CS 2336 Discrete Mathematics

Lecture 12

Sets, Functions, and Relations: Part IV

Outline

- Equivalence Relations
- Partial Orderings

• A relation may have more than one properties

A binary relation R on a set A is an equivalence relation if it is reflexive, symmetric, and transitive

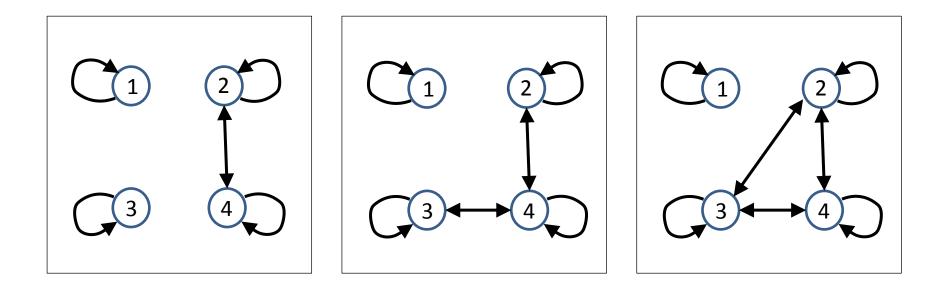
• Suppose that A = cities in a country X

 $R = \{ (x, y) | x can reach y by roads \}$

Is R always an equivalence relation, if

- (1) roads are always two-ways ?
- (2) some roads may be one-way?

• Which of the following are equivalence relations ?



- Suppose a binary relation R contains the pairs (a, b) as defined in the following cases
 In which of the following cases will R be an equivalence relation ?
 - 1. (a, b) such that a b is an integer ; $a, b \in \Re$
 - 2. (a, b) such that |a b| < 1; $a, b \in \Re$
 - 3. (a, b) such that a b is divisible by 3 ; a, $b \in Z$
 - 4. (a, b) such that a divides b ; a, b $\in Z^+$

- Let R be an equivalence relation on A, and x be an item in A
- If (x, w) ∈ R, we say w is related to x, and we denote this by xRw

The equivalence class of x (with respect to R) is the set of items related to x :

$$[x]_{R} = \{ w \mid (x, w) \in R \}.$$

• Example 1 :

 $R = \{ (a, b) \mid a - b \text{ is divisible by 3, } a, b \in Z \}$

$$= \{ ..., -7, -4, -1, 2, 5, 8, 11, ... \}$$

$$[0]_{R} = \{ ..., -9, -6, -3, 0, 3, 6, 9, ... \}$$

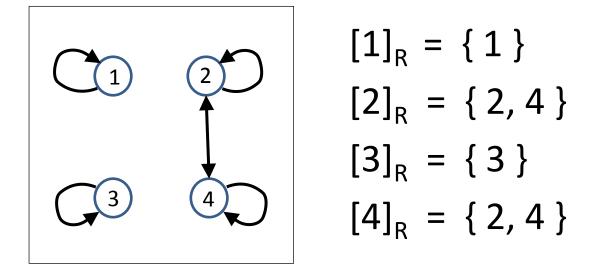
$$[1]_{R} = \{ ..., -8, -5, -2, 1, 4, 7, 10, ... \}$$

$$[2]_{R} = \{ ..., -7, -4, -1, 2, 5, 8, 11, ... \}$$

$$[7]_{R} = \{ ..., -8, -5, -2, 1, 4, 7, 10, ... \}$$

• Example 2 :

R = equivalence relation corresponding to the directed graph below



• Let R be an equivalence relation on A, and x and y be items in A

Theorem: The equivalence classes of x and y are either the same, or disjoint. That is, either $[x]_{R} = [y]_{R}$ or $[x]_{R} \cap [y]_{R} = \emptyset$

• Proof (see next page)

Proof :

Case 1: x is related to y

 \rightarrow xRy \rightarrow yRx (why?)

→ When xRz, we have yRz (since yRx and xRz)

$$\rightarrow [\mathbf{x}]_{\mathsf{R}} = [\mathbf{y}]_{\mathsf{R}}$$

Case 2: x is not related to y

- Suppose on the contrary that $[x]_R \cap [y]_R \neq \emptyset$
- ➔ There exists some z such that xRz and yRz
- \rightarrow xRz and zRy (why?) \rightarrow xRy \rightarrow contradiction !

Partition of a Set

• Let S be a set

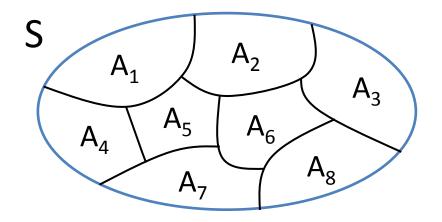
 (Π)

A partition of S is a collection of disjoint subsets of S such that their union is S. In other words, the collection of subsets $A_1, A_2, ..., A_k$ forms a partition of S, if and only if

(i)
$$A_1 \cup A_2 \cup ... \cup A_k = S$$
, and

 $A_i \cap A_j = \emptyset$ for all $i \neq j$

Partition of a Set



• Let R be an equivalence relation on a set A

Theorem :

The equivalence classes of R form a partition of A

Partition of a Set

 In fact, the converse of the previous theorem is also true

Theorem :

Let A_1 , A_2 , ..., A_k be disjoint subsets that form a partition of a set S. There exists an equivalence relation R on S such that has the sets A_1 , A_2 , ..., A_k as its equivalence classes

• It is easy to prove these two theorems. How ?

• Another important relation is the following:

A binary relation ∞ on a set A is a partial ordering if it is reflexive, antisymmetric, and transitive

A set S with a partial ordering ∞ is called a partial ordered set (or poset)

- Suppose a binary relation ∞ contains the pairs

 (a, b) as defined in the following cases
 In which cases will ∞ be a partial ordering ?
 - 1. (a, b) such that a \leq b ; a, b $\in \Re$
 - 2. (a, b) such that a < b ; a, b $\in \Re$
 - 3. (a, b) such that a b is divisible by 3; a, $b \in Z$
 - 4. (a, b) such that a divides b ; a, $b \in Z^+$

• Let S be a set of people

Suppose a binary relation ∞ contains the pairs as defined in the following cases

In which cases will ∞ be a partial ordering ?

- 1. (A, B) such that $A \subseteq B$; A, $B \in 2^{S}$
- 2. (x, y) such that x is older than y ; $x, y \in S$
- 3. (x, y) such that x is not older than y ; $x, y \in S$

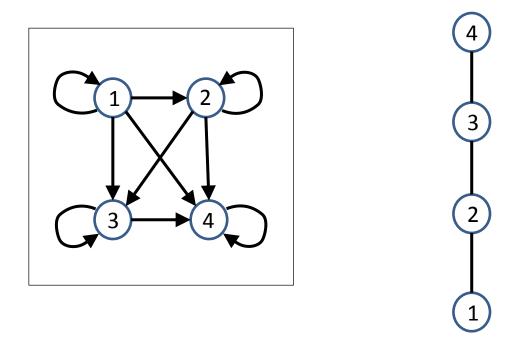
- Two items x and y in a poset (S, ∞) are comparable if either x ∞ y or y ∞ x
- Otherwise, x and y are incomparable
- Example :

Consider the poset $(Z^+, |)$, where a | b means a divides b

- 1. Are the integers 3 and 9 comparable ?
- 2. Are 5 and 7 comparable ?

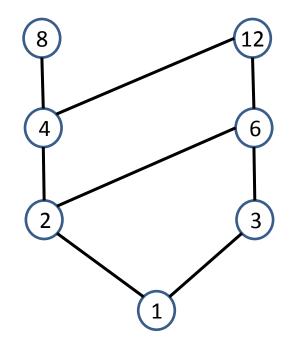
- Since partial orderings is a binary relation, it can be represented by a directed graph
- However, many edges can be omitted, because such an ordering must be reflexive and transitive
- Also, we may order the vertices in the graph in a 'vertical' manner, such that all edges are pointing from low to high
 - → directions on an edge can be omitted
- See the next two pages for examples

• Consider the poset ({ 1, 2, 3, 4 }, \leq)



original representation Hasse diagram

Consider the poset ({ 1, 2, 3, 4, 6, 8, 12 }, |)



Hasse diagram

- To summarize, the following are the steps to obtain a Hasse diagram :
 - 1. Remove all the self loops
 - 2. Remove all the edges that must be present due to transitivity
 - 3. Arrange all edges to point upwards
 - 4. Do not show directions on the edges

Maximal and Minimal Items

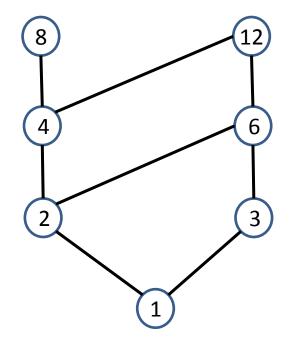
• One important concept of a poset is the following:

An item x in a poset (S, ∞) is maximal if there is no item y with x \neq y and x ∞ y That is, in the Hasse diagram, x is not connected to anything above x

 Similarly, we define minimal item to be an item y where there is no item x with x ≠ y and x ∝ y

Maximal and Minimal Items

• Which items are maximal ? Which are minimal ?



Hasse diagram

Maximal and Minimal Items

• We have the following observation :

Every finite nonempty poset (S, ∞) has as at least one minimal item

Proof : We give a method to find a minimal item.
 Pick any item x. Either x is minimal, then we are done. Else, we get some y (x ≠ y) such that y ∝ x, and repeat the process. Each time, we must either get a minimal item, or test a new item in S. Since S is finite, this process must end.

Total Orderings

If (S, \blacktriangleleft) is a poset such that every two items in S are comparable, we call S a totally ordered set

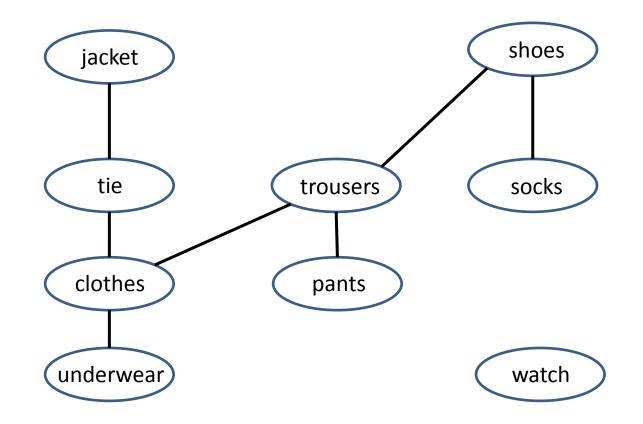
- Which of the following is a totally ordered set ?
 - 1. (ℜ,≥)
 - 2. $(2^{Q}, \subseteq)$, Q = a set of people
 - 3. (Z⁺, |)

Compatible Orderings

Let (S, ∞) be a poset. A total ordering (S, \blacktriangleleft) is compatible with (S, ∞) , if for any items x and y, $x \propto y$ implies $x \blacktriangleleft y$ Equivalently, ∞ is a subset of \blacktriangleleft

 Every finite poset has at least one compatible total ordering; Constructing one such ordering is called the topological sorting problem

Compatible Orderings



A compatible total ordering :

underwear < clothes < pants < trousers < socks < tie < shoes < jacket < watch

Compatible Orderings

- Given a finite poset (S, ∞), the following shows how to obtain a compatible total ordering :
 - 1. Get a minimal item x
 - 2. Denote x as the smallest item
 - 3. Remove the minimal item x from S, and recursively find the compatible total ordering
 - 4. Place the remaining items, from small to large as defined in 3, after the item x

Upper and Lower Bounds

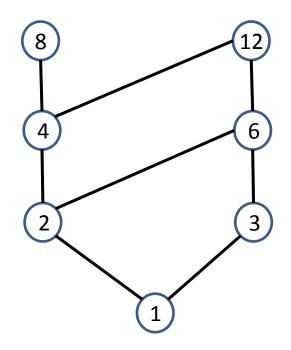
• We define the following terms :

Let (S, ∞) be a poset. For items x and y, if there is an item z such that $x \propto z$ and $y \propto z$, then z is called an upper bound of x and y

 Similarly, for items x and y, if there is an item w such that w ∞ x and w ∞ y, then w is called a lower bound of x and y

Upper and Lower Bounds

- Consider the poset as shown on the right
- Which items are :
 - 1. Upper bounds of 2 and 3 ?
 - 2. Lower bounds of 2 and 3 ?
 - 3. Upper bounds of 6 and 8 ?
 - 4. Lower bounds of 6 and 8 ?



LUB and GLB

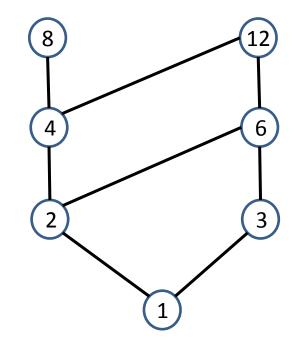
• We further define the following terms :

An item z is a least upper bound (LUB) for items x and y, if z is an upper bound of x and y, and no other upper bound d of x and y exists with d ∞ z

 Similarly, an item w is called a greatest lower bound (GLB) of x and y, if w is a lower bound of x and y, and no other lower bound c of x and y exists with w ∞ c

LUB and GLB

- Consider the poset as shown on the right
- Which items are :
 - 1. LUB of 2 and 3 ?
 - 2. GLB of 2 and 3 ?
 - 3. LUB of 6 and 8 ?
 - 4. GLB of 6 and 8 ?



Lattices

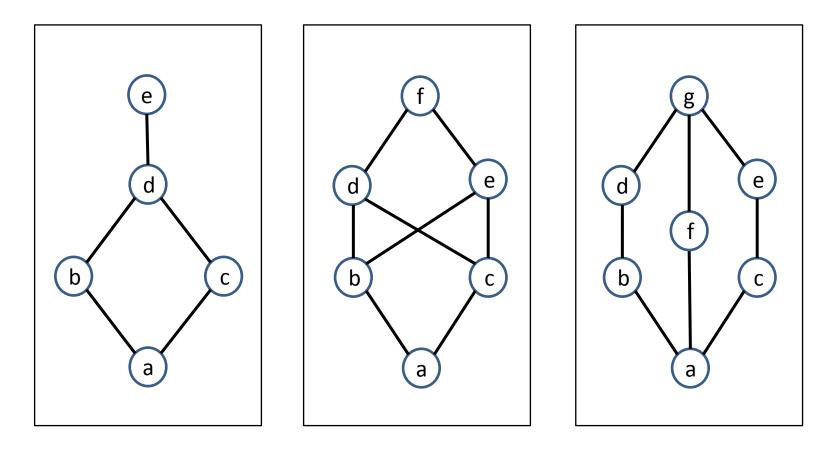
• Lattice is a type of poset with special properties :

A poset (S, ∞) is a lattice if for any items x and y, there is a unique LUB and a unique GLB

- Examples :
 - 1. Is $(Z^+, |)$ a lattice ?
 - 2. Is $(2^{S}, \subseteq)$ a lattice ?

Lattices

• Which of the following are lattices ?



Lattices

- Lattice is related to information flow and Boolean algebra, and has many properties
- Examples :
 - LUB and GLB are commutative and associative : LUB(x, y) = LUB(y, x) LUB(x, LUB(y, z)) = LUB(LUB(x, y), z)
 - 2. Duality (upside-down is also a lattice):

If (S, ∞) is a lattice, then (S, ∞ ') is also a lattice, where x ∞ y if and only if y ∞ ' x

Principle of Duality

- Duality is an important concept that appears in many places, and can be used to create results
- Example :

Cars in Taiwan or US travel on the right side ; On a highway, left lanes are passing lanes

- ➔ We can construct a system, switching left and right, so that cars travel on the left side, and on a highway, right lanes are passing lanes
- → Such a system is indeed used in UK, HK, Japan

An Interesting Example

- The following is a typical conversation between the people in the Land of Gentlemen, inside the story Flowers in the Mirror
 - *Customer* : I want to buy this vase. It is most beautiful.
 - Storekeeper: The vase does not really look that good. Please note that there are some defects in the paint job.
 - *Customer* : You would not call these defects, would you? The vase is a perfect piece of art work. How much do you want for it ?
 - Storekeeper: Usually I will sell a vase like this for \$10. Since you have been a good customer for many years, I will sell it for \$15.
 - *Customer* : \$15 is too low. I cannot allow myself to take advantage of you. How about \$20?
 - Storekeeper: I would be making a good profit at \$15. Since you insist, let us agree on \$16.