

62

Chapter 5

FNP2: A MWM-like Pattern Matching Algorithm

5.1 Introduction of FNP2

This work presents a multiple pattern matching algorithm which works efficiently

whatever the number of ruleset or the minimal pattern length is. Moreover, this design

utilizes the hardware accelerators of network processors to hide the search latency and

speed up the performance. Network processors are part of an emerging class of

programmable ICs based on system-on-a-chip technology that perform

communications-specific functions more efficiently than general-purpose processors.

The design presented here employs multi-thread for parallel processing and hardware

accelerated hashing engine to identify matching entries via a linked list in the event of

hash collision to save processor power. Hashing engine checks the linked entries

individually from a given starting address until it identifies a matched entry or reaches

the end of the linked list. As previously described, searching entries by hashing engine

hides latency and improves performance owing to context switching before a search

result is returned.

5.2 Design/Implementation of FNP2

This work addresses the string matching problem formally before introducing the

proposed FNP2 algorithm.

Given an input text T = t0, t1, …, tn, and a finite set of strings P = {P1, P2, …, Pr}, the

string matching problem involves locating and identifying the substring of T which is

identical to Pj = j
m

jj aaa 110 ,...,, − , 1≤ j≤ r, where ts…ts+m-1 = j
m

j aa 10 ... − . And this

63

equation can be also denoted as ts…ts+m-1 = j
m

j aa 10 ... − .

FNP2 is a MWM-like algorithm and based on the following simple reasoning: For an

arbitrary pattern Pj = j
m

jj aaa 110 ,...,, − , if w sequential bytes of T can be found from

location s, where

ts...ts+w-1 ≠ j
wi

j
i aa 1... −+ , i = 0, 1, 2, … , m - w

Then, Pj doesn＇t contain the ts...ts+w-1 so that the w sequential bytes can be skipped

safely during searching. On the other hand, if the w sequential bytes ts...ts+w-1 is

identical to j
wi

j
i aa 1... −+ , where 0 ≤ i ≤ m-w, then it furthermore verifies whether the

last w sequential bytes of Pj (j
m

j
wm aa 1... −−) is identical to ts+m-i-w...ts+m-i-1. Once the

w-bytes suffix of Pj is matched in certain position in T, an exact match will be

performed. To clarify this point, this study uses a Prefix Sliding Window (denoted as

PSW) with length w which shifts from the leftmost byte to the rightmost byte of T.

Every time the PSW shifts, an attempt is made to determine whether S, the w

sequential bytes covered by PSW, contains j
wi

j
i aa 1... −+ of pattern Pj, where 0 ≤ i ≤ m-w.

The following details the design of the FNP2 algorithm. The off-line pre-processing

constructs necessary rule tables and lookup tables while the runtime processing

processes the payload and identifies the matches. For simplicity this work assumes w

= 3 for better performance

This stage involves constructing Skip Distance Table (SDT), Rule Hashing Table

(RHT), and Rule Status Table (RST) during initialization of this engine. SDT is used to

determine how many sequential bytes can be skipped safely in searching phase.

During initialization, all entries in SDT are set to LSP. Every table entry whose last

(rightmost) 8-bit of address is identical to any one-byte prefix of the patterns is set to

LSP - 1, and every table entry whose last (rightmost) 16-bit of address is identical to

64

any two-byte prefix of the patterns is set to LSP - 2. Every table entry whose address

is identical to j
iLSP

j
iLSP aa −−−− 13 ... is set to i, 1 ≤ j ≤ r and LSP-3 ≥ i ≥ 0. Figure 21

demonstrates an example of the construction of SDT. The LSP in this example is 6

and the maximal skip distance is 6 also. The skip distance of other NIDS pattern

matching algorithms is bound to LSP while the minimal skip distance of FNP2 is 3.

On the other hand, the construction and design of RST and RHT can be referenced

from previous chapter.

Figure 21. An example of the construction of SDT

5.3 Experiments over FNP2

To verify the effectiveness of the proposed FNP2 algorithm, its performance was

evaluated against the previously mentioned SBMH, AC, MWM, and E2xB algorithms.

Because of the difficulty of implementing all these five algorithms with Network

Processor micro codes, the later four experiments were implemented on general PCs

to simulate the network-processor environment. The current Snort ruleset, containing

1,942 rules with 2,475 patterns, was employed as the default searching pattern. The

full-packet traces can be derived from the “Capture the Capture The Flag” (CCTF)

project held in DEFCON [10] annually. The DEFCON9 packet traces used in the

present experiments were the most up-to-date available.

65

Figure 22. Number of memory accesses during pattern matching processing

As previously described, the proposed FNP2 algorithm requires fewer memory

accesses so that better performance can be achieved. The five algorithms are

evaluated using different search set sizes and LSPs by counting number of memory

accesses. The packet trace (900MB) defcon_eth0.dump2 [10] was employed to

generate the test traffic more realistically. Trace defcon_eth0.dump2 was selected

because of its low compression rate compared to other packet traces, and because the

content of this trace is considerably more complicated, thus increasing test fairness.

Figure 22 illustrates the results of four algorithms except E2xB for different search set

sizes and LSPs. The case involving the MWM algorithm with LSP = 1 was not

assessed because the MWM algorithm does not support this situation. The experiment

results of E2xB is not listed in Figure 22 because of the big gap between its result and

the other four. The number of memory accesses in E2xB’s simulation results is from

1112M to 23354M. It’s clear to see that E2xB doesn’t work well when rule-set size is

large and cache memory is unavailable like Network Processor platform. Figure 22

shows that FNP2 algorithm clearly outperformed other algorithms in this way.

Notably, two major influences affect the performance of multi-pattern matching

algorithms in the NIDS, namely: LSP value and the pattern ruleset size. Interestingly,

LSP = 1

0

2000

4000

6000

8000

10000

12000

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNP2 AC SBMH

LSP = 2

0

1000

2000

3000

4000

5000

6000

7000

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNP2 AC SBMH MWM

LSP = 3

0

1000

2000

3000

4000

5000

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNP2 AC SBMH MWM

LSP = 4

0

1000

2000

3000

4000

5000

32 64 128 256 512 1024 1536 2048

Search Set Size

C
om

pl
et

io
n

T
im

e
(s

)

FNP2 AC SBMH MWM

66

previous works focused on the latter factor only, while neglecting the former factor.

Figure 22 reveals that search-set size does not influence the number of memory

accesses required for the MWM algorithm to complete the multi-pattern matching, but

for LSP = 2,3,4 the required number of memory accesses is approximately 1800M,

950M, 800M, respectively. The SBMH algorithm displays the same phenomenon.

This phenomenon indicates that value of LSP is even a major influence on the

performance of multi-pattern matching algorithms.

5.4 Summaries of FNP2

This work examined the importance of the pattern matching algorithm for NIDS,

and designed and implemented a fast and efficient algorithm named FNP2 for network

processor platforms. FNP2 uses the characteristic of NIDS rulesets and the hardware

facility of Network Processor to maximize performance.

Owing to the difficulty of implementing other multi-pattern matching algorithms

(such as AC, SBMH, E2xB and MWM) by micro-code simultaneously, we evaluate

these algorithms by implementing in general PC platoform. The experimental results

reveal that the FNP2 outperforms the other algorithms in this matter.

Network Processors are known to be powerful to handle L3/L4 traffic and this

design take use of the characteristic of Network Processor to process L7 payloads

efficiently. Moreover, the searching algorithm benefits much more when LSP is small

whereas it’s the common case in NIDS application.

Generally, the NIDS detection engine conducts flow classification, header-field

comparison, and multi-pattern matching. Although multi-pattern matching is the most

time-consuming task, a fast packet processing flow is desirable for integrated

handling of these issues. Using the facilities provided by the Network Processor may

be a good solution to this problem. This direction is left for future works to pursue.

