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12.1 Definition ofi the L aplace T ransform

Pierre Simon Laplace (1749-1827) .

A French astronomer and mathematician
First presented the Laplace transform and

its applications to differential equations
in 1979.




12.1 Definition ofi the L aplace Transfor m
Definition:
L[f(®)]=F(9) :(‘3‘ f(t)e Sat
s=s +jw acomplex variable

The Laplace transform is an integral
transformation of afunction f(t) from the time
domain into the complex frequency domain, F(s).

12.1 Definition ofi the L aplace T ransform

One-sided (unilateral) Laplace transform
Two-sided (bilateral) Laplace transform

" (s)e¥ds

Jw

L l[F(S)] =f (t) = ?11 (\511-+.

Look-up table , an easier way for circuit application
ft)0 F(s)




12.1 Definition ofi the L aplace Transfor m

Similar to the application of phasor transform to
solve the steady state AC circuits, Laplace
transform can be used to transform the time domain
circuits into S domain circuits to simplify the
solution of integral differential equationsto the

manipulation of a set of algebraic equations.

12.2 Usefiull L aplace T ransferm Pairs

Functions f(t), >0

impulse d(t)

step u(t)

ramp

exponential

sine




12.2 Usefiull L aplace T ransfermi Pairs

Functions ft),t>0

cosine

damped ramp

damped sine

damped cosine

g f(t)H— sF (s)- f(0)
e

u_ F (s)
AQ f(t)dt 3

L[f(t- a)u(t a)]=e *F(s),a>0
Lge *f(t)g=F(s+a)
L[f(at)]:%F(g),a>O

lim [f(®]=1im sF(s)

t® 0" s® ¥

D [im [f(M]=1imsF(s)

t® ¥ s® 0




12.2 Usefiull L aplace T ransfermi Pairs

Example Usethe Laplace transform to
solve the differential equation.

2
OI—;’+6ﬂ+8v:2u(t)
at? - dt

Take Laplace transfrom

&V (5)- sv(0)- V'(O)H+6[sV(9)- v(0)] +8V () = é

12.2 Usefiull L aplace T ransfermi Pairs

&2V(9)- sV(0) - V(O +6[ SV (9) - V(0)] +8V(S) :E

2
(S +6s+8)V(s) =S T45+2

S +4s+2 S +4s+72
V(S) = 5 =
S(s*+6s+8) s(s+2)(s+4)

v(t) :%(1+ 262 + & “yu(t)




12.3 Circuit Analysisin S Domain
1) KCL, §i.(t)=0, for any node.

Take Laplace Transform

a 1.(s)=0, for any node.
n

(2) KVL, § v (t)=0, for any loop.
m

Take Laplace Transform
é V,(s) =0, forany loop.

12.3 Cireuit Analysisin S Demain

(3) Circuit Component Models
resistor

VR(t) = Rig(t)

Vr(S) = RIg(S)

Ir(s) = GVr(9)




12.3 Circuit Analysisin S Domain

L0 =i@)+ TGk

Vi(s)=sLl (s)- Li (0)

Vi(9), i (0)
sL S

I(s) =

12.3 Circuit Analysisin S Domain

Ve =V (0)+ 2 G Te ek

Ic(8)= STV, (5) - Cvy(0)

V(9 =2 219




12.3 Circuit Analysisin S Domain

Coupling inductors

V1(9)=L;Sl1(8)-L1i;(0)+MSl;(s)-Mi(0)
V(s)= MSl(s)- Mi;(0)+L;SI5(s)-L,i5(0)

+

Vi(s) Lii(0) L.in(0)  V2(8)

- Mi>(0) Mi(0) -

12.3 Circuit Analysisin S Domain

For zero initial conditions

V(s _
impedance @ S =Z(s)

admittance @ ) =y(s)= 1
V(s) Z(s)

V(s)=Z(s)l(s) ohm'slawins- domain




12.3 Circuit Analysisin S Domain

The elegance of using the Laplace transform in
circuit analysis lies in the automatic inclusion of
the initial conditions in the transformation process,
thus providing a complete (transient and steady

state) solution.

12.3 Circuit Analysisin S Domain

Circuit analysisin sdomain

NnStep 1 : Transform the time domain circuit into
s-domain circuit.

NStep 2 : Solve the s-domain circuit.
e.g. Nodal analysis or mesh analysis.

NStep 3 : Transform the solution back into time
domain.




12.3 Circuit Analysisin S Domain
Example Find v (t) given v (0)=5V
10Q

+ Y +J_
10e™u(1) 10QS v, (1)=F0.1F 26(1)A

S-domain equivaent circuit

12.3 Cireuit Analysisin S Demain

Nodal analysis

10
S+l- Vo(S)

RO IRAC
10 10 10/s

25s+35 _ 10 N 15
(s+1)(s+2) s+1 s+2

\ v, (t) = (10e " +15e *)u(t) V

\ V,(9) =




12.4 The Transfer Function and the
Convolution I ntegral

Given alinear circuit N in sdomain as shown below

input X(s) N output Y(s)

Transfer function H(s) is defined as

H(s) )

X(S) 'With zero initial condition

12.4 The Transfer Function and the
Convolution Integral

If Y(s)=V,(s), X(s) =V.(s) ; then H(s) = voltage gain
If Y(s)=1,(5), X(s)=1,(s) ; then H(s) =current gain
If Y(s)=V(s), X(s)=1(s) ; then H(s) =impedance

If Y(s)=1(s), X(s)=V(s) ; then H(s) = admittance




12.4 The Transfer Function and the
Convolution I ntegral

Given the transfer funtion H(s) and input
X(s) , then Y(s)=H(5)X(s)

If theinputis & (t) , then X(s)=1 and
Y (s)=H(s)

Hence, the physical meaning of H(s) isin
fact the Laplace transform of the impulse
response of the corresponding circuit.

12.4 The Transfer Function and the
Convolution Integral

Y (9)=H(9)X(s) , in ssdomain

y(t) = oh(t- t)x )at @ h(t)* x(t) Eigkilgal=Xeelaar"ly!

Geometrical interpretation of finding the

convolution integral value at t=t, isbased on :




12.4 The Transfer Function and the
Convolution I ntegral

(D Approximating the input function by using a
series of impulse functions.

(2)Shifting property of linear systems input
X(t)—output y(t)
x(t- ¢ )—output y(t- 7)

(3)Superposition theorem for linear systems
(4)Definition of integral : finding the area

C.T. Pan

12.4 The Transfer Function and the

Convolution Integral
(DInput x( ) is approximated using impulse
functions, x( ¢ )=0, for 7 <0

e indant t,, xt,) value, area
- . X0, x(OM
X M
X )M
XM

x(t) @f,d(t)+ fd -t,)+ f,d(t -t,)+L
0 & x(VOVd( - kvt)

k=0




12.4 The Transfer Function and the
Convolution I ntegral

(2) Use the linearity property

Input SZE ) output (response)
x(O)vtd(t) Y23 x(O)M h(t)
Xt )vtd(@t -t,) %% xt )Mtht -t,)
Xt )vtd(t -t,)%® xt )Mtht -t,)
[ U
uptot =t,

12.4 The Transfer Function and the
Convolution Integral

(3) Use superposition theorem to find the total

approximate response

H(t) = & XKV M ht, - ki)

k=0

) [
n = integer[—*
eg [Vt]




12.4 The Transfer Function and the
Convolution I ntegral

(4) Takethelimit, A v —~d 7, BARECRI)

¥

y(t) = (‘)X('[ )h(t, - t)at

Due to causality principle, h(t- 7 )=0 for t>t,
and x( 7 )=0for 7 <0

:t(k‘jﬁ(tk - )t )dt

12.4 The Transfer Function and the
Convolution Integral

Example:
Given x(t) =u(t) , h(t) =€"'u(t) , find y(4),

¥

y(t) = oh(t- t)x(t )dt

¥

y(4) = oh(4- t)x(t )t




12.4 The Transfer Function and the
Convolution I ntegral

12.4 The Transfer Function and the
Convolution Integral

Step2. Shift to t,=4

h(4- t))
10

08
06
04

0.2




12.4 The Transfer Function and the
Convolution I ntegral

Step3. Find the product h(4- 7 )x( 7)

12.4 The Transfer Function and the
Convolution Integral
Step4. Find the integral (area)
y(4) :(‘Se'(“'”dt :e"‘(‘Sé dt =e'*¢ ‘:
=e*(e'-D=(1-¢e"

Step5. Check

Y9 =HEXS=— =

sta S sta

y)=10-€Y, a=1
a

Y49=(-¢€*)




12.5 The Transfer Function and the
Steady State Sinusoidal Response

From definition of transfer function

H(s):%

P Y(s)=H(s)X(s)

Assumeinput X(t)=Acos(wt+ @) and H(s) isgiven,
then one can get the steady state solution without
needing a separate phasor anaysis.

12.5 The Transfer Function and the
Steady State Sinusoidal Response

proof :  X(t) = Acosf coswt - Asinf sinwt
A(cosf s- sinfw)

S +wW
\' Y(s)=H(s)X(9)

\ X(s)=

+& other terms dueto poles
under steady state:
A C L
S- jw s+ jw

K = H (s) A(scosf - wsinf)

1

stjw s=jw

1., ;
==H(jw)Ae"
> HawW)




12.5 The Transfer Function and the
Steady State Sinusoidal Response

Let H(jw)=|H(jw)|e"™

and take inverse Laplacetransform
Then y.(t) = A|H(jw) |cos{wt +f +q(w)]
e P(X(t)) = ADf
then  P(ys(t)) = A[H(jw) [Bf +q(w)

12.5 The Transfer Function and the
Steady State Sinusoidal Response

Example : The transfer function H(s) of the circuit
given below is known.
Find the steady state solution of V (t) for

the given V (t).




12.5 The Transfer Function and the
Steady State Sinusoidal Response

_1000(s+5000)
H (S) T2 6
s° +6000s+25%40
Vg(t) =120cos(5000t +30°) V

12.5 The Transfer Function and the
Steady State Sinusoidal Response

Solution: Let s=jw= 5000
1000( j5000+5000)

Evaluate H(j5000) =
U ) - 25" 10° + j5000(6000) + 25" 10°

=254

Then V/5(t) =120 %cos(SOOOHSO"- 45)

= 2072 cos(5000K - 15 )V




12.5 The Transfer Function and the
Steady State Sinusoidal Response

Nnlin theory , the relationship between H(s) and
H(jw) provides alink between the time domain
and the frequency domain.

NIn some cases, we can determine H(jw)
experimentally and then construct H(s) from the

data.

12.5 The Transfer Function and the
Steady State Sinusoidal Response

Example: Find the impulse response of the
following circuit.




12.5 The Transfer Function and the
Steady State Sinusoidal Response

(@) Time domain solution

rePe 1y =d()
dt

At t=0, v,(0)=0
1 :d(t)
2290 4
cOR

1

==V
RC

At t=07, v,(0") =

12.5 The Transfer Function and the
Steady State Sinusoidal Response

For t>0", d(t)=0

’\/\/\/J_Jr

V(0') =L

C—|— voft) , ~C

RC o
dt

v, (t) = R—lce'RCu(t)




12.5 The Transfer Function and the
Steady State Sinusoidal Response

(b) s-domain solution
Find the transfer function

AC)

H(s) =y ®

zero | .C.

Transform into s-domain circuit

12.5 The Transfer Function and the
Steady State Sinusoidal Response




12.6 Thelmpulse Function in Circuit
Analysis
Example 1: Impulse voltage source excitation

12.6 The Impulse Function in Circuit

Analysis
(@) Time domain solution
Att=0,i(0)=0

The impulse voltage source has stored energy,
FRUCON | in the inductor as an initial current
in an infinitessmal moment.




12.6 Thelmpulse Function in Circuit
Analysis

For t>0", d(t)=0

le+ Ri =0, natural response

. V,
i(0)=-= A
()=

i(t) =\fe'“‘u(t) ,t=

Note that the impulse source just builds up an
initial inductor current but does not contribute
to any forced response.

12.6 The Impulse Function in Circuit
Analysis
(b) s-domain solution

Vo _

BUCES

Same answer but much easer.




12.6 Thelmpulse Function in Circuit
Analysis

Example 2: Impulse current source excitation

+

1 dt)@ RS c==Vvt) , V(0)=0

12.6 The Impulse Function in Circuit

Analysis
(@) Time domain solution

Att=0,v(0)=0
v(0) =0, short circuit

The impulse current source has stored energy,
B | in the capacitor as an initial voltage
in an infinitesimal moment.




12.6 Thelmpulse Function in Circuit
Analysis

For t >0, d(t) =0, open circuit

dv v
C—+—=0, natural response
d R =P

v(0") :ICO

t

v(t) ='C°e'tu(t) .t =RC

Note that the impulse current just builds up an
Initial capacitor voltage but does not contribute
to any forced response.

12.6 The Impulse Function in Circuit

| Analysis
(b) s-domain solution
Transform into s-domain circuit

v(t) = 'COe'tu(t)

Same answer but much easier.




12.6 Thelmpulse Function in Circuit
Analysis
Example 3: Impulse caused by switching operation

The switch is closed at t=0in the following circuit.

Notethat v.(0") * v,(0")

12.6 The Impulse Function in Circuit
Analysis
Transform into s-domain
Vo

|(S):¥
}/SCl-'_}/SCz

C.= CixC2 ,V2(S)ZVO>C€2& C.
Ci+C2 Lo s CGi+C2

i(t) =Vo Ced(t)

0Vo>Ce




12.6 Thelmpulse Function in Circuit
Analysis

At t=0/, afinite charge of C, istransferred to C,
instantaneously.

Note that , as the switch is closed , the voltage
across C, does not jump to V,, of C, but to its final
value of the two paralleled capacitors.

12.6 The Impulse Function in Circuit
Analysis

Qi+ Q2=C1Vo,t>0"
Also,att=0 ,Q:1=C1Vo,Q2=0
\' Qi+Q2=C1Vo

Conservation of charge.




12.6 Thelmpulse Function in Circuit
Analysis
I we consider charged capacitors as voltage sources,,

then we should net connect two capacitors with
unegual voltagesin parallel.

Dueto violation of KVL , an impulse will occur which
may damage the components.

12.6 The Impulse Function in Circuit
Analysis
Example 4: Impulse caused by switching operation
The switch is opened at t = 0 in the following circuit.

At t =0, steady state solution
i,(0) = 100V =10A
10W

i,(0)=0A




12.6 Thelmpulse Function in Circuit

Analysis
For t > 0, the S-domain circuit IS

_(100/s)+30 _4 2
I(s)= =—+
5s5+25 s s+5

V.(9=1(s) (2s+15) =12+ 0+ 10
S s+5
i(t) =(4+2e™) u(t)

v(t) =12d (t) + (60+10e ™) u(t)

12.6 The Impulse Function in Circuit
Analysis

Note t=0,i,(0)=10A,i,(0)=0A
t=0", from (A), i,(0")=6A,i,(0")=6A
Also, from (B), there exists 12d(t) at v,(t).




12.6 Thelmpulse Function in Circuit
Analysis

Thus, if we consider an inductor current as a
current source, then two inductors with unegual
currents should not be connected in series.

Due to violation of KCL, it will result in impulse
voltage which may damage the components.

SUMMARY

Objective 1 : Know the component models in s-domain.

Objective 2 : Be able to transform atime domain circuit
Into the s-domain circuit.

Objective 3 : Know how to analyze the s-domain circuit
and transform the solution back to time
domain.




SUMMARY

Objective 4 : Understand the significance of transfer
function and be able to calculate the
transfer function from the s-domain circuit.

Objective 5 : Know the geometrical interpretation of
convolution integral and be able to
calculate the integral.

SUMMARY

Objective 6 : Know: the relation between the phasor
solution technigue for finding sinusoidal
steady state solution and the s-domain
solution technique .

Objective 7 : Know how to use s-domain solution
technique to solve a circuit containing
Impulse sources or a switching circuit
which may result in impulse functions.




SUMMARY

Chapter problems:




