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CHAPTER 2 

DERIVATION OF EQUIVALENT DC BRUSH MOTOR 

MODEL OF THE PMBLDCM FOR SYSTEM INTEGRATION  

2.1 Introduction 

The traditional dc brush motors have been widely used for quite a long time due to 

their mature production technique, low cost and easy control features [2]. However, due to 

the major drawback of the necessity of maintenance of the mechanic commutator and 

brush assembly, the PMBLDC motor have almost replaced the traditional brush dc motors. 

The present issue of the PMBLDC motors is mainly focused on the reduction of production 

cost as well as further improvement in the dynamic performance. Considering the special 

feature of easy control of dc brush motors, it is the main purpose of this chapter to derive 

an equivalent dc brush motor model for the three phase PMBLDC motors for more 

efficient system integration of the drive system in latter chapters to achieve lower cost and 

better performance. 

2.2 Review of the Conventional Mathematic Models 

In order to simplify the three-phase control of the PMBLDC motors to a simple scalar 

control of the traditional brush dc motors, first, consider the mathematical model of a 

traditional dc brush motor drive as shown in Fig. 2.1 as follows. [20] [45] 



 11

 

Fig. 2.1  Schematic diagram of an elementary two-poles dc machine. 

 

Electrical system model: 

a
t a a a g

div R i L e
dt

= + +  (2.1) 

f
f f f f

di
v R i L

dt
= +  (2.2) 

Mechanical model: 

r
e r l

dT J B T
dt
ω

= + ω +  (2.3) 

where 

g a re K= φω  (2.4) 
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e a aT K i= φ  (2.5) 

and the corresponding notations are described as follows: 

tv  : the terminal input voltage 

ai  : the armature current 

ge  : the back emf 

aR  : the armature resistance 

aL  : the armature inductance 

fv  : the terminal voltage of the field circuit 

fi  : the field excitation current 

fR  : the field winding resistance 

φ  : magnetic flux per pole of the field winding 

rω  : rotor mechanical angular velocity 

eω  : electrical angular velocity 

aK  : the back emf constant 

lT  : load torque 

J : inertia of the motor 

B : damping coefficient of the motor 
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Fig. 2.2 Schematic diagram of a typical PMBLDC motor with a full-bridge inverter.  

 

From (2.5) one can see that the developed electromagnetic torque eT  is proportional to 

the armature current ai  if the field excitation current, fi , is fixed. Naturally, the resulting 

scalar control of the drive system becomes rather easy. 

Next, consider a PMBLDC motor which has symmetric three-phase stator windings 

and trapezoidal air gap flux distribution and with a full bridge inverter as shown in Fig. 2.2. 

The basic operation principle is quite well known [46-47] and only some typical 

waveforms of armature emfs, armature phase currents as well as the gating signals of the 

full bridge inverter of Fig. 2.2 are shown in Fig. 2.3 for reference. From Fig. 2.3, one can 

see that, ideally, the waveforms of the emfs are with trapezoidal shape. Also, for any time 

instant, there are only two armature windings which conduct a constant dc current. The 

gating signals, namely, Su, Sv, Sw, Sx, Sy, Sz are controlled such that the PMBLDC motor 

armature currents can achieve the desired waveform and magnitude. From the coupling 
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Fig. 2.3 Typical waveforms of the emfs, phase currents and the corresponding gating 

signals for the PMBLDC motor drives.  

 

inductor model of the PMBLDC motor [46-47], one has the following electrical system 

model: 
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 (2.6) 
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where 

anv , bnv , cnv  : stator phase voltages 

ai , bi , ci   : stator phase currents 

sR   : stator winding resistance 

aaL , bbL , ccL  : self inductances of phase windings 

abL , acL , baL , bcL , caL , cbL  : mutual inductances between phase windings 

ane , bne , cne  : three phase back emfs 

Since the permanent magnets are embedded in the rotor and with proper magnetization 

direction, the induced emfs, namely ane , bne  and cne  in the stator windings of a 

PMBLDC motor as the rotor is rotating are in the trapezoidal waveform as shown in Fig. 

2.3. Thus, the ideal emfs in Fig. 2.3 for one period can be expressed as follows: 

2

e

2

e

6 ( )              if         0
6 3

                                if     
3

( )
6 7 4( )           if       

6 3

4                              if    
3

e
m

e e

e m
e

an

e
m

e e

e m

t t

t

e t

t t

ω π π
λ − ≤ ≤

π ω ω

π π
ω λ ≤ ≤

ω ω
=

ω π π π
− λ − ≤ ≤

π ω ω ω

π
−ω λ

e

     

2

e

t

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪ π⎪ ≤ ≤

ω ω⎪⎩

 (2.7) 
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e
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 (2.8) 
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ω
  (2.9) 
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where mλ  is the flux linkage amplitude of the stator windings. Also, the corresponding 

electromagnetic torque can be obtained from the conservation of power as follow: 

( ) /e n a bn b cn c rT e i e i e i= + + ω  (2.10) 

As to the mechanical system, one has the same governing equation as (2.3). 

2.3 Derivation of the Proposed Equivalent DC Brush Motor Model 

From equation (2.4) and (2.5) one can obtain: 

g a
e

r

e i
T =

ω
               (2.11) 

Also, from Fig. 2.3 one can observe that for each 60° electrical angle, there are only two 

stator windings which conduct the same dc current with constant amplitude. In other words, 

within this time interval, both back emf and phase current are constant and exactly like that 

of a traditional brush dc motor. Based on this observation, one can define the following 

commutation functions, namely ( )Sa t , ( )Sb t and ( )Sc t  as shown in Fig. 2.4: 

0

2 2( ) [ ( - - ) - ( - - )
3

2 4 2 2            - ( - - ) ( - - )]
3

n e e e e

e e e e

n nSa t u t u t

n nu t u t

∞

=
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≡
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+
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∑
 (2.12) 

2( ) ( )
3 e

Sb t Sa t π
= −

ω
   (2.13) 

4( ) ( )
3 e

Sc t Sa t π
= −

ω
     (2.14) 
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Fig. 2.4 Typical waveforms of the emfs, phase currents and the proposed commutation 

functions for the PMBLDC motor drives. 

  

where ( )u t is the unit step function. It turns out from Fig. 2.4 that the equivalent line to 

line back emf, namely, ( )eqe t  for the PMBLDC motor becomes 

[ ][ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) T
eq an bn cne t Sa t Sb t Sc t e t e t e t=  (2.15) 

According to the above definition, the magnitude becomes two times that of the peak emf 

of each phase. Similarly, from Fig. 2.4 one can define the following equivalent line current  

[ ][ ]1( ) ( ) ( ) ( ) ( ) ( ) ( )
2

T
eq a b ci t Sa t Sb t Sc t i t i t i t=  (2.16) 
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It is interesting to see that from (2.15) and (2.16) that 
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 (2.17) 

 

Therefore, from (2.10) one can obtain the electromagnetic torque in terms of the equivalent 

dc line current and equivalent dc line emf as follow: 

( ) / /e a a b b c c r eq eq rT e i e i e i e i= + + ω = ω  (2.18) 

Also, from definition (2.15) one can see that eqe , in fact, is equal to two times of the peak 

valve of the emf, namely 2 r mω λ . It follows from (2.18) that 

2e m eqT i= λ  (2.19) 
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Now consider the electromagnetic torque equation in (2.19) and the same motion equation 

in (2.3), the equivalent armature current to the rotor angular speed transfer function 

becomes: 

 [ ( )] 2 ( )
 [ ( )]

r m
P

eq

Laplace t G s
Laplace i t Js B

ω λ
=

+
           (2.20) 

which will be used in the later chapter. 

In summary, by synthesizing the three phase voltages and currents through the 

proposed commutation functions, one can obtain an equivalent brush dc motor with the 

following equivalent back emf eqe  and equivalent armature current eqi : 
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Similarly, application of the commutation functions to the three phase voltages of the 
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where 

( ) ( 2 )sin(2 )
3dq r e sm mm rR L L π

θ = ω + θ +  (2.22) 

1 2( ) ( 2 )cos(2 )
2 3dq r sm mm rL L L π

θ = + θ −  (2.23) 

The more detail derivation process about (2.21) is given in the Appendix A. It follows from 

(2.21) that a simple equivalent circuit of the equivalent brush dc motor for the PMBLDC 

motor can be drawn as shown in Fig. 2.5. From the above result, it is seen that the 

three-phase PMBLDC motor can now be considered as an equivalent dc brush motor with 

equivalent 2[ ( )]s dq rR R+ θ  armature resistance and 2[( ( )]so mo dq rL L L− + θ  armature 

inductance. ( )dq rR θ  and ( )dq rL θ  are the ac terms which are originated from the unequal 

d-axis and q-axis inductances of the interior permanent-magnet (IPM) BLDC motor. 

Compared with the system voltage, the voltage drop of ( )dq rR θ  and ( )dq rL θ  are small, 

such that the ac terms can approximately be ignored. In addition, if the magnets of the  

 

 

Fig. 2.5 The proposed equivalent dc brush motor model for the PMBLDC motors. 
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PMBLDC motor are mounted on the surface of the rotor core, the disturbance terms 

( )dq rR θ  and ( )dq rL θ  will thus be vanished.  

Since the electromagnetic torque of the PMBLDC motor derived in (2.19) is only 

proportional to the equivalent armature current of the motor, hence, instead of using the 

complicated control of three phase currents ( )ai t , ( )bi t  and ( )ci t , only one control 

variable, i.e., the equivalent armature current ( )eqi t  need to be controlled to drive the 

PMBLDC motor. This will simplify greatly the PMBLDC motor control. Finally, it is 

worth mentioning that the proposed commutation functions basically serve as an 

equivalent electronic commutator. In fact, the proposed commutation functions can be 

obtained indirectly from the three Hall sensor signals as can be seen in the next chapter. On 

the other hand, given the input dc voltage and ( )eqi t  in case necessary, one can get 

[ ] [ ]( ) ( ) ( ) ( ) ( ) ( ) ( )a b c eqi t i t i t Sa t Sb t Sc t i t= ⋅  

[ ] [ ]1( ) ( ) ( ) ( ) ( ) ( )
2an bn cn dcv t v t v t Sa t Sb t Sc t v= ⋅  


