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   IV  Frauhofer diffraction from slits 

 

4-1 Huygens-Fresnel principle 

＊ Every unobstructed point of a wavefront, at a given instant 

in time, serves as a source of spherical secondary wavelets 

(with the same frequency as a source of spherical wave). 

 

 

 

 

4-2 Superposition principle 

＊ The amplitude of the optical field at any point beyond is the 

superposition of the wavelets (considering their amplitudes 

and relative phases). 
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4-3 a wave in the complex notation 

 

4-3-1  f(x, t) = Eo cos(κx − ωt + δ) 

 

where Eo is the amplitude of the wave 

           κ  is the wave number of the wave 

           ω is the angular frequency of the wave 

        δ is the phase constant of the wave；0 ≤ δ ≤ 2π 

 

f(x, to) = f(x + λ, to) 
Eo cos(κx − ωt + δ) = Eo cos(κ(x + λ) − ωt + δ) 

κλ = 2π 

κ =
2π

λ
 

 

f(x, to) = f(x, to + T) 
Eo cos(κx − ωt + δ) = Eo cos(κx − ω(t + T) + δ) 

ωT = 2π 

ω =
2π

T
 

 

ω = 2πν 

where ν =
1

T
 is the frequency of the wave 
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Wave function f(x, t) plotted by Mathcad

Assume that the wave function is in a form of f(a, x, t)=2*cos(a*x-4t)
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4-3-2  complex notation 

e𝒾x = cos x + 𝒾 sin x 
f(x, t) = Eo cos(κx − ωt + δ) 

f̃(x, t) = Eo[cos(κx − ωt + δ) + 𝒾 sin(κx − ωt + δ)] 
    

f̃(x, t) = Eoe
𝒾(κx−ωt+δ) 

 

define a complex wave function 

f̃(x, t) = Ẽoe
𝒾(κx−ωt) whereẼo = Eoe

𝒾δ 

 

The real wave function can be obtained by taking the real part 

of f̃(x, t) 

f(x, t) = Re[f̃(x, t)] 

f(x, t) = Re[Ẽoe
𝒾(κx−ωt)] 

f(x, t) = Re[Ẽoe
𝒾(κx−ωt)] 

f(x, t) = Re[Eoe
𝒾(κx−ωt+δ)] = Eo cos(κx − ωt + δ) 

 

4-3-3  spherical wave 

Ẽ(r, t) =
ξ̃o
r

e𝒾(κr−ωt) 

 

 

Intensity is the energy flux = energy/(m2sec) 

Intensity is proportional to ẼẼ∗ 

If Ẽ = ER + 𝒾EI = Ecosθ +  𝒾Esinθ 



MS2041 lecture notes for educational purposes only 

Then ẼẼ∗ = (Ecosθ +  𝒾Esinθ)(Ecosθ −  𝒾Esinθ) 

ẼẼ∗ = E2(cos2 θ + sin2 θ) = E2 

➔ energy is proportional to E2  

➔ Total energy is conserved 

➔ 4r2*E2 is a constant  

➔ E2 is proportional to 1/r2 

➔ E is proportional to 1/r for a spherical wave 
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4-3-4  plane wave 

E⃗⃗̃ (r , t) = ξ̃ oe
𝒾(κ⃗⃗ ∙r⃗ −ωt) 
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4-4  Frauhofer diffraction (far field diffraction) 

 

Diffraction patterns from slits 

 

Please find the photo of the diffraction patterns from slits (Fig. 

10.20) in “Optics”Eugene Hecht , 2nd edition. 

 

 

1、diffraction from a single slit 

 

 

 

 

 

 

 

 

 

A coherent line source 
 

 

 

 
z 

x 

y 
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(1) consider diffraction from a coherent line source first. 

 

 

 

 

iy  

y 

 

 

 

2

D−
 

 

According to Huygens-Fresnel principle, each point emits a 

spherical wavelet 

 

        Ẽ =
ξ̃o

r
e𝒾(κr−ωt) 

 

where ξ̃o is the source strength at each point. 

 

Suppose that 

(a) N is the total number of the source; 

(b) D is the width of the coherent line source; 

(c) The line is divided into M segments，i.e. i=1、2、3 ….i…..M 

 

The contribution to the electric field at P from the ith segment 

is 

 

z

 

   

 

 

x 

y 

  

 R 

 

P  
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Ẽi =
ξ̃o
ri

e𝒾(κri−ωt)
NΔyi

D
 

 

Define ξ̃L =
1

D
lim
N→∝

(ξ̃oN) 

Ẽi =
ξ̃L
ri

e𝒾(κri−ωt)Δyi 

 

The total field at P from all M segments is 

Ẽ = ∑Ẽi

M

1

= ∑
ξ̃L
ri

e𝒾(κri−ωt)Δyi

M

1

 

 

For a continue line source 

Ẽ = ξ̃L ∫
e𝒾(κr−ωt)

r

D
2

−
D
2

dy 

, where r = r(y) 

 

For far field diffraction, R ≫ D 

 

Note that the phase is much more sensitive to the variation in 

r(y) than the amplitude. Therefore ri ≅ R 

 

Then  

Ẽ =
ξ̃L
R

∫   e𝒾(κr−ωt)

D
2

−
D
2

dy 

 

When r is expanded as a function of y, r ≅ R − y sin θ 

      , where θ is measured from the x axis in the xy plane        
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proof：r ≅ R − y sin θ 
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Therefore 

Ẽ =
ξ̃L
R

∫   e𝒾(κr−ωt)

D
2

−
D
2

dy =
ξ̃L
R

∫   e𝒾(κ(R−y sinθ)−ωt)

D
2

−
D
2

dy 

   

if R ≫ y (Fraunhofer approximation) 

Ẽ =
ξ̃L
R

e𝒾(κR−ωt) ∫   e−𝒾(κy sinθ)

D
2

−
D
2

dy 

Ẽ =
ξ̃L
R

e𝒾(κR−ωt)
 e−𝒾(κy sinθ)

−𝒾κ sin θ
|
−
D
2

D
2

 

 

Ẽ =
ξ̃L
R

e𝒾(κR−ωt)
−2𝒾sin(

κD sin θ
2

)

 −𝒾κ sin θ
 

Ẽ =
ξ̃LD

R
e𝒾(κR−ωt)

sin(
κDsin θ

2
)

κD sin θ
2

 

 

Ẽ =
ξ̃LD

R
e𝒾(κR−ωt) sinγ

γ
, where γ =

κD sinθ

2
 

 

Intensity is proportional to ẼẼ∗ 

I = K ẼẼ∗ 

 

I = K [
ξ̃LD

R
e𝒾(κR−ωt)

sinγ

γ
] [

ξ̃LD

R
e𝒾(κR−ωt)

sinγ

γ
]

∗

 

 

I =  K (
ξLD

R
)
2

(
sinγ

γ
)
2

  

, where γ =
κD sinθ

2
 and (

ξLD

R
)
2

= ξ̃Lξ̃L
∗
(
D

R
)
2
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When θ = 0, 
sinγ

γ
=

sin(0)

0
= 1  

I(θ = 0) =  K (
ξLD

R
)
2

 

I(θ) =  K (
ξLD

R
)
2

(
sinγ

γ
)
2

=  I(θ = 0) (
sinγ

γ
)
2

 

I(θ)

I(θ = 0)
=  (

sinγ

γ
)
2

 

 

Discussion 

 

γ =
κD sin θ

2
=

2π

λ

D sin θ

2
=

πD sin θ

λ
 

 

(a ) when D ≫ λ 

γ → ∞ 
sinγ

γ
→ 0 

I(θ = 0) = K(
ξLD

R
)
2

 

I(θ ≠ 0) = 0 

 

Therefore, the phase of the line source is 

equivalent to that of a point source located at the 

center of the line. 

 

The coherent line source can be envisioned as a 

single point emitter radiating predominantly in 

the forward θ = 0 direction； 

 

In other words, its emission resembles a circular 

wave in xz plane 
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(b) when λ ≫ D 

γ → 0 
sinγ

γ
→ 1 

I(θ = 0) = K(
ξLD

R
)
2

 

I(θ ≠ 0) = K(
ξLD

R
)
2

= I(θ = 0) 

 

the line source resembles a point source emitting 

spherical waves. 

 

(2) consider diffraction from a single slit 

 

 

 

r 

R 

 

 

 

 

The problem is reduced to that of finding the Ẽ(r, t) field 

in the xz plane from an infinite number of point sources 

extending across the width of the slit along the z axis. 

Ẽ =
ξ̃L
′

R
∫   e𝒾(κr−ωt)

b

2

−
b

2

dz

 

 

where ξ̃L
′  is the source strength per unite length. 

 

When r is expanded as a function of z, r = r(z) ≅ R − z sin θ 

, where θ is measured from the x axis in the xz plane 

 

 

z 

x 
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Ẽ =
ξ̃L
′

R
∫   e𝒾(κr−ωt)

b
2

−
b
2

dz =
ξ̃L
′

R
∫   e𝒾(κ(R−z sinθ)−ωt)

b
2

−
b
2

dz 

   

if R ≫ z (Fraunhofer approximation) 

Ẽ =
ξ̃L
′

R
e𝒾(κR−ωt) ∫   e−𝒾(κz sinθ)

b
2

−
b
2

dz 

Ẽ =
ξ̃L
′

R
e𝒾(κR−ωt)

 e−𝒾(κz sinθ)

−𝒾κ sin θ
|
−
b
2

b
2

 

 

Ẽ =
ξ̃L
′

R
e𝒾(κR−ωt)

−2𝒾sin(
κb sin θ

2
)

 −𝒾κ sin θ
 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sin(
κb sin θ

2
)

κb sin θ
2

 

 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt) sinβ

β
, where β =

κb sinθ

2
 

 

Intensity is proportional to ẼẼ∗ 

I = K′ ẼẼ∗ 

 

I = K′ [
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
] [

ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
]

∗

 

 

I =  K′ (
ξL
′ b

R
)

2

(
sinβ

β
)
2

  

, where β =
κb sin θ

2
 and (

ξL
′ b

R
)
2

= ξ̃L
′ ξ̃L

′ ∗
(
b

R
)
2
 



MS2041 lecture notes for educational purposes only 

When θ = 0, 
sinβ

β
=

sin(0)

0
= 1  

I(θ = 0) =   K′ (
ξL
′ b

R
)

2

 

I(θ) =   K′ (
ξL
′ b

R
)

2

(
sinβ

β
)
2

=  I(θ = 0) (
sinβ

β
)
2

 

I(θ)

I(θ = 0)
=  (

sinβ

β
)
2

 

, where 

β =
κb sin θ

2
=

2π

λ

b sin θ

2
=

πb sin θ

λ
 

The Fraunhofer diffraction pattern from a single slit

 5−  4.99−  5=

f ( ) sin ( )











2

=

g ( ) sin ( )











=

4 2 0 2 4
0.5

0

0.5

1

f ( )

g ( )




 

The intensity pattern is consistent with the diffraction pattern 

from a single slit in Fig. 10.20 in Optics” Eugene Hecht , 2nd 

edition. 
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Discussion 

 

first minimum occurs at β = π 

β =
πb sin θ

λ
 

So,  

sin θ

λ
=

1

b
 

 

second minimum occurs atβ = 2π 

β =
πb sin θ

λ
 

So,  

sin θ

λ
=

2

b
 

Similarly, the n minimum occurs at   

sin θ

λ
=

n

b
 

 

Moreover,  

the peak width of I(θ) within first minimum broadens 

when b shrinks. 
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(3) diffraction from many slits 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The result from a single slit  

 

Ẽ =
ξ̃L
′

R
∫   e𝒾(κr−ωt)

b
2

−
b
2

dz =
ξ̃L
′

R
∫   e𝒾(κ(R−z sinθ)−ωt)

b
2

−
b
2

dz 

   

if R ≫ z (Fraunhofer approximation) 

Ẽ =
ξ̃L
′

R
e𝒾(κR−ωt) ∫   e−𝒾(κz sinθ)

b
2

−
b
2

dz 
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Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sin(
κb sin θ

2
)

κb sin θ
2

 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
 

, where β =
κb sinθ

2
 

 

Based on the superposition principle, the total field strength 

from N slits is 

Ẽ =
ξ̃L
′

R
∫   e𝒾(κr−ωt)

b
2

−
b
2

dz +
ξ̃L
′

R
∫   e𝒾(κr−ωt)

a+
b
2

a−
b
2

dz +
ξ̃L
′

R
∫   e𝒾(κr−ωt)

2a+
b
2

2a−
b
2

dz

+ ∙∙∙ +
ξ̃L
′

R
∫   e𝒾(κr−ωt)

(N−1)a+
b
2

(N−1)a−
b
2

dz 

Ẽ =
ξ̃L
′

R
∫   e𝒾(κ(R−z sinθ)−ωt)

b
2

−
b
2

dz + +
ξ̃L
′

R
∫   e𝒾(κ(R−z sinθ)−ωt)

a+
b
2

a−
b
2

dz

+
ξ̃L
′

R
∫   e𝒾(κ(R−z sinθ)−ωt)

2a+
b
2

2a−
b
2

dz + ∙∙

∙ +
ξ̃L
′

R
∫   e𝒾(κ(R−z sinθ)−ωt)

(N−1)a+
b
2

(N−1)a−
b
2

dz 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
[1 + e𝒾(−κa sinθ) + e𝒾(−2κa sinθ) + ∙∙

∙ +e𝒾(−κ(N−1)a sinθ)] 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
[1 + e𝒾(2α′) + e𝒾(4α′) + ∙∙∙ +e𝒾(2(N−1)α′)] 

, where α′ = −
κa sinθ

2
 



MS2041 lecture notes for educational purposes only 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
∑ e𝒾(2jα′)

N−1

j=0

 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
∑(e𝒾2α′

)
j

N−1

j=0

 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
∑(e𝒾2α′

)
j

N−1

j=0

 

Here we use the mathematical equation 

1 + e𝒾δ + (e𝒾δ)
2
+ (e𝒾δ)

3
+ ∙∙∙ +(e𝒾δ)

N−1
=

e𝒾Nδ − 1

e𝒾δ − 1
 

 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β

e𝒾2α′N − 1

e𝒾2α′
− 1

 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
(
e𝒾α′N

e𝒾α′ )(
e𝒾α′N − e−𝒾α′N

e𝒾α′
− e−𝒾α′ ) 

 

Ẽ

=
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
e𝒾α′(N−1) (

(cos(α′N) + 𝒾sin(α′N)) − (cos(−α′N) + 𝒾sin(−α′N))

(cos(α′) + 𝒾sin(α′)) − (cos(−α′) + 𝒾sin(−α′))
) 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
e𝒾α′(N−1) (

2𝒾sin(α′N)

2𝒾sin(α′)
) 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
e−𝒾α(N−1) (

sin(−αN)

sin(−α)
) 

 

Set α = −α′ =
κa sinθ

2
 

 

Ẽ =
ξ̃L
′ b

R
e𝒾(κR−ωt)

sinβ

β
e−𝒾α(N−1) (

sin(Nα)

sinα
) 

Ẽ =
ξ̃L
′ b

R

sinβ

β
(
sin(Nα)

sinα
)e𝒾[κR−ωt−(N−1)α] 

 

Intensity is proportional to ẼẼ∗ 

I = K ẼẼ∗ 
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I

= K [
ξ̃L
′ b

R

sinβ

β
(
sin(Nα)

sinα
)e𝒾[κR−ωt−(N−1)α]] [

ξ̃L
′ b

R

sinβ

β
(
sin(Nα)

sinα
)e𝒾[κR−ωt−(N−1)α]]

∗

 

 

I =  K (
ξL
′ b

R
)

2

(
sinβ

β
)
2

(
sin(Nα)

sinα
)

2

  

, where 

α =
κa sinθ

2
 , β =

κb sinθ

2
 and (

ξL
′ b

R
)
2

= ξ̃L
′ ξ̃L

′ ∗
(
b

R
)
2
 

 

When θ = 0, α = β = 0, then 

 
sinβ

β
=

sin(Nα)

sinα
=

sin(0)

0
= 1  

I(θ = 0) =   K (
ξL
′ b

R
)

2

 

I(θ) =  I(θ = 0) (
sinβ

β
)
2

(
sin(Nα)

sinα
)

2

 

 

I(θ)

I(θ = 0)
=  (

sinβ

β
)
2

(
sin(Nα)

sinα
)

2

 

, where 

α =
κa sin θ

2
=

πa sin θ

λ
 

β =
κb sin θ

2
=

πb sin θ

λ
 

 

Remarks： 

(1) For the multiple slit pattern a > 𝑏 

 

(2)For the diffraction in a crystal 

atomic spacing = a 

atomic size = b 

a ≫ b 
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Discussion 

I(θ)

I(θ = 0)
=  (

sinβ

β
)
2

(
sin(Nα)

sinα
)

2

 

 

α =
πa sin θ

λ
 

β =
πb sin θ

λ
 

(
sinβ

β
)
2
 is a function with its first minimum at β = π 

sin θ

λ
=

1

b
 

The second minimum occurs at β = 2π 

sin θ

λ
=

2

b
 

The functoin ( sin /)2

 5−  4.99−  5=

f ( ) sin ( )











2

=

4 2 0 2 4
0

0.5

1

f ( )
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(
sinβ

β
)
2
is modulated by (

sin(Nα)

sinα
)
2

that is a periodic function with 

its periodic maximum at α = nπ 

sin θ

λ
=

n

a
 

where n is an integer. 

 

This may explain the diffraction patterns from multiple slits 

(Fig. 10.20) in “Optics” Eugene Hecht , 2nd edition. 
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The plots of (
sin(Nα)

sinα
)
2

are shown below. 

 

 4−  3.99−  4=

g  N( ) sin N ( )

sin ( )








2

=

4 2 0 2 4
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g  3( )
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The plots of (
sinβ

β
)
2
modulated by (

sin(Nα)

sinα
)
2

 are shown below.

The Fraunhofer diffraction from N slits

The slit spacing a is M times the slit width b

 8−  7.99−  8=

f  N M( )
sin



M











M













2

N
2

= g  N M( )
sin



M











M













2











sin N ( )

sin ( )








2

=
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0

5

10

15

20

f  4 2( )
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10 5 0 5 10
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2

3

4

f  2 4( )

g  2 4( )
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g  3 4( )
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Note that a is the spacing between adjacent slit, which is 

equivalent to a one-dimensional periodic structure 

 

The periodic maximum occurs at 
sin θ

λ
=

n

a
 . 

 

Remarks: 

(1)  There exists a one-dimensional periodic structure in the 

space of 
sinθ

λ
 

We will illustrate that the 
sinθ

λ
 space is the momentum κ 

space in the next chapters. 

 

(2) 
sinθ

λ
=

n

a
 is similar to Bragg’s law 

 

2d sin θ = nλ 
sin θ

λ
=

n

2d
 

 

 


