Part 1: Filling in (60 points, each 5 points)

1. An analog random signal source has an output described by the probability density function

\[f_x(x) = \begin{cases} \frac{x}{2}, & 0 \leq x \leq 2 \\ 0, & \text{otherwise} \end{cases} \]

This source is sampled and quantized into 4 levels using the 3 quantizing boundaries of \(x_k = 0.5k \), \(k = 1, 2, 3 \). The resulting levels are encoded using a Huffman code.
(a) The average information carried in each quantization-output is \(\text{(1)} \).
(b) After Huffman encoder, the average bit-length for each quantization-output is \(\text{(2)} \).
(c) The coding efficiency of the Huffman code is \(\text{(3)} \). (5%)

2. A signal \(x(t) = 2 \cos 2000 \pi t \) is quantized by a uniform quantizer with dynamic range (-4, 4). The output of the quantizer is modulated by polar NRZ code and transmitted through a channel with one-sided mainlobe bandwidth of 20KHz. The quantization noise is assumed to be uniformly distributed.
(a) The maximum number of quantum steps of the quantizer without aliasing distortion is \(\text{(4)} \).
(b) The signal to quantization noise ratio (in dB) of the quantizer's output is \(\text{(5)} \).

3. The power spectral density of a random process \(x(t) \) is shown in Fig. 1.
(a) Express the autocorrelation function \(R_x(\tau) \) as \(\text{(6)} \).
(b) The dc power contained in \(x(t) \) is \(\text{(7)} \).
(c) The ac power contained in \(x(t) \) is \(\text{(8)} \).
(d) To have uncorrelated samples of \(x(t) \), the possible sampling rates are \(\text{(9)} \).

![Fig. 1.](image-url)
4. A superheterodyne receiver operates in the frequency range of 700-2500 KHz.
 The IF frequency \(f_{IF} \) and the local oscillator frequency \(f_{LO} \) are chosen such that \(f_{IF} < f_{LO} \).
 It is required that the image frequencies must fall outside of the 700-2500 KHz region.
 (a) The minimum required \(f_{IF} \) is ______ (10).
 (b) The range of the corresponding \(f_{LO} \) is ______ (11).

5. Through a channel of raised cosine spectrum with roll-off factor \(\alpha = 33.3\% \) and bandwidth = 10 MHz,
 the maximum transmission data rate for OQPSK modulation scheme is ______ (12).

Part 2: (40 分)
1. In an AWGN channel with a noise power spectral density of \(N_0/2 \), two equally likely messages are
 transmitted by
 \[
 s_1(t) = \begin{cases} \frac{A t}{T} & 0 \leq t \leq T \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad s_2(t) = \begin{cases} A - \frac{A t}{T} & 0 \leq t \leq T \\ 0 & \text{otherwise} \end{cases}
 \]
 (a) Determine \(E_b \), the bit energy. (5%)
 (b) Depict the optimal receiver and determine the threshold value for the receiver. (5%)
 (c) With the optimal receiver, determine the bit-error-rate (BER) in terms of Q-function
 \[
 Q(u) = \int_{u}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2} dx
 \]
 and parameters \(A \), \(T \), and \(N_0 \). (5%)
 (d) Known that \(E_b/N_0 = 10.5 \text{dB} \) is required to get \(\text{BER}=10^{-6} \) for coherent QPSK signal, what is the
 required \(E_b/N_0 \) (in dB) for this system to get \(\text{BER}=10^{-6} \)? (5%)

2. The output of a \((3, 1, 2)\) convolutional code are determined by
 \[
 v_i^{(1)} = u_i + u_{i-1} + u_{i-2}, \quad v_i^{(2)} = u_i + u_{i-2}, \quad \text{and} \quad v_i^{(3)} = u_i + u_{i-1}, \quad \text{where} \ \{u_i\} \ \text{is the input message sequence.}
 \]
 (a) Draw the encoder of this code. (5%)
 (b) Draw the state-transition diagram of this code. (5%)
 (c) Draw the trellis diagram for this code. (5%)
 (d) If the input message is \([1 \ 0 \ 0 \ 1 \ 1 \ 0]\), what is the transmitted (encoded) sequence? (5%)