a finite length L by interpolat-
ing the DFT of that signal. Interpolation in the frequency domain can be achieved via
appending zeros in the end in time. The number of frequency bins increases as more zeros
are appended in the time domain.

1.2 Matrix representations and inverse DFT

We can write the length-L Fourier transform as an L× L matrix F,

F =

















1 1 . . . 1
1 e−jω0·1 . . . e−jω0·(L−1)

1 e−j2ω0·1 . . . e−j2ω0·(L−1)

· · . . . ·
· · . . . ·
1 e−j(L−1)ω0·1 . . . e−j(L−1)ω0·(L−1)

















(2)

where ω0 ≡ 2π/L is the frequency spacing between adjacent bins. F maps signal s of
length L in the time domain to a spectrum of L bins in the frequency domain; that is,

S = Fs, (3)

where the capital bold-font S = [S0, S1, ..., SL−1]
T is the DFT of s. It is straightforward

to verify that F is essentially unitary:

F†F = LI, (4)

or equivalently, F−1 = 1
L
F† — this gives a way to calculate inverse DFT:
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THEOREM (Inverse DFT):

The length-L inverse DFT can be represented by the following
L× L matrix,

F−1 =
1

L

















1 1 . . . 1
1 ejω0·1 . . . ejω0·(L−1)

1 ej2ω0·1 . . . ej2ω0·(L−1)

· · . . . ·
· · . . . ·
1 ej(L−1)ω0·1 . . . ej(L−1)ω0·(L−1)

















. (5)

F−1 maps a spectrum Fs in the frequency domain back to a signal s in
the time domain.

Using the matrix notations, Parseval’s theorem (DFT-version) can be derived as a result
of Eq. (4):

THEOREM (Parseval’s):

Let s be an arbitrary length-L signal, then its energy in the
time-domain is the same as in the frequency domain; that is,

s†s =
1

L
(Fs)†(Fs). (6)

1.3 The fast Fourier transform (FFT)

The following paragraph obtained from wikipedia1 explains what the FFT is and its
importance in various fields.

A DFT decomposes a sequence of values into components of different frequencies. This

operation is useful in many fields but computing it directly from the definition is often too

slow to be practical. An FFT is a way to compute the same result more quickly: comput-

ing a DFT of N points in the näıve way, using the definition, takes O(N2) arithmetical

operations, while an FFT can compute the same result in only O(N logN) operations.

The difference in speed can be substantial, especially for long data sets where N may be in

the thousands or millions — in practice, the computation time can be reduced by several

orders of magnitude in such cases... This huge improvement made many DFT-based al-

gorithms practical; FFTs are of great importance to a wide variety of applications, from

digital signal processing and solving partial differential equations to algorithms for quick

1copied from http://en.wikipedia.org/wiki/Fast Fourier transform as of October 4, 2010.
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multiplication of large integers.

For this course, we consider FFT as a fairly mature technique that can simply be used
without knowing its details. More interested readers can search for the monumental pa-
per by Cooley, James W., and John W. Tukey (1965). “An algorithm for the machine
calculation of complex Fourier series,” published in Math. Comput. 19: 297–301.

2 Short-time Fourier transform

To calculate short-time Fourier transforms (STFT) of a signal involves the following steps:
(i) taking a block of the signal, (ii) optionally, multiplying the block by a window function,
and then (iii) calculating the DTFT. These three steps combined are described by the
following equation,

X(ω, n0) =

N−1
∑

n=−N

w[n]x[n + n0] exp(−jωn), (7)

where (x[n0 −N ], ..., x[n0 +N − 1])T is a block of length 2N , w[n] is a window function
that helps shaping the spectrum, and X denotes its STFT.

Note that X is a function of both frequency ω and time n0. What happens here is that
we slide the window in time to look at a block of signal centering around a particular time
n0, and the spectral components of that block are calculated as a function of frequency.

2.1 Application: the spectrogram

In practice, we often make the window “hop” h samples in time and calculate the STFT
accordingly. The resulting STFTs can be shown as a sequence of spectra like a movie, so
we get a quick idea how spectral components vary in time.

Alternatively, we can convert the movie into a still image. This is called the spectrogram
and an example is shown in Fig. 1. Brightness increases as a function of sound intensity.
In this spectrogram, we can inspect with adequate frequency resolution where energy is
concentrated.

2.2 Time-frequency resolution

When choosing the length of block, be aware of the tradeoff between time and frequency
resolution:

• A longer window gives higher frequency resolution while sacrificing the ability to follow
the signal’s changes in time.

• A shorter window can capture the transient more accurately, but the frequency reso-
lution is lost.
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Figure 1: Example of a spectrogram. The signal is MATLAB’s default Hallelujah chorus
sampled at 8192 Hz. The window type is Hann, and the window length is 512.

For instance, in Fig. 2, a spectrogram is computed for the same signal as in Fig. 1 but
the window length is reduced from 512 to 64. We can see that the spectral resolution is
lost while temporal resolution is overly high.

3 The cyclic convolution theorems

Roughly speaking, it is still true with DFT that multiplication in one domain (time or
frequency) is equivalent to convolution in the other domain. However, because of the
finite length of transformation, the convolution needs to be calculated in a wrapped-
around manner. This is called the cyclic convolution and the corresponding theorems are
called the cyclic convolution theorems.
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Figure 2: Another spectrogram of the same signal as in Fig. 1, but the window is much
shorter (L = 64).

THEOREM (Cyclic Convolution):

Let x ↔ X and y ↔ Y be DFT-pairs, and the product spec-
trum Z is X multiplied by Y at every frequency, i.e., Zk = XkYk, for
k = 0, 1, ..., L− 1. Then, the inverse DFT of Z is the cyclic convolution
of x and y; that is,

z[n] =
L−1
∑

l=0

x[l] · y[n− l|L], n = 0, 1, ..., L− 1.

Proof:

Zk = XkYk =
L−1
∑

l=0

L−1
∑

m=0

x[l]y[m]e−jωkle−jωkm

∴ z[n] =
1

L

L−1
∑

k=0

(

L−1
∑

l=0

L−1
∑

m=0

x[l]y[m]e−jωkle−jωkm

)

ejωkn

=
1

L

L−1
∑

l=0

L−1
∑

m=0

x[l]y[m]
(

L−1
∑

k=0

ejωk(n−l−m)
)

,

where ωk = k · (2π/L). Note that
∑L−1

k=0 e
jωk(n−l−m) = 0 unless m = n− l or m = L+n− l.
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Continuing from above, we have

z[n] =
1

L

L−1
∑

l=0

L−1
∑

m=0

x[l] · y[m](Lδm,n−l|L) =

L−1
∑

l=0

x(l)y(n− l|L). �

3.1 Time-frequency dualities

The dual of the cyclic convolution theorem is also true: if two block of signals are mul-
tiplied in the time domain, then the resulting spectrum is the cyclic convolution of two
spectra. We denote this fact as the following,

x[n]y[n] ↔
1

2π
X(ω)⊗ Y (ω), (8)

where the symbol ⊗ denotes the cyclic convolution.

Exercises

1. Conceptually, spectral interpolation by zero-padding in time is similar to temporal
interpolation by band-limited filtering in frequency. Discuss these two concepts in
terms of time-frequency dualities.

2. Compare Eq. 6 to Parseval’s theorem of DTFT. In what senses are they similar?

3. To visualize the spectrogram of a signal, discuss what range of window lengths (how
many ms?) would be good for audio applications.

4. Derive the cyclic convolution theorem in the frequency domain (Eq. 8).
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4 Appendix: Commonly used windows

Let us look at a few commonly used windows and calculate their DTFTs.

4.1 The rectangular window

A rectangular window of length N can be defined as

wR[n] = 1, n = 0, 1, 2, ..., N − 1,

and wR[n] = 0, elsewhere. Its DTFT is

WR(ω) = e−jω(N−1)/2 ·
sin
(

N ω
2

)

sin
(

ω
2

) . (9)

Derivation:

Note the linear phase term e−jω(N−1)/2. As we will see in more examples, this is a
property for all window functions that look symmetric under horizontal flipping. (Why?)

4.1.1 zero-phase windows

We have defined the rectangular window from time n = 0 to N −1. When N is an odd
number, it is easier to shift the window in time so it centers around time zero. Now we
have a modified definition for the rectangular window:

wR[n] = 1, n = −
N − 1

2
, ..., 0, ...

N − 1

2
,

and
wR[n] = 0, elsewhere.

When an even-symmetric window is centered around time zero, its DTFT becomes purely
real. Therefore, such a window is called a zero-phase window for its phase is 0 at every
frequency (or strictly speaking, the phase is either 0 or π). Now, the DTFT of wR[n] is
simply

WR(ω) =
sin
(

N ω
2

)

sin
(

ω
2

) . (10)

The linear-phase term has disappeared. From here on, we will use the zero-phase definition
for the rectangular window in favor of mathematical simplicity.
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4.2 The Hann or raised-cosine window

In this section, we shall follow the MATLAB convention, which defines a Hann window
of length N (usually an odd number) as

w[n] =
1 + cos(ΩNn)

2
≡ cos2

(

ΩN

2
n

)

, n = −
N − 1

2
, ..., 0, ...

N − 1

2
,

where ΩN = 2π/(N − 1) is 2π times the fundamental frequency of the raised cosine
function. It is straightforward to check that w[n] satisfies the COLA criteria (??) for the
hopsize M = (N − 1)/2, or any integer M that divides N − 1 (!!).

Note that

w[n] = wR[n] ·
1 + cos(ΩNn)

2
, (11)

where wR[n] is a rectangular window of length N − 1. Equation (11) can be written as

w[n] = wR[n] ·
1 + cos(ΩNn)

2

= wR[n] ·

(

1

2
+

1

4
ejΩNn +

1

4
e−jΩNn

)

.

Using the shift theorem and linearity, we obtain the DTFT of the Hann window:

W (ω) =
1

2
WR(ω) +

1

4
WR(ω − ΩN) +

1

4
WR(ω + ΩN ). (12)

Exercise: Use Eqs. (10) and (12) to sketch the DTFT of the Hann window for N = 17.
Note that the period of the raised-cosine function is 8+8 = 16 = 17−1. In the frequency
domain, what’s the width of the mainlobe?

4.3 The Blackman-Harris family of windows

The Blackman-Harris family of windows are defined by considering a more general summa-
tion of shifted sinc functions in the frequency domain. In the time domain, a Blackman-
Harris window w[n] can be defined as follows,

w[n] = wR[n]
K−1
∑

k=0

ak cos(kΩNn),

where the length (i.e., number of nonzero taps) of wR[n] is N − 1, and ΩN = 2π/(N − 1).
It is straightforward to show that w[n]’s DTFT is indeed a linear combination of shifted
sinc function (Eq. 6).

In particular, choosing K = 2, and (a0, a1, a2) = (0.42, 0.5, 0.08) leads to what is called
the Blackman window (MATLAB function blackman()). The Blackman window has two
good properties: first, its sidelobe is at -58 dB relative to its mainlobe; to compare, the
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sidelobe is -31 dB for the Hann window. Secondly, its roll-off rate is about 18 dB/octave,
same as that of the Hann window, but three times better than that of the rectangular
window. These properties make the Blackman window useful for spectral estimation pur-
poses (to be covered later in the semester). However, these good properties are achieved
at the cost of increasing the width of the mainlobe.

Exercise: What’s the mainlobe width of the Blackman window transform?

4.4 Notes on other types of windows

Over the years, many other types of windows have become popular each for different
reasons. For instances,

• The Hamming window is similar to the Hann window but has a better sidelobe sup-
pression ratio

• The Chebyshev window has equally suppressed sidelobes

• The Hann-Poisson window does not have sidelobes at all (!)

• The Kaiser family of windows have optimal mainlobe-to-sidelobes energy ratio

We can also see that some windows satisfy the constant over-lap-add (COLA) criterion
but most other windows do not. This property alone makes them appealing for FFT-
based audio analysis and synthesis. More interested readers can refer to MATLAB’s help
files to choose an appropriate window for different purposes:

WINDOW Window function gateway.

WINDOW(@WNAME,N) returns an N-point window of type specified

by the function handle @WNAME in a column vector.

@blackman - Blackman window.

@blackmanharris - Minimum 4-term Blackman-Harris window.

@hann - Hann window.

@rectwin - Rectangular window.

...

You are also encouraged to refer to Harris’ pioneering paper [1] for further reading.
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Figure 3: Top: the rectangular window of length 17. Bottom: its magnitude spectrum.
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