CHAPTER 4
THE PROPOSED LTC WITH

COPPER LOSS MINIMIZATION

4.1 Introduction

In the previous chapter, the extension of the operation range to the field weakening range
by using the proposed LTC such that the IPMSM drive can operate over much wider speed
range had been presented. In this chapter, in order to further minimize the copper loss during
the steady state operation as well as to achieve fast transient response, the proposed linear
torque control (LTC) strategy is also extended to the entire field weakening region to achieve
full range maximum torque per ampere.control.In fact, due to its linearity characteristic, this
linear control strategy is especially-convenient for the synchronous control of multiple
IPMSM drives. It is found that in the partial field weakening region, the existing maximum
torque per ampere control happens to be the same as the proposed LTC under lighter load
condition. In other words, the proposed control can achieve the objective of minimum
copper loss (i.e. maximum torque per ampere) for the entire speed range. Sound theoretical
basis is given in the context. Moreover, an adaptive limiter is proposed for efficiently
implementing the proposed control strategy over the entire speed range. Finally, a prototype
is also constructed by using a fixed point DSP TMS320F240 and some experimental results

are given to verify the validity of the proposed control strategy.

4.2 The Proposed Linear Maximum Torque Per Ampere (LMTPA)
Control—Constant Torque Limit Region

For convenience, the steady state d- and g-axis equivalent circuits of an IPMSM in the
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rotor reference frame are given in Fig. 4.1. The corresponding d- and g-axis voltage
equations of Fig. 4.1 had been given in (2.6) and (2.7). The corresponding generated
electromagnetic torque was also given in (2.5). Also for a practical inverter-fed motor drive,
there exists an inverter output voltage limit and an output current limit. Assume that the
maximum available phase voltage magnitude and the maximum line current magnitude are

V., and I respectively. Then the feasible operation range is constrained by the current
limit inequality of (2.21) and the voltage limit inequality of (2.22).

From (2.5) one can observe that when i, is equal to zero, then the resulting 7. is
proportional to i . Hence, it is quite simple to implement a high performance drive as in
[8-10]. However, the reluctance torque of the IPMSM is not fully exploited. In case i,, is not

equal to zero, then it is seen that 7, contains-a nonlinear term, namely 0.75p (L-L,) i 7,

rendering the controller design much more difficult than a linear one.

As far as achieving fast transient response is concerned, the maximum torque per ampere

control [ 12-16] is rather attractive. For a given torque demand, the line current magnitude, or
i +iqzs equivalently, is minimized to achieve the maximum torque per ampere ratio.

Within the current constraint of (2.21), the d- and g-axis stator currents should satisfy the

Vas W, L g, C_> Ve @, (Lyiy + Ae) C_D

Fig. 4.1. The d- and g- axis steady state equivalent circuits in the rotor reference frame of an
IPMSM.
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following equation [13]:

fliss i) = 2Ly ~Ly) iy =Aye +Ane +4(L, -Ly) 75, =0 (4.1)
In particular, when the maximum line current magnitude I is imposed, namely
iy +iy =1, (4.2)

Then, from (4.1) and (4.2) one can obtain the maximum available torque, 7,,,, as follows:

Ty =075 p[A e 1Ly L) Ly 1 L (4.3)
where
A= JAZ +8(L. -L,)’I:
]dSM é mf \/ mf ( q d) sm (44)
4(Lq -L,)

Iqu é V I:m _Ic?sM (45)

Also, the corresponding angular speed, namely w,, can be calculated by substituting

equations (2.6), (2.7), (4.4), and (4.5) into the following voltage boundary equation

(Rs]dsM _a)rM Lq]qu )2 + E{s]qu + a)/M (Ld]dsM + )}nf )EZ :stn (46)

Thus, whenever there exists a speed deviation during the control process, the maximum

torque 7, can be applied to achieve the fastest response.

. . . . * .
Next, in order to achieve a linear control law, a virtual control u , corresponding to a
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torque command 7, , can be defined as follows:

I,[* é 71* - 075 p [Amf_'—(Ld-Lq) ids] iqs (47)
KtM KtM
where constant K ,, is chosen to be
Ky, £ ZI;M (4.8)

As will be clear from later sections, the same constant, K, is used not only in the

constant torque limit range but also in the entire field weakening range. In fact, the discovery

of the proposition of the constant K, is inspired from the proposed LTC control strategy of

the IPMSM drives as described in Chapter 2; For convenient explanation of the proposed

linear maximum torque per ampere (LMTPA) control, define Region I as the constant torque
limit region where @, <, . Hence, in this-region, if a torque command 7, (=K, u") is
given, then the corresponding d-axis current command (i, ) can be solved from the following

polynomial equation

B(i,) =
4 *3 )
(Lg-L) iy +3 (Ly-L))* Ay iy +3 (Ly-Ly) Ay, (4.9)
,* 1 6 %2
+/\;flds _F (Ly 'Lq )KtzMu =0
which is obtained by substituting
]:3* K u

Iy = = - (4.10)
0'75p[Amf +(Ld -Lq )lds ] 0'75p[Amf +(Ld -Lq )lds ]
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into (4.1). Similarly, by substituting

(0“;5“ Ao ) A(LL) i) (4.11)

into (4.1) one can obtain the following relation

P (i;)29p*(L,-L,) i YH12p Ky A u'i, —16K3, u” =0 (4.12)

And the corresponding g-axis current command i; can be solved from (4.12). Although the

orders of (4.9) and (4.12) look rather high, as will be clear in later implementation example,

a second order polynomial approximation is in fact accurate enough. The desired i,, and i

can be obtained easily by using any available commercial numerical program with zero
initial values. For clarity, the trajectory of (4.1).on the i, -i,, plane, namely AIO curve, is
shown in Fig. 4.2 where the current limit-curve and one constant torque curve together with
five voltage limit curves are also shown on the same figure. In summary, in Region I, given a

torque command 7., one can get the corresponding virtual control u . Then, from u~ one
can obtain the corresponding i, and i; from (4.9) and (4.12) respectively. Although the

generated torque command 7, as in (2.5) is still nonlinear to i, and i, but it is now

45>
proportional to the virtual control #" as in (4.7). Thus, excluding the inner current loop
control, the outer loop controller can be easily designed by using any existing linear control
strategy directly. Since the AIO curve in Fig. 4.2 is identical with the maximum torque per

ampere control [13], the proposed linear control can achieve the same dynamic performance

as in [13].
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Fig. 4.2. The trajectories of (4.1), the current limit curve, one constant torque curve, and five

voltage limit curves on i, -7, ‘plane for an IPMSM.

4.3 Extension of the Proposed LMTPA to the Field Weakening Region

From the previous section, it is seen that during acceleration, for w, < w,,, one can
choose the maximum torque 7),, to achieve the fastest response. However, when w, > w,,,
due to the current and voltage constraints of (2.21) and (2.22), the maximum torque (7,,,)

can not be achieved. The traditional control strategy is simply to reduce the magnetic field
intensity by applying negative i, resulting in the so called field weakening control. As can
be observed from Fig. 4.2, as far as the current constraint is concerned, the field weakening
region is bounded by the ABCDE curve, the AIO curve, and the EO axis. In particular, four

points (namely B, C, D, and E) are also marked in Fig. 4.2, where the voltage limit is also
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imposed on, namely

Vi F Vo =V (4.13)

sm

By substituting (2.6) and (2.7) into (4.13) yields

g(ldsalqya;)é(RS lds _O)LCI iqs)z +

4.14
(RS iqs +a;Ld idv +a)Amf )2 _Vs%n :O ( )

Thus, from (4.14), it is seen that when i, =i =0, then one can obtain the corresponding
speed, called the critical angular frequency w,. that is the same as (3.3) for the same IPMSM
and the drive specifications. Similarly, from (4.14), when i, =-I and i, =0 then one can

obtain the corresponding speed, called the extreme angular frequency w, that is also the

same as (3.4) for the same [IPMSM and the drive specifications.

The corresponding operating points of ‘¢J.~and’' @,, on the i, —i, plane are just the C

and E points marked in Fig. 4.2. Also, from(3.4), one can see that to get positive value of

W, , it is necessary that A, is greater than LI . Indeed, in practical operation situations,
L, |i ds| is less than A_.. Further examination of Fig. 4.2 reveals that when the motor speed
w, U(w,,, @.), then the voltage bound curve of (4.14) will intersect with the AIO curve.
For example, Fig. 4.2 shows a voltage bound curve for w, = @,, and the corresponding
intersecting point is I. In other words, for each given w, U(w,,, @), the corresponding
boundary currents #,, and i, of point I can be solved from the following system of
polynomials, namely (4.1) and (4.14)

S (iggp51,5) =0 (4.15)
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g(idsb H iqsb s a)r) = O (4 1 6)

Hence, the corresponding electromagnetic torque bound and virtual control bound, namely

T, and u,, can be defined as follows

chb é 075 p [A mf (Ld_Lq) idvb] iqsb (4 1 7)
L T,
2 T 4.18
u, K, (4.18)

Now it is quite clear from Fig. 4.2 that when w, = @, and T, <T,,, then despite that c,, is
located in the conventional field weakening region, one can still use the maximum torque per
ampere control, namely corresponding to the curve 10 portion of Fig. 4.2, to achieve the

P . * K E .
minimum copper loss. Also the corresponding . as well as i, and i, remains the same as

that obtained from (4.9) and (4.12). However; when'T, >T, , due to the voltage constraint, it

is not possible to achieve the conventional maximum torque per ampere control. Therefore,

for a given 7, (and u'= L, ), as the
t™M

oK

the proposed control strategy chooses i, and Iy »

intersection point of the torque command equation (2.5) and the voltage limit equation (4.14).

Similar to the previous constant torque limit control, for convenience, by using (2.5) one can
either eliminate i;s to yield

Kt Sz +

L :
0.75p %‘mf +(L, _Lq)ids%

[]
PIW(i;S) = IjQSZ';S _wr
: (4.19)
J RK it : |
@751) E\mf + (Ld _Lq )idsa E
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or eliminate i, to yield

K K u* K K JE
B, (1) =[R( 0‘“; % ~Awe ) N(LyL) i)~ L T+
K- * (4.20)
[R,i7, +@,(Ly( Ot“;;; = A ) H(Ly-L) £ + A P =V2, =0

In summary, for w, 0(w,,, @), if u" <u, (or equivalently 7" <T,), then the previous
maximum torque per ampere control can be applied. If u~ >u,, then the field weakening
control which is obtained from (4.19) and (4.20) should be applied. Since there are two
control modes applicable in this speed range, it is called the partial field weakening region

(Region II). It is worth mentioning that within the partial field weakening region, the virtual

control bound u, is not a constant. It is varied with motor speed w, . For reference, Fig. 4.3
also shows the trajectory of a virtual control bound within the partial field weakening region
as an illustration. Furthermore, for @, (@, @), 1t is seen from Fig. 4.2 that it is not
possible to have an intersection point for (4.1).and (4.14). Thus, for each torque command

T’ (or equivalently u"), the same field weakening control equations, (4.19) and (4.20) are
directly applied to find the corresponding i, and i;s. Therefore, in this speed region, it is

called the full field weakening region (Region III). For reference, Fig. 4.4 shows a schematic
diagram for the maximum available torque with respect to the whole speed range. In fact, one
of the characteristics of the proposed control strategy is that under transient condition, no
matter the operation speed is located in which region, the maximum torque capability can
always be applied to achieve the fastest response. From previous results, the proposed

control strategy has been shown to be a linear one over the entire speed region. Also, for
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Fig. 4.3. Graphical illustration of the virtual control bound to motor speed curve for

Wy SW < Q.
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Fig. 4.4. Illustration of the maximum torque limit to motor speed curve and three operation

regions for the proposed LMTPA control.
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Region I and portion of Region II, the proposed control is identical with the existing
maximum torque per ampere control to achieve minimum copper loss.
It remains to prove that the proposed control in the field weakening range can also

achieve the minimum copper loss. By using (2.5), one can get

.2 2 A .
st + lqs = h(lds)

) T, ) (4.21)
:lds + ( .
O75p E\mf +(Ld _Lq )ldsa)
It follows from (4.21) that
' 1.5pT (L, - L
d h(.lds) - 2l-ds _ p e ( d q) : . (4.22)
d iy, [0.75p(A, +(Lg —=Ly)iy)]
Equation (4.22) can be further simplified by substituting (2.5) to obtain
- 2i2 (L, -L
i) _ o, o 7Lg) (4.23)

d ids “ Amf + (Ld _Lq )ia(v

It follows from (4.23) that in case the derivative is set equal to zero, one can obtain the

familiar i, ~ i, relation for the maximum torque per ampere control [13] as follows:

e - AL +4(L, -L )
® 2L, -L,)

(4.24)

Thus, when the proposed field weakening control is applied in either Region III or Region II
for each T, >T,, it can be observed from Fig. 4.2 that the corresponding constant torque

curve intersects with AIO curve at point X. Assume the corresponding d-axis current is
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denoted as 1, . Then from Fig. 4.2, one can see that

Iy <lyx (4.25)

It follows from (4.23) and (4.25) that

M <O’ l;v Df Ism’ IdsX) (426)

. iy =iy
di, o™

. * . JE 2 x 2
In other words, for a fixed positive torque command 7, , the corresponding (i, ) =i, +i,

is a monotonically decreasing function with increasing i, as long as (4.25) is satisfied. As an
illustration example, consider the example as shown in Fig. 4.2 where a constant torque

curve marked with 7' and a voltage limit-curve with ., are shown. One can see that the
constant 7. curve intersects with the AIQ curve at X point and intersects with the constant
w,, voltage limit at Y point. Hence, according to (4.26), one can see as one moves from
point Y to X, i.e., as the corresponding i, is increasing, the corresponding squared current
magnitude, or h(i,) equivalently, will decrease monotonically. This implies that the

corresponding i, of Y point is the largest one within the feasible constant torque trajectory.

Hence, the proposed linear control can indeed achieve the minimum copper loss in the field

weakening region.

Finally, consider the transient control. For example, during the motor starting stage,

since W, <w,,, the maximum torque (7,,,) can be applied to achieve the fastest response.

However, when the motor speed is greater than @),,,, the maximum torque 7, cannot be
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achieved. For the proposed LMTPA control and for each @, , the corresponding maximum
torque, called 7)., can be obtained by first finding the corresponding d- and g-axis currents,

namely 7, and I ,, from (4.2) and (4.14)

]aZVSMF + IcivMF = Ifm (427)
g(]dsMF’]qSMF’wr) =0 (4.28)

Then, the maximum torque and maximum virtual control becomes

Tyl =075D B e +LiLy) L Bl (4.29)

”M”|a» z% (4.30)

It should be mentioned that both 7, and-7,, are functions of @, for w, U(w,,, &) -

4.4 Implementation and Experimental Results of the Proposed
LMTPA Control
For convenient reference, an implementation block diagram of the speed control system
according to the proposed LMTPA control is shown in Fig. 4.5 as an illustrative example. It
is seen from Fig. 4.5 that @ is a speed command. The signals of i, and i, are the line
currents of phases a and b respectively. The pulse signals of A, B, and Z are the outputs of the
incremental encoder where A and B are two sequences of pulses with variable frequencies

and fixed phase shifts of 90 degrees. The Z signal is used for resetting when the rotor of the

motor revolves o ne cycle, a signal pulse will appear in Z. Except for the adaptive limiter
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Fig. 4.5. Block diagram-of the developed IPMSM drive system.
block and the current command calculator; the other blocks are quite typical and will not be
explained further. Actually, except for the-adaptive limiter block and the current commands
calculator block, the functions of the other blocks are the same as that in Fig. 3.4. The
function of the adaptive limiter block in Fig. 4.5 is the modified version of the torque limiter
block in Fig. 3.4. The explanation of the function of the adaptive limiter will be presented as

follows. From the proposed control strategy it is seen that for w, < @,,, the maximum

virtual control available is chosen to be

T
u, =L =1 @ < W, (4.31)

(s

Also, for w, U(w,,, @,), the maximum virtual control available is u,; from (4.30). For
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easy implementation, one can define an adaptive limiter with the following adaptive upper

bound

A @M:Ism ’ OSQ?’ = a‘r)M
Hw)=0

Bl » Dy <Q <G (332

The shape of the adaptive upper bound H(@)) over the entire speed range is the same as in
Fig. 4.4 except that the unit of the vertical axis is ampere. Furthermore, although the shape of

the adaptive upper bound H(W) in (4.32) is similar to that of (&) in (3.9), but both H(&)

and f(@) are two different functions. They are based on two different torque control
strategies. Of course, when the output of the speed controller is not saturated, then the
corresponding virtual control u" is the same as the original  in this linear control region as
shown in Fig. 4.5. Next, consider, the current:commands calculator. Fig. 4.6 shows the
detailed flowchart of how to calculate the'desired 7, and i; for each virtual control u~ in
different speed regions according to the proposed control strategy. One can see that the
function of the current commands calculator block in Fig. 4.5 is a modified version of the
control mode detector block in Fig. 3.4. Or equivalently to say, the flowchart of the current
commands calculator as shown in Fig. 4.6 is a modified version of that of the control mode
detector in Fig. 3.6. Although the signal flow logic of both Fig. 3.6 and Fig. 4.6 looks quite
similar, but all the parameters of the equations are entirely different. However, for

simplifying the complicated calculation, the solutions of (4.9) and (4.12) are calculated
offline over the entire range of u . Then the equations of i, and i;, can be obtained by using
approximated second order polynomials with least square error approximation method.

These two equations are listed as follows for the constant torque limit control:
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io=m(u)* +mu +m, (4.33)

i, =m,(u)’ +mgu’ +m, (4.34)

where m, to m, are real constants. Similarly, for each w U(w,,, @) in the field

weakening control, the solutions of (4.19) and (4.20) can be approximated by the following

expressions:
i =w ') +wu +w, (4.35)
1'; =w, () +wu +w, (4.36)

Since the values of w;, to w; in (4.35) and (4.36) now varies with w, for w, U(w,,, @, ), the

second order polynomials with least square error approximation can also be used to find the

equations of w,, k=1,2,...,6 as

W = W)+ @ *e, (4.37)

with ¢, ;, k=1,2,...,6, j=1,2,3 being real constants. From actual experiments, it is found

that, with the above approximations, the errors between the actual current commands and the
approximated current commands for both d- and g-axis are less than 1%, but the calculation
time is greatly reduced.

In order to verify the feasibility of the proposed control strategy, a prototype is
constructed according to the block diagram of Fig. 4.5 by using a fixed-point DSP
TMS320F240. The sampling time periods for the current controller and the speed controller

are chosen to be 0.1 msec and 1 msec respectively. The tested IPMSM, a prototype designed

in [67], has the parameters of motor D as shown in Table 2.1. The corresponding w,,, and
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Fig. 4.6. The flowchart of the current commands calculator as reference to Fig. 4.5.
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@, are found to be 3235 rpm and 3790 rpm from (4.6) and (3.3) respectively. Similarly, the
1, and [, are —6.6(A) and 24.1(A) from (4.4) and (4.5) respectively.

Four experimental results are presented to illustrate the characteristics of the developed
drive system. To demonstrate the smooth transitions between the constant torque limit

control mode and the field weakening control mode in the partial field weakening region,
first consider the case of applying a step command of @, =3650 rpm to the tested [IPMSM

drive starting from rest at t=0 sec and with lighter load such that the control is settled down to
a constant torque limit control. Fig. 4.7 shows the d- and g-axis current responses, speed
response, and the control mode status to show the transition between the constant torque

limit control mode and the field weakening control mode. As can be observed from Fig. 4.7,

when the motor is accelerating up to w,;; (=32351rpm), the motor is operated in Region I and

the responses of i, and i, indeed follow approximately i,,, and i, respectively. Also the

corresponding control mode status-in Fig.*4:7 1s-at the low level. As soon as @, is greater
than @,), , the motor is then operated in Region II. The responses of i, and i,, decrease with
the increase of @, until the motor speed @, reaches the speed command @, =3650 rpm. On

the other hand, the control mode status in Fig. 4.7 has changed to the high level (the field

weakening control mode) at w, =w,,,=3235 rpm. This field weakening control mode

persists until about t=1.0 sec, then the motor speed reaches the steady state speed w, =3650

rpm and the resulting control becomes the MTPA control. Meanwhile, the control mode

status shows a second transition from the high level to the low level. It can be checked that

the motor load torque 7, (approximately 0.9 Nm at 3650 rpm) is less than K ,u, (=1.7 Nm)
at @, =3650 rpm.
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Fig. 4.7. Experimental results of i, , i, , and motor speed responses for the proposed control

in the partial field weakening region under lighter load.

The second test condition is almost the same as the first one except that a heavier load is
applied such that the final control is settled down to the field weakening control. Fig. 4.8
shows the d- and g-axis current responses, speed response, and the corresponding control
mode status for the same step speed command as Fig. 4.7. One can see that the control mode

status in Fig. 4.8 shows only one transition from the low level to the high level, i.e. remaining
in the field weakening control mode. It can also be checked that this load torque 7,

(approximately 3.0 Nm at 3650 rpm) is greater than the corresponding K u, (=1.7 Nm) at

w, =3650 rpm.

Thirdly, to demonstrate the operation mode in Region III, a step command of w, =4200
rpm which is greater than w,.=3790 rpm is applied to the IPMSM drive starting from rest at

t=0 sec. Fig. 4.9 shows the corresponding d- and g-axis current responses, speed response,

and the control mode status. As shown in Fig. 4.9, when the motor speed reaches
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Fig. 4.8. Experimental results of i, , i, , and motor speed responses for the proposed control

in the partial field weakening region under heavier load.

W, = w,,=3235 rpm the control mode status also indicates a transition from low level to
high level. When w, > @), , then 1, ; and/7, ;- both start decreasing until the motor speed
@, is greater than the speed command ‘@, =4200 rpm at about t=0.73 sec. For t=0.73 sec, the

magnitudes of 7, and i, gradually decrease to the steady state values. However, since the

motor speed is greater than w .. (=3790 rpm), the steady state operation mode is still kept in

the field weakening control mode as can be observed from the control mode status of Fig. 4.9.

For reference, Fig. 4.10 also shows the corresponding trajectory on the i, -i, plane

corresponding to the time responses of Fig. 4.9. It is seen that the current vector starts from
zero to point A quickly and then the current trajectory moves approximately along the
current limit curve until point D where the motor speed reaches the command speed. Finally,
the magnitude of the current vector decreases and then settles down to the steady state

operating point to match the corresponding load torque.
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Fig. 4.9. Experimental results of i, , i, and motor speed responses for the proposed control

in the full field weakening region.
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Fig. 4.10. The i,-i, plot corresponding to Fig. 4.9.
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Fig. 4.12. The waveforms of the phase-a current response and the speed response
corresponding to Fig. 4.11.
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Fig. 4.13. The steady state waveform of phase-a current corresponding to Fig. 4.12.

Finally, some experiments are conducted for comparing the dynamic and steady state

performances between the LTC in Chapter 2 and the proposed LMTPA control. Consider the
case of applying a step command of '@, =3000 rpm to the tested IPMSM drive starting from

rest at t=0 sec. The corresponding steady state load torque at 3000 rpm is approximately 3.2
Nm. Fig. 4.11 shows the waveforms of the d- and g-axis current responses and speed
response by using the proposed LMTPA control. From Fig. 4.11 one can see that the
acceleration time period of the rotor to reach 3000 rpm is approximately 820 msec. Fig. 4.12
also records the waveforms of the phase-a current and the speed response corresponding to
Fig. 4.11. The steady state waveform of phase-a current corresponding to Fig. 4.12 is also
shown in Fig. 4.13. One can see that the root mean square value of the phase-a current is
12.74 A. Next, consider the same test condition as the previous one, but the proposed
LMTPA control strategy is replaced by the LTC in Chapter 2 and all other parameters of

speed and current controllers are kept the same as the previous one. Fig. 4.14 shows the
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corresponding waveforms of the d- and g-axis current responses and speed response. In Fig.
4.14, one can see that the acceleration time period is approximately 1060 msec which is
longer than that of Fig. 4.11, namely 820 msec. Fig. 4.15 also records the waveforms of the
phase-a current and the speed response corresponding to Fig. 4.14. The steady state
waveform of the corresponding phase-a current is also shown in Fig. 4.16. One can see that
the root mean square value of the phase-a current is approximately 13.24 A which is larger
than that in Fig. 4.13, namely 12.74 A. Hence, one can see that the enhancement of the
dynamic speed response ( i.e. the accelerating time period ) by the proposed LMTPA control
is about 2.3% and the reduction of the copper loss ( i.e. the line current magnitude ) by the
proposed LMTPA control is about 3.5%.

From the above four experimental tests, one can see that the proposed LMTPA control
not only can indeed achieve a linear control'over the entire speed operation range but also has
a larger maximum torque to enhance the dynamic performance and a smaller line current
magnitude to reduce the copper loss. These¢ experimental results indeed agree with the

theoretical prediction.
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Fig. 4.14. Experimental results of i, , and motor speed responses by the LTC.
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Fig. 4.15. The waveforms of the phase-a current response and the speed response
corresponding to Fig. 4.14.
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Fig. 4.16. The steady state waveform of phase-a current corresponding to Fig. 4.15.
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