
 

CHAPTER   4 

ROBUST SPEED CONTROL OF THE SMPMSM DRIVE 

4.1 Introduction  

  As described in the previous chapter, the proposed control strategy can achieve 

both fast dynamics and minimum copper loss operation. A PI speed controller is used 

in the outer loop to compensate the characteristics so that the drive can keep up a high 

performance operation in spite of the load torque disturbance. However, it is well 

known that the performance of the PI speed controller is sensitive to the variation of 

plant parameters and external disturbances. Some control strategies have been 

proposed to overcome the above problem. In [54], a full-order load torque observer is 

proposed to estimate the inaccessible load torque and then the estimated load torque is 

fed to the controller to upgrade the robustness of the drive system. Furthermore, a 

reduced-order observer instead of the full-order observer can be made due to the 

known measured rotor speed. On the other hand, the sliding mode control (SMC) 

strategy was also proposed to improve the robustness of the drive system [48-54]. The 

SMC possesses some good control features, such as disturbance rejection, parameter 

insensitive, fast dynamics and easy implementation. To reject the disturbance, the 

control signal of the SMC may be switched between its minimum and maximum 

values. Consequently, the resulting high frequency chattering may increase the power 

loss and excite the un-modeled high frequency dynamics which may deteriorate the 

system stability. In addition, some control efforts must be paid to deal with the 

disturbance rejection. When chattering problem is serious, it is difficult to utilize the 

maximum available torque of the drive. Hence, some methods were proposed to 

reduce the chattering problem [48-54]. Among them, an adaptive uncertainty observer 

was proposed to relax the bound of the lumped uncertainty [47]. Due to the limitation 
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of maximum available torque in the field weakening region, there are very few 

literatures dealing with the SMC operated in the field weakening region for the 

SMPMSM drive. 

In this chapter, first, a sliding-mode speed controller with an adaptive strategy for 

estimating the lumped uncertainty is proposed to relax the requirement for the upper 

bounds of the lumped uncertainty. By combining the sliding-mode speed controller 

and the drive control strategy proposed in chapter 3, the conventional PI speed 

controller is replaced by the sliding-mode speed controller to further improve the 

rejection capability to disturbance. Finally, some simulation and experimental results 

are given to verify the validity of the proposed adaptive sliding mode speed controller 

. 

4.2 Robust Speed Control via an adaptive SMC Approach 

  Since the bandwidth of the current loop is greatly wider than that of the speed loop, 

the current-regulated PWM inverter can be considered as an ideal current amplifier to 

the design the speed controller. If the current-regulated PWM inverter is considered as 

an ideal current amplifier, namely *
ds dsi i=  and *

qs qsi i= , the SMPMSM drive system 

with such ideal inverter can be reasonably represented by the following equation 

 

            *r
r L t qs

dJ B T K
dt

iω ω+ + =                                (4.1) 

where ,  and  denote the inertia coefficient, viscous damping coefficient and 

external load torque respectively, and 

J B LT

3
2 2t f

pK λ=  denotes the torque constant. 

If uncertainties are considered, equation (4.1) can be modified as follows: 

 

          *( ) ( )r
o o r L

dJ J B B T K i
dt t qs
ω ω+∆ + + ∆ + =                      (4.2) 



 

where  and oJ oB denote the nominal values and oJ J J∆ = −  and oB B B∆ = −  

denote the variations of and , respectively. J B

   Thus, from equation (4.2), one can obtain 
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=  and f  denotes the lumped uncertainty 

defined as : 
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  If the speed error is defined as *
re rω ω= −  under the assumption that the speed 

command reference *
rω is constant, the resultant error dynamic equation is derived as 

            *
o r o qs o

de a b i d
dt

ω= + + f                                   (4.5) 

 The above lumped uncertainty, namely f , cab be estimated and compensated 

through feedforward compensation.  

Due to the disadvantages of PI speed controller, a sliding-mode speed controller 

with adaptive strategy is proposed to replace the conventional PI speed controller. 

Moreover, the adaptation of the lumped uncertainty can relax the need of the upper 

bound of the lumped uncertainty in the reaching-mode control. Designs of the speed 

controller and adaptation law for the lumped uncertainty are described as follows: 

A. Sliding surface design of the sliding-mode speed controller 

A sliding function is chosen as follows: 

 

*
rs e rω ω= = −                                       (4.6) 
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Usually, an integral operation is used to achieve the objective of zero 

steady-state error in the existing literatures. Although an integral operation is not 

included in the proposed sliding function, the objective of zero steady-state error 

is still achieved through the utilization of the estimated lumped uncertainty. 

B. Adaptation law for the lumped uncertainty of the sliding-mode speed controller 

Usually, the sliding-mode controller requires the upper bound of the lumped 

uncertainty to ensure that the reaching mode condition, 0s s <& , is satisfied. The 

reaching mode condition can guarantee that the system dynamics will be 

strapped on the sliding surface when the system dynamics is outside the sliding 

surface. Normally, the chattering phenomenon will become serious if the upper 

bound is over specified. On the contrary, if the upper bound is underspecified 

then the stability of the drive system can not be guaranteed under the effect of 

lumped uncertainty. Unfortunately, the exact value of the upper bound of the 

lumped uncertainty is usually difficult to obtain and specify in advance for most 

of industrial applications. Therefore, the upper bound is generally estimated to 

fulfill the requirement of the reaching mode condition. To achieve a compromise 

between the reduction of chattering and the system stability, an adaptive strategy 

for the lumped uncertainty is proposed in this chapter. Meanwhile, the 

exponential decay characteristic of the speed error is still required. Therefore, 

the q-axis current command can be decomposed into three components as 

follows to achieve both requirements of the reaching mode condition and the 

reduction of the chattering phenomenon, simultaneously. 

*
qsi  

 

                                           (4.7) * * *
qs qe qr qfi i i i= + + *

where  denotes the equivalent control effort,  denotes the *
qei *

qri
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reachin e control effort to ensure that the reaching mode condition will be 

satisfied, and *
qfi is the control effort to reject the estimated lumped uncertainty 

ˆ

g-mod

f . 

     To the stability of the proposed speed controller, and 

timated error of the lumped uncertainty as defined 

       

guarantee *
qri

*
qfi must be designed so that the reaching mode condition and the exponential 

ay characteristics for both s  and the estimated error be guaranteed 

simultaneously.  

  First, consider the es

dec

previously: 

 

  ˆ( ) ( )f t f f t≡ −%                                        (4.8) 

positive defini

         

  Then, a te Lyapunov function candidate, ( )V t , is chosen as 

follows: 

 

 2 21 1( ) [ ]
2

V t s f
ρ

= + %                                   (4.9) 

where 0ρ > ation gain.  denotes the adapt

 (4.5)-(4.9) as follows: The derivative of ( )V t  can be obtained from

 

* * *
0 0 0 0 0 0

1ˆ ˆ( ) [( ) ( ) ] ( )qe r qf qrV t s b i a b i d f b i f s d fω
ρ

= + + + + + − &%&      (4.10) 

One can choose , , and the adaptation law of *
qri *

qfi *
qei f̂  so

 

 as to make 

( )t& being semi-negative definite as follows: V
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  qe r
ai
b

ω= −                                        (4.11) 

* 0

0

ˆ  qf
di f
b

= −                                         (4.12) 

*   ( )qri k s sign s                                     (4.13) =

0
ˆ  f s dρ=&                                          (4.14) 

where s a designed co

re

k i nstant and it must be greater than zero to guarantee the 

aching mode condition. From equations (4.11)-(4.14), a variable gain which is 

proportional to s , is utilized to determine the necessary reaching-mode control effort 

ˆso as to reduce the excessive chattering. In addition, f is considered as lumped 

and 

& is b ite, according to 

Barb

ped uncertainty can be estimated and rejected by the 

proposed adaptive sliding-m

uncertainty and can be rejected feedforward. Due to the integral adaptation of 

equation (4.14), the proposed controller can achieve the objective of zero steady-state 

error even that an integral operation is not included in the sliding function ( )s t . 

 Due to the above design, ( )V t& is semi-negative definite. Since ( (0), (0))V s f%

( )s are bounded and ( )V t&  ounded and semi-negative defin

alat lemma [61], the following result can be obtained: 

             0       as ts → →∞  

V

As discussed above, the lum

ode speed controller. Thus, excessive additional control 

energy in the field weakening region can be eliminated and the chattering 

phenomenon can be reduced effectively. The proposed robust speed control strategy 

can be implemented with the same structure as shown in Fig 3.1 except that the 

conventional PI speed controller is replaced by the proposed adaptive sliding-mode 

speed controller which is shown in Fig 4.1. The corresponding simulation results of 

the proposed control strategy are provided in the next section. 
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Fig 4.1. Configuration of the sliding-mode speed controller with adaptive lumped

 

4.3  Simulation results 

 feasibility of the proposed adaptive sliding-mode speed 

con

 

uncertainty observer.  

In order to verify the

troller, computer simulations are performed in this section. For consistency, the 

nominal parameters of the simulated SMPMSM are kept the same as that in the 

section 3.3 and Table 2.1. These nominal parameters are utilized for the following 

simulation. Moreover, the dc link voltage is assumed to be 100 V.  The following 

simulations are based on the same structure shown in Fig. 3.1, except that the 

conventional PI speed controller is replaced by the adaptive sliding-mode speed 

controller. Also, the adopted speed control configuration is shown in Fig 4.1. In the 

following simulations, the values of ρ  and k  are choose as 0.075 and 1.126, 

respectively.  

  First, to demonstrate the high accelerating performance of the drive, the motor is 

subjected to step speed commands of 500, 1000 and 1500 rpm at 0t = , respectively. 

Fig. 4.2 shows the corresponding speed responses. From Fig. 4.2, one can see that the 
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ation of the rejection capability to lumped uncertainty, the motor is 

s

transient responses are almost the same. It is indicated that the maximum available 

accelerating torque is always applied to speed up the speed response during transient 

operational mode. 

Next, as an illustr

tarted from rest at 0t =  up to 2100 rpm and LT =0 Nm. The LT  is changed to 

0.3 NmLT =  at t=0.5 sec. Fig. 4.3 shows the corresponding trajectories of rω , qsi , 

LT  and the expanded figure of rdsi , s , *
qfi , ω  for [0.49,0.53]t∈ . From Fig. 4.3, 

e n  s e results as follows: dsi  will  chan ally so that the 

minimum copper loss is achieved, s idly to zero, qfi  will reasonably 

reflect the change of LT . Due to the f lection of qfi , the fast recovery response 

on ca see om  be ged automatic

 decay rap

can also be observed from Fig. 4.3. 

 

*

ast ref *

*speed response for 1500 rpmrω =

r  (rpm)ω

Time (sec)

*speed response for 1000 rpmrω =

*speed response for 500 rpmrω =

 

Fig. 4.2. Simulated trajectories of rω  for step speed commands of 500, 1000, 1500      

 

rpm, respectively. 

 



 

  Third, as a simulation for illustrating the high dynamics of the proposed adaptive 

sliding-mode speed controller, the motor is started from rest up to 2100 rpm and 

with 0.3 NmLT = . Fig. 4.4 shows the corresponding simulated traces of rω , dsi , qsi  

and  almost equal to I

[0t∈ . It is indicated that the maximum accelerating torque is utilized to speed 

nse. 

  Fourth, to show

maxqsI . From Fig. 4.4, one can see that 

up the respo

 the rejection performance for an abrupt loading and unloading, the 

qsi maxqs for 

,0.55]

motor is started from rest up to 2200 rpm with 0 NmLT =  and a pulse (0.3 Nm) 

external load torque LT  is applied for [0.5,0.8]t∈ . Fig. 4.5 shows the corresponding 

rtrajectories ofω , ds ri  and the expanded figure of ω  for [0.49,0.9]t∈ . From Fig. 

4.5, a fast recovery response can be observed. 

peed command  and 

. Fig. 4.6 shows the corresponding traces of

  Fifth, to show the operation of the drive whose command is outside its operating 

range, the motor is subjected to a step s * 2400 rpmrω =

0.3NmLT = rω , ,  and . 

From Fig. 4.6, one can see that 

dsi qsi maxqsI

maxqs qsi I=  for all time, which implies that the 

maximum torque is utilized to . Although reduce the speed error rω  could not reach 

 

t=

up to 2400 rpm, the operation of the drive is still stable. 

 Sixth, to show the operation of the automatic field weakening control, the motor is 

subjected to a step speed command 1200 rpm at t=0 and then set up to 2400 rpm at

0.5 sec. Fig. 4.7 shows the corresponding trajectories of rω , qsi , dsi  and s . From 

Fig. 4.7, one can see that dsi  will become negative automatically when the operation 

range enters into field weakening range. No region detector is required, the smooth 

transition can be observed clearly from the results. 
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 (rpm)rω

*
rω

rω

 (A)qsi

 (A)dsi

s (rpm)

Time (sec)

 

 Fig. 4.3. Simulated trajectories of rω , , , , ,  and the expanded 

figure of 

qsi dsi s *
qfi LT

rω  for [0.49,0.53]t∈ , due to * 2100 rpmrω = and 

is applied at t=0.5 sec. 0.3 NmLT =
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LT  (Nm)

Time (sec)

2093.5 rpm

Time (sec)

 (rpm)rω

 

Fig. 4.3. Simulated trajectories of rω , , , , ,  and the expanded figure 

of 

qsi dsi s *
qfi LT

rω  for , due to [0.49,0.53]t∈ * 2100 rpmrω = and is 

applied at t=0.5 sec. (continued). 

0.3 NmLT =
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rω
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Fig.4.4. Simulated trajectories of rω , ,  and , due to dsi qsi maxqsI

* 2100 rpmrω = and 0.3 NmLT = . 
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 (rpm)rω

*
rω

rω

 (A)dsi

2193rpm

2204rpm

 (rpm)rω

Time (sec)
 

Fig. 4.5. Simulated trajectories of rω ,  and the expanded figure of dsi rω  for 

[0.49,0.9]t∈ 0.3 NmLT =, due to * 2100 rpmrω = and a pulse is applied. 

 

, to demonstrate that high dynamics performance can be achieved in spite of 

the variations of B and J, th  

Finally

e motor is subjected to a step speed command of 2100 rpm.

The same simulation is performed twice, one is with the parameters of J J=  and 

0

0

B B=  and the other is with the parameters of 03J J=  and 03B B= . Fig. 4.8 shows 

responding trajectories of rthe cor ω , qsi  and rom Fig. 4.8, one can see that 

qsi  almost equals to maxqsI  for transient operation. It is indicated that the maximum 

que is utilized for tr nt operation in spite of the triple variations of B and J. 

 

maxqsI . F

tor ansie
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*
rω

rω

 (A)qsi

 (A)dsi

max  (A)qsI

Time (sec)  

Fig. 4.6. Simulated trajectories of rω , ,  and  for step command 

 and 

dsi qsi maxqsI

* 2400rpmrω = 0.3 NmLT = . 
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*
rω

rω

 (A)qsi
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s (rpm)
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Fig. 4.7. Simulated trajectories of rω , , and , due to step  at 

t=0,0.5 sec. 

qsi dsi s * 1200rpmrω =

        



 

 79

 As observed from above simulation results, one can see that the distinguishing 

features can be achieved by the proposed control strategy. 

*
rω

o o(3J ,3B )rω
o o (J ,B )rω

 (rpm)rω

max  (A)qsI

 (A)qsi

Time (sec)

o o(J , B )qsi

max o o(J , B )qsI

o o(3J ,3B )qsi

max o o(3J ,3B )qsI

  

Fig. 4.8. Simulated trajectories of rω ,  and , for both  and             

. 

qsi maxqsI 0 0( , )J B

0 0(3 ,3 )J B

 

4.4 Experimental Results 

Several experimental results are provided below to show the performance of the 

proposed SMC speed controller. The implementation setup is the same as that 

depicted in the section 3.4 except the conventional PI speed controller is replaced by 

the proposed SMC speed controller.  

First, to demonstrate the performance of the proposed SMC speed controller when 

the drive is operated on the constant torque limit region (region 1), the motor is started 
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from rest at  up to 1200 rpm with 0t 0 NmLT =  and a pulse ( ) external load 0.3 Nm

torque is applied for . Fig. 4.9 shows the corresponding trajectories of 

ds

LT  1 2 [t ,  t ]t∈

* ˆ,  ,  ,  r r f iω ω  and . From Fig. 4.9, one can see that the estimated lumped 

uncertainty, 

qsi

f̂ , can indeed track the variation of . For clear demonstration of 

speed response, the expanded trajectories of 9 are shown in Fig. 

s an illustration of the rejection capability to external applied load torque 

wh

nd t

LT

that shown in Fig. 4.

4.10. From Fig. 4.10, one can see that almost no overshoot phenomenon and good 

rejection capability to the applied T  can be observed from the expanded speed 

response. 

Next, a

L

en the drive is operated on field weakening region, the motor is started from rest at 

0t  up to 2100 rpm with 0 NmLT = . A pulse external load torque (0.275 Nm) is 

plied for 1 2 [t ,  t ]t∈  a 3 4,  t ]ap [t∈ . Fig. 4.11 shows the corresponding 

trajectories of ,  ds * ˆ,  ,  r r f i  and rom Fig. 4.11, one can see that ω ω . As observed fqsi

f̂  can track the variatio LT dsi  can be changed to achieve minimum 

the applied external load torque also can be achieved in spite the drive with SMC 

speed controller is operated in the field weakening region, as observed from the speed 

response shown in Fig. 4.11. 

Third, to show the automatic field weakening control, the motor is subjected a 

step speed command 1200 rpm

n of  and 

copper loss. For clear demonstration of the speed response, Fig. 4.12 shows the 

expanded figure of Fig. 4.11. Almost no overshoot and good rejection performance to 

 at 0t t=  and then step up to 2400 rpm at +1 sec. 

Fig. 4.13 shows the corresponding trajectories of ds

0t t=

* ˆ,  ,  ,  r r f iω ω  and . From Fig. 

4.13, one can see that will start to decrease when the motor speed approximately 

on

qsi

dsi  

exceed 1737 rpm. It is indicated the drive enter to field weakening regi  (region 2). 
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Due to the mismatch of J  and 0J , the estimated f̂  would not kept being zero 

during the acceleration operation. However, the automatic field weakening control 

and the smooth transfer between dif rent operation mo e, namely zero d-axis current 

and field weakening control mode can be observed from Fig. 4.13. 

Finally, as an experiment for illustrating the fast dynamics of the proposed 

adaptive sliding-mode speed controller for two-quadrant operation, Fig. 4.14 shows

fe d

 

the responses of  * ˆ,  ,  ,  r r dsf iω ω  and qsi  for a regular step change of speed 

command from 1200 rpm to 2400 rpm and then back to 1200 rpm. The 1200 rpm and 

2400 rpm commands are fixed for 1.5 sec and 3 sec respectively. As the description in 

section 2.4, the smooth transient between the different operating modes and automatic 

filed weakening control effect can all be observed from Fig. 4.14. The fast speed 

response also can be observed from the acceleration and deceleration operation. 

 

In summary, from the above simulation and experimental results, one can see that 

the following distinguishing features can be achieved by the proposed control 

strategy

ic speed response can still be obtained in spite of the variations of B 

tegy for the lumped uncertainty.  

. 

1). A good rejection performance to lumped uncertainty can be obtained. 

2). Fast dynam

and J. 

3). An adaptive sliding-mode speed controller with low chattering characteristic can 

be obtained through the adaptation stra

4).The automatic field weakening control and minimum copper loss are still achieved 

even when the conventional PI speed controller is replaced by the proposed 

adaptive sliding-mode speed controller. 
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rω

rω

f̂
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0 Nm

0 A

0 A

0.695 Nm

2 A

2 A

0.3 NmLT =

0.21 s

0t=t 1t=t 2t=t  

 

Fig. 4.9. Trajectories of ds
* ˆ,  ,  ,  r r f iω ω  and , due to 1200 rpm step speed 

command and 0.3 Nm pulse load torque applied. 

qsi

 

rω

f̂

dsi

qsi

1200 rpmrω =
39 rpm

0.152 s

0.695 Nm

2 A

2 A

0 Nm

0 A

0 A

48 rpm

48 rpm

1t=t
2t=t  

 

Fig. 4.10. Expanded trajectories of ds
* ˆ,  ,  ,  r r f iω ω  and  due to 1200 rpm

speed command and 0.3 Nm pulse load torque applied. 

qsi ,  step 
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2100 rpmrω

*
rω

0 rpm

0.695 Nm
0 Nm f̂

0.275 NmLT =

dsi

qsi

0 A

0 A

2 A

2 A

0.4 s

0t=t 1t=t
2t=t  

 

Fig. 4.11. Trajectories of * ˆ,  ,  ,  r r dsf iω ω  and , due to 2100 rpm step speed 

command and 0.275 Nm pulse load torque applied. 

qsi

 

rω

0.695 Nm f̂

dsi

qsi

0.152 s

2 A

2 A

2100 rpmrω =

0 Nm

0 A

0 A

1t=t 2t=t
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Fig. 4.12. Expanded trajectories of * ˆ,  ,  ,  r r dsf iω ω  and , due to 2100 rpm step 

speed command and 0.275 Nm pulse load torque applied. 

qsi

 

 



 

 84

*
rω

* 1200 rpmrω =

* 2400 rpmrω =

rω

f̂0.695 Nm
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2 A

dsi

qsi

0.2 s

0 rpm

0 Nm

0 A

0 A
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enter field weakening range
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Fig. 4.13. Trajectories of * ˆ,  ,  ,  r r dsf iω ω  and , due to  at 

,

qsi * 1200 rpmrω =

0t t= 0 1t +  sec. 

 

* 1200 rpmrω =

* 2400 rpmrω =
*

rω

rω

0 rpm
0 Nm

0 A

0 A
qsi

dsi

f̂

0.695 Nm

2 A

2 A

0.6 s

0t 0 1.5t s+ 0 4.5t s+

ds

 

Fig. 4.14. Trajectories of * ˆ,  ,  ,  r r f iω ω  and for the proposed control strategy 

operated in two quadrant operation. 

qsi  


