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Lecture 3 – Power Transformers 

Core structures. Winding connections. Equivalent circuits. 

Power Transformers 

Core Structures of Three-Phase Transformers 

A three-phase transformer can be considered to be some combination of single-

phase transformers, either as three separate units, or as a single unit with three 

sets of phase windings on a common magnetic core. 

A single unit construction permits some considerable saving of materials, and 

is therefore the usual option. Using three separate single-phase units is 

sometimes necessary for very large transformers to overcome weight and size 

limitations of transport. While the three separate single-phase units cost more 

than the equivalent three-phase unit, there is a saving in the cost of the spare 

transformer, usually mandatory for the security of supply. 

The standard configurations of three-phase cores are: 

(a) Three-Limb Core 

This is the most common arrangement, and uses the least amount of core 

material. The parts of the core joining the three limbs are known as the yokes. 
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Figure 3.1 – Three-limb core 
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(b) Five-Limb Core 

In the three-limb arrangement the yokes have the same cross-sectional area as 

the limbs. With two extra unwound limbs the top and bottom yokes can be 

reduced to half the cross-section of the three wound limbs. The unwound limbs 

also need to have only half the cross-section of the wound limbs, so the extra 

steel required for the unwound limbs comes mainly from the steel saved in the 

yokes. 
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Figure 3.2 – Five-limb core 

The lower profile yokes lead to a reduction of height. Therefore the five-limb 

core is commonly used in large transformers, where the transport height is an 

important design limitation. 

Both of the arrangements (a) and (b) are known as core type, as opposed to the 

shell type below. 
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(c) Shell Type Core 

This type uses almost as much core steel as three separate cores. It does have a 

design advantage of permitting winding construction with well supported coils, 

to provide mechanical strength to withstand short-circuit forces. The shell type 

arrangement is comparatively rare, and used only for very large transformers. 
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Figure 3.3 – Shell-type core 

Winding Connections of Three-Phase Transformers 

The basic connections are delta, star, and zig-zag (interconnected star). Any 

combination of these basic winding connections, with variations in polarities, 

may be found in a transformer. 

The connections of a particular transformer are indicated by a connection 

symbol, sometimes called a vector symbol. The possible connections result in 

various inherent phase displacements between primary and secondary voltages. 

The standard phase displacements are 0°, 180°, -30° and +30°, but other values 

are possible (e.g. with the zig-zag connection, or with a delta autotransformer). 
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The connection symbol for a two-winding transformer is composed as follows: 

HV 
symbol 

HV neutral 
symbol 

LV 
symbol 

LV neutral 
symbol 

Phase 
displacement 

symbol 
“D” for delta 
“Y” for star 
“Z” for zig-zag 

“N” if neutral 
terminal is 
accessible 

“d” for delta 
“y” for star 
“z” for zig-zag 

“n” if neutral 
terminal is 
accessible 

“0” for  0° 
“6” for  180° 
“1’ for  -30° 
“11” for +30° 

The phase displacement symbol is a clock hour figure showing the position of 

the equivalent star voltage phasor for the LV winding, with the corresponding 

HV phasor in the reference position of zero or 12 o’clock. 

Examples 

Yyn0 = star-star, HV neutral not available, LV neutral available, zero phase 

displacement. 

YNzn1 = HV star, HV neutral available, LV zig-zag, LV neutral available, LV 

lags HV by 30°. 

For multi-winding transformers the HV winding (the highest voltage) remains 

the reference for phase displacement, and its symbol is written first. Other 

symbols follow in diminishing order of rated voltages, and preferably separated 

with commas for clarity. 

Example 

A transformer has three windings: 

 132 kV star (HV) with neutral brought out 

 36 kV star, in phase with HV, with the neutral brought out 

 7.2 kV delta, leading the HV by 30° 

The connection symbol for this transformer is: YN, yn0, d11. 
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For autotransformers, in which the two windings have a common part, the 

letter “a” is used to designate the lower voltage of the auto-connected pair, and 

is placed immediately after the symbol for the higher voltage of the pair. 

Three-phase autotransformers are usually star connected. 

Examples 

D, yn11, a11 A separate high voltage delta winding, and an intermediate to 

low voltage star autotransformer. The intermediate and low 

voltages lead the high voltage by 30°. 

YN, a0, d1 A HV auto-connected star winding with the neutral terminal 

brought out, and a separate delta winding. The equivalent star 

voltage of the delta winding lags the HV by 30°. Diagram of 

connections as follows: 
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Reference and Terminology 

AS 2374 – Power Transformers, Part 4 – Tappings and Connections (1982) is 

the relevant Australian Standard that deals with transformer winding 

connections. In AS 2374 the term winding, for three-phase transformers, refers 

to the three phase windings associated with one of the voltages assigned to the 

transformer. Hence the terms high voltage winding, low voltage winding, and 

intermediate voltage winding for the main windings of a transformer. These 

terms, unlike primary and secondary do not imply any set direction of power 

flow. 

It is customary to add a third delta-connected auxiliary winding to all large 

star-star transformers to decrease the zero sequence impedance. This third 

winding is generally known as the tertiary winding, although AS 2374 does not 

use the term. Generally the tertiary winding has a lower MVA rating than the 

main windings. The tertiary winding, if its terminals are brought out, can also 

be used to supply a small load. 
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Equivalent Circuits of Power Transformers 

Single-Phase Transformers 

(a) Ideal Transformers 

Many power transformer problems can be solved with sufficient accuracy by 

treating the transformers as ideal:  
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Figure 3.4 – Two-winding ideal transformer 

For the two-winding ideal transformer: 
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(3.1) 
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The three-winding ideal transformer is represented by: 
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Figure 3.5 – Three-winding ideal transformer 

and has ideal equations: 
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TTSSPP INININ   

(3.3) 

(3.4)  

Let: 
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(3.5)
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Then: 

Secondary voltage referred to the primary 

Tertiary voltage referred to the primary 

Secondary current referred to the primary 

 

Tertiary current referred to the primary 

SPSS VaV   

TPTT VaV   

PS

S
S a

I
I   

PT

T
T a

I
I   

(3.7) 

 

(3.8) 

 

(3.9) 

 

(3.10) 

Hence, for the ideal transformer: 

TSP VVV   

TSP III   

(3.11) 

 

(3.12)  

and the equivalent circuit, in terms of the referred values, is shown below: 
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Figure 3.6 – Three-winding ideal transformer with referred values 
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(b) Practical Power Transformers 

Practical transformers have significant leakage reactance LX  and resistance 

LR . They also draw magnetising current, but for most power system 

calculations this can be ignored. Therefore we use the simplified equivalent 

circuits shown below for two- and three-winding transformers. 

The equivalent circuit for a two-winding power transformer is: 
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Figure 3.7 – Equivalent circuit of a two-winding power transformer 

When using per-unit values the term “referred to the primary” is superfluous, 

and we can replace SV   and SI   with SV  and SI  respectively. 

The equivalent circuit for a three-winding power transformer is: 
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Figure 3.8 – Equivalent circuit of a three-winding power transformer 
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The equivalent circuit impedances: 

TTT

SSS

PPP

jXRZ

jXRZ

jXRZ





 

 

 

(3.13) 

are not directly measurable, and have no physical meaning. They are merely 

abstract components of the equivalent circuit. The measurable impedances are: 
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(3.14) 

Solving the simultaneous equations (3.14) gives: 
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(3.15) 

where: 

STPTPS ZZZZ   
(3.16) 

In the interest of generality we should note that transformer windings also have 

some effective capacitance. The capacitance is important in some types of 

transformer (e.g. high voltage testing transformers), but can be safely ignored 

in power transformers, as long as we are concerned only with steady-state 

performance. 
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Three-Phase Transformers – Positive Sequence Equivalent Circuits 

For power system calculations the equivalent circuits of three-phase 

transformers are drawn as one phase of the equivalent star network. The ratio 

PSa  (for example) of a three-phase transformer is the unloaded voltage ratio. 

Whether this is the true turns ratio depends on the winding connections. Also, 

an inherent phase displacement may be involved. Thus we can regard the ratio 

PSa  as a complex number. 

Example 

Consider a 33 / 11 kV Yd1 transformer. The HV winding is nominated as the 

primary. The voltage ratio 31133  , but the turns ratio of the windings is 

3
11

333
 . The clock hour figure = 1, therefore the LV lags the HV by 30°, 

or HV leads the LV by 30°. Hence the complex ratio  303HLa . The 

positive sequence diagram is drawn in terms of per-unit quantities as follows: 

 

30°
VA

IA Ia

Va

Z 1 Z L jX LRL += =
= the leakage impedance

Z 1 aA

 

 

Figure 3.9 – Positive sequence equivalent circuit of example transformer 

The subscripts “A” and “a” refer to the HV and LV windings (“a” phase). 

These could be replaced by “A(1)” and “a(1)” respectively to emphasize that 

the circuit is valid only for positive phase sequence. 
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Three-Phase Transformers – Negative Sequence Equivalent Circuits 

The negative sequence impedance of a transformer, because it is a passive 

component, always equals the positive sequence impedance, which is the 

leakage impedance of the windings. While the impedance is independent of the 

direction of phase rotation, reversing the phase rotation reverses the sign of the 

phase angle in the complex ratio. Therefore the negative sequence equivalent 

circuit is obtained by reversing the sign of any phase shifters in the positive 

sequence equivalent circuit. For the transformer in the previous example, this 

illustrated in the following diagram: 

 

-30°
VA

IA Ia

Va(2) (2)

(2)
Z 2 Z 1=

(2) aA

 

 

Figure 3.10 – Negative sequence equivalent circuit of example transformer 
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Three-Phase Transformers – Zero Sequence Equivalent Circuits 

Of all the standard core constructions the three-limb core is an exception in 

that it does not provide a closed iron path for the zero sequence flux. This fact 

introduces complications which we will ignore at first, and consider in a later 

section. 

A fundamental difference between zero sequence and positive sequence 

performance of a transformer is the inherent phase displacement. With the 

usual standard connections, which have positive sequence phase displacements 

of -30°, 0°, or +30°, the corresponding zero sequence phase displacement is 

always zero, and no phase shifters appear in the equivalent circuit. 

A second difference is that the configuration of the zero sequence path(s) 

through the transformer may be different to the positive sequence path(s). The 

zero sequence paths depend on connections to each winding. We can construct 

a partial equivalent circuit for each type of winding connection, then put them 

together to match the configuration of the particular transformer. 

(a) Star Winding without Neutral Connection 

If the neutral terminal is not used, then there is no path for the zero sequence 

currents, and the winding must be open-circuited in the zero sequence 

equivalent circuit: 

 
Z 0A

to other
winding(s)

 

 

Figure 3.11 
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(b) Star Winding with Neutral Earthed Directly 

Normal transformer action operates, and 10 ZZ  = leakage impedance. 

 
Z 0A

to other
winding(s)

 

 

Figure 3.12 

(c) Star Winding with Neutral Earthed via an Impedance 

NZ  = neutral earthing impedance and 10 ZZ  = leakage impedance. 
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winding(s)
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Figure 3.13 

(d) Delta Winding 

There is a closed zero sequence loop around the delta, but no zero sequence 

current can enter or leave via the line terminals. Thus the winding is open-

circuited as seen from the line terminals, but short-circuited internally. 

10 ZZ  = leakage impedance. 

 
Z 0A

to other
winding(s)

 

 

Figure 3.14 
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(e) Zig-Zag Winding with Neutral Earthed Directly 

The zig-zag connection is shown below: 
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Figure 3.15 – Zig-Zag Winding Connection 

Windings A1-A2 and A3-A4, 2N  turns each, are wound on the “A” limb of 

the magnetic circuit. Other limbs are wound similarly. Then the mmf produced 

by each winding is: 
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(3.17)
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For positive sequence currents: 

 

 
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(3.18) 

The core mmfs lag the line currents by 30°, which is the same as for a delta 

winding. 

For zero sequence currents: 

0 CBA FFF  
(3.19) 

There is no zero sequence mmf, hence no zero sequence flux, and no coupling 

to other windings. The zero sequence impedance 0Z  in this case is the leakage 

impedance between the sub-windings A1-A2 and A3-A4. 
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Figure 3.16 
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Example 

Zero sequence network for a HV star to LV delta transformer. HV neutral 

solidly earthed. 

A Z 0 a

 

10 ZZ  = leakage impedance 

Example 

Zero sequence network for a star-star transformer with delta tertiary winding. 

HV neutral solidly earthed, LV neutral earthed via impedance nZ . 

A Z A a

HV

Z 

Tertiary

LV

Z a Z n3

 

AZ , aZ  and Z  are leakage impedances identical to those in the positive 

sequence circuit. 
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Effect of Three-Limb Core on the Zero Sequence Equivalent Circuits 

The three-limb core does not provide a closed path for the zero sequence flux, 

which has to return via a high reluctance path outside the steel core: 

 

Flux path
in air

Core

Winding 1

Winding 2

 

 

Figure 3.17 – Flux path for a Three-limb Transformer 

The magnetic equivalent circuit is: 
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Figure 3.18 – Magnetic equivalent circuit for a Three-limb Transformer 

The equivalent electric circuit can be derived directly from the magnetic circuit 

by the topological principle of duality. This topological technique is 

demonstrated in Figure 3.18. A node is marked within each mesh of the 
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magnetic circuit, and a reference node is marked outside the circuit. These 

nodes are then joined by branches, one of which passes through each element 

of the magnetic circuit. For each reluctance in a mesh of the magnetic circuit, 

there is an inductance connected to the corresponding node of the electric 

circuit. Where a reluctance is common to two meshes in the magnetic circuit, 

the corresponding inductance connects the corresponding nodes of the electric 

circuit. For each magnetomotive force there is a corresponding emf between 

nodes. 

The electric equivalent circuit is therefore: 
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Figure 3.19 – Equivalent circuit of a three-winding power transformer 

where: 
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(3.20)

The large effective airgap makes the magnetising impedance much lower, and 

much more linear, than would be the case without the airgap. Actually coreL  

has little effect, and airgapL  dominates the magnetising impedance. 
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The low magnetising impedance has the same effect as a delta tertiary winding 

(of relatively high impedance) by providing an additional path to the zero 

sequence currents. The effect is further accentuated when the transformer with 

the three-limb core is placed in a metal tank. The tank forms a short-circuited 

turn around a portion of the zero sequence flux, acting as another weakly 

coupled delta winding. 

As shown in Figure 3.19, the zero sequence performance of the three-limb core 

type transformer can not be adequately described by a single impedance, but 

requires three impedances in a T (or equivalent  ) network. 

In practice, the impedances required to construct the T network may not be 

known, and in any case, the calculation is inaccurate because of nonlinearities. 

Reasonable results can generally be obtained by ignoring the effect of the 

three-limb core. A notable exception is the case of a star-star transformer with 

one neutral floating. 

Example 

Zero sequence network for a HV star to LV star transformer on a three-limb 

core. HV neutral solidly earthed, LV neutral not connected. 

Z 0 (o.c.)

A a

 

There is no zero sequence path through the LV winding. The zero sequence 

open-circuit impedance is seen from the HV side.  o.c.0Z  is predominantly a 

magnetising impedance, significant for a three-limb core, but practically 

infinity for other types. 

With three-winding transformers the effect of the three-limb core gets more 

complicated. With reference to the previous three-winding example, one might 

be tempted to add a magnetising impedance to the junction of the three partial 

leakage impedances AZ , aZ  and Z , but this does no give a valid equivalent 

circuit, which would require at least six impedances. 
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Ability to Supply Unbalanced Loads 

(a) Single-phase line-to-line load 

Assume a load between lines “b” and “c”. We can solve the problem by 

treating the load as a line-to-line fault, and use the method of sequence 

networks to find the short-circuit current SCI : 

 12
1

1

21

1        
2

33
ZZ

Z

E
j

ZZ

E
jISC 


  (3.21)

The open-circuit voltage is: 

13EjVOC   (3.22)

Hence, the source impedance (by Thévenin’s Theorem) is: 

1source 2Z
I

V
Z

SC

OC   (3.23)

Since 1Z  is always small the transformer has no difficulty in supplying the 

single-phase line-to-line load. 
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(b) Single-phase line-to-neutral load 

Assume the load is on phase “a”. We can solve the problem by treating the 

load as a line-to-earth fault, and the method of sequence networks to find the 

short-circuit current SCI : 
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E
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
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(3.24) 

The open-circuit voltage is: 

1EVOC   (3.25) 

Hence, the source impedance (by Thévenin’s Theorem) is: 

3

2 10
source

ZZ

I

V
Z

SC

OC 
  

 

(3.26) 

A problem arises if 0Z  is large, e.g. if the neutral of a star-star transformer is 

not earthed. Not only does the voltage then collapse on the loaded phase 

because of excessive source impedance, but overvoltages are produced on the 

other two phases. In the extreme case (infinite 0Z ) the magnitude of the 

voltages on the unloaded phases becomes p.u. 3  
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Summary 

 The different core constructions of three-phase transformers lead to 

different electric and magnetic equivalent circuits, and therefore 

transformer behaviour. 

 The effect of the winding connections of a transformer also affects its 

behaviour. 

 The positive and negative sequence equivalent electric circuits of a 

transformer consist entirely of leakage impedance, but may involve a phase 

shift (depending on winding connections). 

 The zero sequence equivalent electric circuits for a transformer are highly 

dependent on the winding connections. 

 The three-limb core transformer has a T-equivalent zero sequence 

equivalent electric circuit, but in practice we ignore the effect of the three-

limb core (unless the neutral of a star-star transformer is left floating). 

 Transformers generally have no difficulty supplying single-phase line-to-

line loads. 

 Transformers with large zero sequence impedances have difficulty 

supplying single-phase line-to-neutral loads – the voltage tends to collapse 

on the loaded phase and overvoltages occur on the other two. 
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Exercises 

1. 

For the shell type transformer shown, determine the magnitude of fluxes x  

and y  given that symmetrical 3-phase voltages are applied to the windings, 

taking the main flux a  to be 1 p.u. 

A
x

B C
y

A

 

(a) With winding polarities shown. 

(b) With B phase wound in the same direction as A and C. 

2. 

A single-phase three-winding transformer has the following ratings: 

HV 10 kV, 400 kVA 

LV 600 V, 400 kVA 

TV 1.2 kV, 100 kVA 

The transformer is fed from the LV side at 600 V. The TV winding is loaded 

with a  15  resistor, and the HV winding is connected to a capacitive 

reactance of  260 . Use ideal transformer modelling to determine: 

(a) All three winding currents. 

(b) kVA loading of each winding. 

Power transformers
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3. 

A 50 kVA single-phase 800 V / 200 V transformer has leakage impedance of 

 % 0.22.1 j . It is reconnected as a 800 V / 1000 V autotransformer. 

(a) What is the new kVA rating? 

(b) What is the leakage impedance based on the new ratings? 

4. 

A single-phase 75 kVA transformer has three windings 1, 2, & 3, rated at 2400, 

600 & 240 V respectively. Short-circuit test gave the following results: 

(i) Winding 2 shorted, winding 3 open: 

A 25.311 I , V 1201 V ,  W7501 P  

(ii) Winding 3 shorted, winding 2 open: 

A 25.311 I , V 1351 V ,  W8101 P  

(iii) Winding 3 shorted, winding 1 open: 

A 0.1252 I , V 302 V ,  W8151 P  

Determine the constants, expressed as percent values, of the equivalent circuit 

for this transformer. Neglect the excitation current and corrections for 

temperature. 
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5. 

A single-phase transformer is rated 60 Hz, 100 kVA, 13200 V / 200 V, and at 

those ratings has an impedance of  % 12.639.0 j . 

(a) What would happen if a second identical transformer were to be connected 

in parallel, but by mistake one of its windings had reverse polarity? 

Assume the 60 Hz HV supply maintains a constant voltage at 13.2 kV. 

(b) What would happen if the transformer were to be used at rated voltage in a 

50 Hz system? 

(c) The transformer is to be connected to a 50 Hz 11 kV network. 

(i) What kVA rating would you now assign to the transformer? 

(ii) What is the percent impedance at the revised rating? 

6. 

The rating plate of a 375 MVA transformer gives the following information: 

Winding Rated 
kV 

Rated 
MVA 

 Impedances on 375 MVA base 
on principal tapping 

HV 330 375  HV-LV   16.47% 

LV 132 375  HV-TV   47.37% 

TV 11 5  LV-TV   29.64% 

Connection symbol: YN,a0,d1 

a) Sketch a circuit diagram, ignoring facilities for tap changing, but showing 

main winding connections and polarities. 

b) Calculate the complex ratios: HV / LV, HV / TV, LV / TV. 

c) Sketch the positive sequence equivalent circuit, and calculate its 

component impedances. Assume all resistances and the no-load current are 

negligible. 
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7. 

The transformer in Q6 delivers 100 MW 0 Mvar to the 132 kV bus at nominal 

voltage. The 11 kV winding is connected to a capacitor bank rated at 5 Mvar, 

11 kV. Calculate the magnitude and phase of all line and phase currents, taking 

the ‘a’ phase of the 132 kV bus as the reference. Also calculate the megawatts 

and megavars taken from the 330 kV bus. 

8. 

For the transformer in Q6: 

(a) Sketch the negative sequence equivalent circuit. 

(b) Sketch the zero sequence equivalent circuit, assuming the neutral to be 

solidly earthed. 

9. 

A three-phase 500 kVA 33 kV / 500 V transformer has an impedance of 

 % 12.639.0 j . Calculate: 

(a) The maximum kVA the transformer can supply to a single phase line-to-

line connected load at 500 V without exceeding the rated current. 

(b) The regulation with a single phase load as in (a), when the load power 

factor is: 

(i) 0.9 lagging 

(ii) 0.9 leading 

 




