
 

 

78

Chapter 7  

Conclusions 

In this dissertation a stream processing engine in a Network Intrusion Detection 

Systems has been proposed. First, we proposed a FSS filter which can mitigate SYN 

Flood attacks efficiently. In our test, all the attacking tools failed to exhaust the victim 

server’s TCP state so that the availability of its web service is assured. We cannot find 

even one attacking tool against the weakness of FSS filter, but if it does exist, this 

mechanism can still reduce at least 50% attacking rate so that it can work in 

conjunction with other defense mechanisms such like SYN-Cache, SYN-Proxy, and 

so on. The extra memory space for FSS filter is much relatively small than the others, 

and this design requires less computing power as well. 

Then we proposed a TCP scrubbing engine which erases the ambiguities of TCP 

evasion packets in several ways: header field sanity check, state transition check, 

out-of-order handling, and overlapping resolution. Our design can pass the evasion 

test of both NSS and OSEC which are the most reputable and professional NIDS test. 

This design hardly copies data and its memory consumption is relatively lower than 

the others since we don’t need a stream buffer for each connection but a low-cost tree 

structure. Moreover, it can be easily integrated into existing NIDS implementations 

since it fulfills the general layer-4 functions comprehensively. 

The first proposed pattern search algorithm, FNP, is a Network Processor-based 

algorithm that utilizes the hash engine of the Network Processor to achieve high 

performance. Network Processors usually lack of cache memory so that accessing 

main memory are quite expensive in this environment. Unfortunately, pattern 

matching algorithms usually need to access memory quite frequently. For example, 



 

 

79

the Aho-Corasick algorithm needs to access main memory for every single byte in 

packet payload. The proposed FNP algorithm outperforms other alternatives in this 

way so that its performance is quite good in our test. 

The second proposed algorithm is the FNP2 algorithm. This algorithm is not for 

Network Processor platform specifically but a general software-based solution. The 

FNP2 algorithm is modified from Wu-Manber algorithm (MWM) and needs less 

memory access than MWM does, especially when the size of shortest pattern is small. 

According to current snort ruleset, there’re a lot of patterns whose size is less then 

three, therefore FNP2 is quite suitable to be implemented in a software-based NIDS. 

We also implemented FNP2 algorithm in a Network Processor platform, and its 

performance is better than other competitors according to our experiments. 

Besides, this dissertation also presented a novel and fast hardware-based pattern 

matching engine, FTSE, which can process in up to 6Gbps to 8Gbps. FTSE comprises 

a TCAM to store signature prefix, a DDR SDRAM to store the whole signature 

database, and an ASIC/FPGA where the main algorithm running. There are two stages 

in FTSE, and the first stage is a pre-filter which filter out the strings impossible to 

match while the second stage performs exact match between a 9-byte matched 

candidate and the signature. These two processes work in parallel. In our simulation, 

the probability of passing strings to the second stage is only 0.2% to 2%, and the first 

stage runs seven-time faster than brute-force algorithm. On the other hand, the 

accuracy of the pre-filter in the first stage is over 90% in our test. 

The future work of our research topic is to develop a more scalable pattern- 

matching mechanism which can support more than 32K patterns and regular 

expression syntax so that not only NIDS but Anti-Virus application could be satisfied. 




