CHAPTER Il

THE PROPOSED SWITCHING FLOW-GRAPH MODELING

TECHNIQUE FOR THREE-PHASE INVERTERS [42]

3.1 The Concept of Virtual Switch For Inverters

Consider a typical three-phase PWM inverter as shown in Fig. 3.1 where
Sp. S,y and Dy, D, je{d,B,C} represent controllable switches and diodes

respectively and a three-phase RL impedance load is connected as an example.
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Fig. 3.1 The circuit configuration of the PWM inverter.

According to the basic operating principle of the inverter, it is required that 1)
for any time, switch S, and Sy, je{4,B,C} should not be ON simultaneously
to avoid short circuit of the DC source; 2) for any time, it is not allowed to result in an
open circuit for any phase. For convenient explanation of the virtual switch concept,
first choose the A-phase leg of Fig. 3.1 as an example. There are two controllable
switches, namely S,, and S, , and two diodes, namely D,, and D, .

Therefore, there are sixteen switching states according to the combination of ON/OFF
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states of each switch and each diode. Nevertheless, only six switching states as

described in Table 3.1 are qualified for the inverter control.

Table 3.1 Six qualified switching states

State Switching States
Value of vay Number (SapsDup:San»Day)
State 1 (OFF, ON, OFF, OFF)
van =Vp State 2 (ON, OFF, OFF, OFF)
State 3 (ON, ON, OFF, OFF)
State 4 (OFF, OFF, OFF, ON)
Vay =0 State 5 (OFF, OFF ON, OFF)
State 6 (OFF, OFF, ON, ON)

From Table 3.1 one can see that states 2, 4 and 6 only occur for i, >0 and
states 1, 3, and 5 occur for i, <0. Also, the value of v, equalsto ¥V, for states 1,
2 and 3 and zero for states 4, 5, and 6.

Similar to [32] for the controllable switches of Fig. 3.1 one can define the

following switching functions:

. () 1 , when S, is ON (3.1)
t)= ' . .
S 0 , when S, is OFF
1 when S is OFF
F. (t)= ’ S
S ) {O ., when S, is ON (3.2)

jel{4,B,C}, ke{P,N}
Although D,, and D,, are uncontrollable, in order to obtain simple switching
flow-graph which can deal with different voltage polarities, it is necessary to define
its corresponding switching functions. From the previous inverter operation

constraints, one can find the following conditions for diodes:

If [(S,y is OFF) AND (i,(¢)<0)] is true,
then D ,, is ON; otherwise, D ,, is OFF.

If [(s,, is OFF) AND (i,(t)>0)] is true,
then D, is ON; otherwise, D, is OFF.
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It follows that the corresponding switching functions can now be defined as:

Fy(0) Al when D ,p is ON (3.3)
Par™7 0, when D ,p is OFF

e (t) A f1 o, when D ,y is ON (3.4)
Dan o, when D is OFF

Further observation of the previous conditions reveals that

3.5

Fy, ()=F5, () AND (sign(-i,) &

Fp  (t)=Fs (t) AND (sign(i,)) (3.6)
) A 0L x>0

signlx) = {o, x<0 (3.7)

Thus, based on the previous definitions one can now define the virtual switch §, for
leg A in Fig. 1 with the following operation condition:

If {[(S,, is ON) AND-(i;>0)] OR AD,, is ON) } is true,

then S, is ON; otherwise, S, is OFF.

Also, the corresponding virtual switching functions, F,() and F,(s) are defined

as:
FA(t) i {(ZI). , when S, ‘lS ON (3.8)
, when S, is OFF
— A (1 when S is OFF
F,(e) = {O AT (3.9)
, when S, is ON
It is also straightforward to see that
F,()=[F;, () AND (sign(i,))] OR (F,, (1)) (3.10)
Fi(0)=[Fs,, (©) aND (sign(-1,))] OR (Fy,, () (3.11)
F )+ F,(r) = 1 (3.12)

From the above definitions of (3.8) and (3.9) as well (3.12) one can see that the

characteristics of the virtual switch S, and its corresponding switching functions
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F,(t) and F,(¢) are the same as that of [32] for DC converters.
In summary, for the inverter of Fig. 3.1, the operation condition of D, and
D,y can be represented as:

If [(SjN is OFF) AND (ij(t)< 0) is true,
then Dj.P is ON: otherwise, Djp is OFF.

If [(SJ.P is OFF) AND (ij(t)> 0)] is true,
then D, is ON; otherwise, D, is OFF.
jei{d,B,C}

Also, the corresponding switching functions are defined as:

F () é 1 when D].P is ON
pp i) = 0o when D p is OFF
=Fs,, (t) AND (sign(— ij)) (3.13)
A1, when - Dy is ON
Fop 0 = {O : when = Dy, is. = OFF
= Fs, (1) AND (sign(z, ) (3.14)
. a 1L, x>0
sign(x) = 10 <o (3.15)

Therefore, the operation condition of the virtual switch S, can be defined as:

If { [(SJ.P is ON) AND (ij >0)] OR (DJ.P is ON) } is true,
then S, is ON; otherwise, S, is OFF.
jel{4,B,C}

Also, the corresponding switching functions F,(r) and F;(r) of S, are defined as:

" A 1 when S; is ON
j(t) - {O , when S is OFF
- [FS‘/P (1) AND (signi,)] OR (FDjP ) (3.16)
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— A1 when S ; is OFF
F () = .
/ 0o when S is ON

:[FSjN (t) AND (sign(— z/))] OR (FDjN (t)) (3.17)

Fi()+F(t) = 1 (3.18)
By introducing the above virtual switches, it is found that one can obtain the

following equivalent circuit as shown in Fig. 3.2. The virtual switch S, can be

represented as a SPDT (single-pole double-throw) switch.
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Fig. 3.2 Equivalent circuit of Fig. 3.1.

3.2 The Proposed Switching Flow-Graph for Three-Phase Inverters

From Fig. 3.2 one can see that for j e {4,B,C}, when S; isON, v, equals
to ¥}, otherwise, v, equals to zero. According to the equivalent circuit one can

write the following KVL equations.

Vin :Rij(t)+L 7

+ v,y (1) (3.19)
jeld, B,C}

Hence, when Sj is ON, one can obtain

di (t)
dt

(3.20)

+ vnN (t)
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and when Sj. is OFF

di, 3.21
o-ri (-2 0 (32
dt
From Fig. 3.2, one can obtain
di (t)
) =Ri. L7
Vin (t) zj(t)+ i (3.22)

= (R + pL)ij(t)

where p operator represents the time differentiation. Now by choosing 7, vy,

Vi, Vuvsand i, je{4,B,C}, as nodal variables, one can draw the flow-graphs

jn?
G, ov and G; oz correspondingto S, ON and OFF as shown in Fig. 3.3(a) and
3.3b, respectively.

From Fig. 3.3c one can see that by using a switching branch with virtual
switching function F; (t) one can combine two flow-graphs corresponding to S, is
ON and S§; is OFF respectively.in-exactly the same form as that of [32].
Furthermore, for completeness, one'can draw,.according to equation (3.16), the virtual
switching function Ff/.(t) of virtual:switch, .S, ~as shown in Fig. 3.3(d). From Fig.
3.3 it is seen that three switching flow-graphs corresponding to A, B, and C phases
respectively seem entirely decoupled. Further examination reveals that they are, in

fact, coupled together through v,, . From equation (3.19) and i, +i, +i. =0 one

can obtain

vy ()= %(VAN +Vy +Ven) (3.23)
It follows from (3.23) and Fig. 3.3 that the final switching flow-graph model of the
three-phase inverter can be drawn as show in Fig. 3.4.

From Fig. 3.4 one can see that, by using the proposed virtual switch concept to
obviate the trouble of considering different voltage polarities, one can get a very
simple switching flow-graph model of the inverter as compared with [36]. In addition,
the corresponding virtual switching functions can also be obtained very simply

through simple logic operations as shown in Fig. 3.3(d). From Fig. 3.4 one can see
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that the sub-circuit of each arm (phase) of the full-bridge inverter is almost decoupled
from other two arms (phases) except for two nodal variables, namely v, and v, .
Fourth, from Fig. 3.3(d) one can also observe that the corresponding switching
functions, namely Fy, (t) , of diodes are also available simultaneously while getting
Fj(t). With this information, it is possible to make this model more flexible in
different applications such as considering the dead-time effect of active switches.
Finally, it is worth pointing out here that, in the proposed switching flow-graph model,

it is not necessary to use F,(¢) and F, () functions,
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Fig. 3.3 Switching flow-graph for j phase, je{4,B,C} (a) when S, is ON (b)
when S, is OFF (c) combined flow-graph using the switching branch

(d) the corresponding virtual switching function.
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Fig. 3.4 The proposed switching flow-graph model for three-phase PWM
inverters.

3.3 The Corresponding Models Derived from Switching Flow-Graph
Model

Once the switching flow-graph is obtained one can follow a similar procedure as
[32]-[35] to obtain the corresponding large-signal, steady state, and small-signal
models, respectively.

A. Large-signal model

From Fig. 3.4, one can see that when virtual switching function £, (t) equals to

one, then v, equals to V), ; otherwise, v, equals to zero. Therefore, the

relationship between v, and V), can be described as

v (6)=VpFi(t) . jeld B,C} (3.24)

According to equation (3.24), the large-signal model can be obtained by replacing the

switching branches with multipliers as shown in Fig. 3.5
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Fig. 3.5 The large-signal model derived from Fig. 3.4.

B. Steady state Model

Similarly, one can use the well known state-space averaging technique [1] to

obtain the corresponding steady state. model: First; let Fs,r,*(f), F,

L), F(e) and

J

i,"(t), je{4,B,C}, represent the corresponding steady state signals of F;_(r),

Fs (t), F,(¢) and i() respectively. Then from equation (3.24), one has

JN J

vjN*(t):VDFj*(t) J € {A:B1C}

(3.25)

Thus, by taking the average over one switching period 7, as follows:

1 t+T.

S *
s [ vin (ﬂ)d;f:T—

s ¢

N

+TS "
| F"(A)dA
t

one can get the corresponding steady state relation:

V_;'N(f)= VDDj(t) ,j €{4,B,C}

where

25

(3.26)

(3.27)

(3.28)

(3.29)



From the above results, it is seen that the inverter output voltage or current is
sinusoidal, however, due to its low frequency variation as compared with the high
switching frequency f§, for each time instant, say ¢,, one can use the equivalent
duty ratio, D, (tk) to achieve the input-output relation of equation (3.27) just like for
a DC-to-DC converter. Similarly, assume that V,, and I, jel{4,B,C} are the
corresponding average variables as defined in equation (3.28), respectively. It follows
that the resulting steady state model can be represented as shown in Fig. 3.6.

From Fig. 3.6, it is obvious that given the command signals, D,, Dy, and D,
one can obtain the resulting steady state output V, and 7,, je {A,B,C} easily.
However, for completeness, the block diagram inside the dotted frame is also given to
show how to obtain the duty ratios of the virtual switches from the actual switching

functions and current directions.
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Fig. 3.6 The steady state model.

C. Small-signal Model
With the same assumption of assuming the inverter voltage frequency is much
less than the switching frequency, one can use the same state space average technique

to find the corresponding small-signal model in a similar way used for DC-to-DC

~
A

converters. Let d;, vy, Vv, , v,, and i

;. jeld,B,C} represent the small
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signals of the corresponding node variables of d,, v,, v, , v, and i,

respectively. Then from equation (3.27), one has the following perturbed equation

(OJ.N +VJ.N): &, +VD)(c§j +Dj)

=VpD; +9pD; +dVy +Vpd, (3.30)
Therefore, from equation (3.30) one can obtain
Doy =VpD;+d Yy +pd, (3.31)

It follows that one can obtain the desired small-signal model as shown in Fig. 3.7. It
should be pointed out here that to achieve better accuracy the nonlinear term in
equation (3.31) is also included in Fig. 3.7. Naturally, the nonlinear term can also be

neglected to get the familiar linear model.
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Fig. 3.7 The small-signal model.

3.4 Simulation Results

From previous results one can see that the structure of the resulting switching
flow-graph model is very similar to the simulation structure of MATLAB/SIMULINK.
Hence, it is quite easy to implement the model in MATLAB/SIMULINK environment

to get the simulation results without requiring other extra efforts. As illustrations,
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some examples are given below.
Example A:

First, consider the example with a Y-connected RL load as shown in Fig. 3.1,
where V,, =500, R=6.2Q and L =0.15mH . Assume the well known sinusoidal
PWM is adopted with switching frequency fg =6kHz and the amplitude of the
triangular wave is 5V . Also, the voltage command signals are given as follows:

V" (t)=3sin(1207)
V"5 (1) = 3sin(120/ —120°)
V" () = 3sin(1207 +120°)

It follows that the corresponding switching functions of the six active switches,
namely Fy, and Fy ~can be obtained directly. Hence, by implementing Fig. 3.5
with MATLAB/SIMULINK using zero initial conditions, one can get the desired
output currents as shown in Figs. 3.8(a) and 3.9(a) corresponding to zero and 20us
blanking time respectively. For comparison, the same example is carried out by using
PSPICE and under the same conditions. The corresponding results are shown in Figs.
3.8(b) and 3.9(b) respectively. It is found that both simulation results agree with each
other very closely. However, the computation time required by using the proposed
switching flow-graph model is much less than that required by using PSPICE. For
example, for the case with 20us blanking time and with 700ms simulation time period,
it takes only 7secs by using the proposed model as compared with 66secs by using
PSPICE program when running a PC with Pentium IV 1.6G / 1500MB RAM and with
5us step size.

Then, consider the dynamic performance simulation, the V), is applied at t = S5ms
and is decreased to 400 V at t = 35ms. Also the RL load is changed to R =3.1Q and
L=0.075mH att = 65ms. Figs. 3.10a and 3.10b show the output currents generated
from the switching flow-graph model and the PSPICE model with zero blanking time
respectively. Both simulation results agree with each other rather closely which
reveals that the switching flow-graph model can correctly predict the dynamic

response, such as the start up transient and load variation transient.
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Fig. 3.8 Simulation results of the output currents with zero blanking time
using (a) switching flow-graph model, (b) PSPICE model.
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Fig. 3.9 Simulation results of the output currents with 20us blanking time
using (a) switching flow-graph model, (b) PSPICE model.
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Fig. 3.10 Dynamic simulation results of the output currents using (a)

switching flow-graph model, (b) PSPICE model.
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Example B:

Next, consider the second example to illustrate an application of the proposed
switching flow-graph model to consider the ON-resistance of the active switches.
Since an extra resistive voltage drop is generated for each active switch whenever a
current is passed through that active switch, it is quite straightforward to add another
virtual switching function F,, je{4,B,C} to each arm to take care of this

resistive voltage drop:

F/’R(t):FSJ,, OR FSW
jel{4,B,C}

The resulting large-signal switching flow-graph is shown in Fig. 3.11 for reference.
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Fig. 3.11  The large-signal switching flow-graph model considering
ON-resistance of active switches.

By using the same simulation conditions except including the ON-resistance of
0.23Q2 for each active switch (according to the SPICE model of IRFP460 from
PSPICE library), one can obtain the output currents. Due to the small value of
ON-resistance, the output currents are basically similar to that of the previous
example and will not be repeated here.

F

For reference, Fig. 3.12 also shows the waveforms of Fy ., F, Dap

SaN !
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Fp..» Fa and v, for i,>0 and i, <0 for the case of 20us blanking time.
From F; = and Fg —of Fig. 3.12, one can see that F, =0 for i;>0 and
Fy :KAN for i, <0 which indeed agree with equation (3.5) exactly. Finally, from
F, of Fig. 3.12, one can see that virtual switching function F, =F, for i,>0
and F, =F, for i, <0. Again, this result indeed agrees with equation (3.10)

exactly.
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Fig.3.12 Waveforms of Fy , Fg . Fp,.. Fp, ,» Fa and v, for(a)

i,>0 (b) i,<0.
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Example C:

Consider an induction motor load as given in [43] with the following parameters:

stator resistance R, =3.41Q, stator inductance Ly =0.1868H ,

rotor resistance R, =3.41Q, mutual inductance L, =0.1728H ,

number of poles P =4, rotor inductance L, =0.1868H ,

V, =135V, f, =3kHz,

amplitude of triangular wave =15/,

blanking time =40usec.

By using the proposed switching flow-graph model of Fig. 3.5 and implementing in
MATLAB/SIMULINK environment with the above loading condition [43] and the
following control signal

V' aw(t)=75sin(20m)

V*s(t) = 7.5sin(202 —120°)

V" (¢)=7.5sin(202 +120°)

One can get the steady stateoutput current waveform i, as shown in Fig.
3.13(a). For comparison, Fig. 3.13(b)also.shows the corresponding experimental
result of [43]. From Figs. 3.13(a) and 3.13(b), one can observe that both results agree
with each other closely. It is rather easy to simulate this inverter-fed motor system on

the system-level evaluation.
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Fig. 3.13  The steady state current waveforms of A-phase (a) simulation
result (b) experimental result [43]. (horizontal 20ms/div, vertical
2A/div)
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