MS2041 lecture notes for educational purposes only

IV Frauhofer diffraction from slits

4-1 Huygens-Fresnel principle

* Every unobstructed point of a wavefront, at a given instant in time, serves as a source of spherical secondary wavelets (with the same frequency as a source of spherical wave).

4-2 Superposition principle

* The amplitude of the optical field at any point beyond is the superposition of the wavelets (considering their amplitudes and relative phases).

MS2041 lecture notes for educational purposes only

4-3 a wave in the complex notation

4-3-1 $\quad f(x, t)=E_{o} \cos (\kappa x-\omega t+\delta)$
where E_{0} is the amplitude of the wave
κ is the wave number of the wave
ω is the angular frequency of the wave
δ is the phase constant of the wave ; $0 \leq \delta \leq 2 \pi$

$$
\begin{gathered}
f\left(x, t_{0}\right)=f\left(x+\lambda, t_{0}\right) \\
E_{0} \cos (\kappa x-\omega t+\delta)=E_{0} \cos (\kappa(x+\lambda)-\omega t+\delta) \\
\kappa \lambda=2 \pi \\
\kappa=\frac{2 \pi}{\lambda} \\
f\left(x, t_{0}\right)=f\left(x, t_{0}+T\right) \\
E_{0} \cos (\kappa x-\omega t+\delta)=E_{0} \cos (\kappa x-\omega(t+T)+\delta) \\
\omega T=2 \pi \\
\omega=\frac{2 \pi}{T} \\
\omega=2 \pi v
\end{gathered}
$$

where $v=\frac{1}{T}$ is the frequency of the wave

MS2041 lecture notes for educational purposes only

Wave function $f(x, t)$ plotted by Mathcad

Assume that the wave function is in a form of $f(a, x, t)=2^{*} \cos \left(a^{*} x-4 t\right)$

$$
\begin{aligned}
& \mathrm{x}:=-9,-8.9 . .9 \\
& \mathrm{f}(\mathrm{a}, \mathrm{x}, \mathrm{t}):=2 \cdot \cos (\mathrm{a} \cdot \mathrm{x}-4 \cdot \mathrm{t})
\end{aligned}
$$

$$
g(a, x, t):=2 \cdot \cos (a \cdot x+4 \cdot t)
$$

MS2041 lecture notes for educational purposes only
4-3-2 complex notation

$$
\begin{gathered}
\mathrm{e}^{i \mathrm{x}}=\cos \mathrm{x}+i \sin \mathrm{x} \\
\mathrm{f}(\mathrm{x}, \mathrm{t})=\mathrm{E}_{\mathrm{o}} \cos (\kappa \mathrm{x}-\omega \mathrm{t}+\delta) \\
\tilde{\mathrm{f}}(\mathrm{x}, \mathrm{t})=\mathrm{E}_{\mathrm{o}}[\cos (\kappa \mathrm{x}-\omega \mathrm{t}+\delta)+i \sin (\kappa \mathrm{x}-\omega \mathrm{t}+\delta)] \\
\tilde{\mathrm{f}}(\mathrm{x}, \mathrm{t})=\mathrm{E}_{\mathrm{o}} \mathrm{e}^{i(\kappa \mathrm{x}-\omega \mathrm{t}+\delta)}
\end{gathered}
$$

define a complex wave function

$$
\tilde{\mathrm{f}}(\mathrm{x}, \mathrm{t})=\widetilde{\mathrm{E}}_{\mathrm{o}} \mathrm{e}^{i(\mathrm{kx}-\omega \mathrm{t})} \text { where } \widetilde{\mathrm{E}}_{\mathrm{o}}=\mathrm{E}_{\mathrm{o}} \mathrm{e}^{i \delta}
$$

The real wave function can be obtained by taking the real part of $\tilde{f}(x, t)$

$$
\begin{gathered}
\mathrm{f}(\mathrm{x}, \mathrm{t})=\operatorname{Re}[\tilde{\mathrm{f}}(\mathrm{x}, \mathrm{t})] \\
\mathrm{f}(\mathrm{x}, \mathrm{t})=\operatorname{Re}\left[\widetilde{\mathrm{E}}_{\mathrm{o}} \mathrm{e}^{i(\mathrm{kx}-\omega \mathrm{t})}\right] \\
\mathrm{f}(\mathrm{x}, \mathrm{t})=\operatorname{Re}\left[\widetilde{\mathrm{E}}_{\mathrm{o}} \mathrm{i}^{i(\mathrm{kx}-\omega \mathrm{t})}\right] \\
\mathrm{f}(\mathrm{x}, \mathrm{t})=\operatorname{Re}\left[\mathrm{E}_{\mathrm{o}} \mathrm{e}^{i(\mathrm{kx}-\omega \mathrm{t}+\delta)}\right]=\mathrm{E}_{\mathrm{o}} \cos (\mathrm{kx}-\omega \mathrm{t}+\delta)
\end{gathered}
$$

4-3-3 spherical wave

$$
\widetilde{\mathrm{E}}(\mathrm{r}, \mathrm{t})=\frac{\tilde{\xi}_{\mathrm{o}}}{\mathrm{r}} \mathrm{e}^{i(\kappa \mathrm{r}-\omega \mathrm{t})}
$$

Intensity is the energy flux $=$ energy $/\left(m^{2} \sec \right)$
Intensity is proportional to $\widetilde{\mathrm{E}} \widetilde{E}^{*}$
If $\widetilde{\mathrm{E}}=\mathrm{E}_{\mathrm{R}}+i \mathrm{E}_{\mathrm{I}}=\mathrm{E} \cos \theta+i \mathrm{E} \sin \theta$

MS2041 lecture notes for educational purposes only
Then $\widetilde{\mathrm{E}} \widetilde{E}^{*}=(\mathrm{E} \cos \theta+i \mathrm{E} \sin \theta)(\mathrm{E} \cos \theta-i \mathrm{E} \sin \theta)$

$$
\widetilde{\mathrm{E}}^{*}=\mathrm{E}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\mathrm{E}^{2}
$$

\rightarrow energy is proportional to E^{2}
\rightarrow Total energy is conserved
$\rightarrow 4 \pi r^{2} * E^{2}$ is a constant
$\rightarrow \mathrm{E}^{2}$ is proportional to $1 / r^{2}$
\rightarrow E is proportional to $1 / r$ for a spherical wave

MS2041 lecture notes for educational purposes only
4-3-4 plane wave

$$
\overrightarrow{\widetilde{\mathrm{E}}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\overrightarrow{\tilde{\xi}}_{\mathrm{o}} \mathrm{e}^{i(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}
$$

MS2041 lecture notes for educational purposes only
4-4 Frauhofer diffraction (far field diffraction)

Diffraction patterns from slits

Please find the photo of the diffraction patterns from slits (Fig. 10.20) in "Optics" Eugene Hecht, $2^{\text {nd }}$ edition.

1 - diffraction from a single slit

(1) consider diffraction from a coherent line source first.

z

$$
\frac{-D}{2}
$$

According to Huygens-Fresnel principle, each point emits a spherical wavelet

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{0}}{\mathrm{r}} \mathrm{e}^{i(\kappa \mathrm{kr}-\omega \mathrm{t})}
$$

where $\tilde{\xi}_{0}$ is the source strength at each point.

Suppose that
(a) N is the total number of the source;
(b) D is the width of the coherent line source;
(c) The line is divided into M segments, i.e. $\mathrm{i}=1$, 2 , 3i.....M

The contribution to the electric field at P from the ith segment is

MS2041 lecture notes for educational purposes only

$$
\widetilde{\mathrm{E}}_{\mathrm{i}}=\frac{\tilde{\xi}_{\mathrm{o}}}{\mathrm{r}_{\mathrm{i}}} \mathrm{e}^{i\left(\kappa r_{\mathrm{i}}-\omega \mathrm{t}\right)} \frac{\mathrm{N} \Delta \mathrm{y}_{\mathrm{i}}}{\mathrm{D}}
$$

Define $\tilde{\xi}_{L}=\frac{1}{D} \lim _{\mathrm{N} \rightarrow \infty}\left(\tilde{\xi}_{\mathrm{O}} \mathrm{N}\right)$

$$
\widetilde{\mathrm{E}}_{\mathrm{i}}=\frac{\tilde{\xi}_{\mathrm{L}}}{\mathrm{r}_{\mathrm{i}}} \mathrm{e}^{i\left(\kappa \mathrm{r}_{\mathrm{i}}-\omega \mathrm{t}\right)} \Delta \mathrm{y}_{\mathrm{i}}
$$

The total field at P from all M segments is

$$
\widetilde{\mathrm{E}}=\sum_{1}^{\mathrm{M}} \widetilde{\mathrm{E}}_{\mathrm{i}}=\sum_{1}^{\mathrm{M}} \frac{\tilde{\xi}_{\mathrm{L}}}{\mathrm{r}_{\mathrm{i}}} \mathrm{e}^{i\left(\kappa r_{i}-\omega \mathrm{t}\right)} \Delta \mathrm{y}_{\mathrm{i}}
$$

For a continue line source

$$
\widetilde{\mathrm{E}}=\widetilde{\xi}_{\mathrm{L}} \int_{-\frac{\mathrm{D}}{2}}^{\frac{\mathrm{D}}{2}} \frac{\mathrm{e}^{i(\kappa r-\omega \mathrm{t})}}{\mathrm{r}} \mathrm{dy}
$$

, where $r=r(y)$

For far field diffraction, R >> D

Note that the phase is much more sensitive to the variation in $r(y)$ than the amplitude. Therefore $r_{i} \cong R$

Then

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}}{\mathrm{R}} \int_{-\frac{\mathrm{D}}{2}}^{\frac{\mathrm{D}}{2}} \mathrm{e}^{i(\kappa r-\omega \mathrm{t})} \mathrm{dy}
$$

When r is expanded as a function of $y, r \cong R-y \sin \theta$, where θ is measured from the x axis in the xy plane

MS2041 lecture notes for educational purposes only proof : $r \cong R-y \sin \theta$

Z

$$
\frac{-D}{2}
$$

$$
\begin{aligned}
& r^{2}=R^{2}+y^{2}-2 R y \cos \phi \\
& r^{2}=R^{2}+y^{2}-2 R y \sin \theta \\
& \left(\frac{r}{R}\right)^{2}=\left(\frac{y}{R}\right)^{2}+1-\frac{2 y}{R} \sin \theta \\
& \left(\frac{r}{R}\right)=\left[\left(\frac{y}{R}\right)+1-\frac{2 y}{R} \sin \theta\right]^{\frac{1}{2}}
\end{aligned}
$$

Maclaurin series

$$
\begin{aligned}
& (1+x)^{m}=1+m x+\frac{m(m-1)}{2!} x^{2}+\ldots \ldots . \\
& \frac{r}{R}=1-\frac{y}{R} \sin \theta+\frac{1}{2}\left(\frac{y}{R}\right)^{2}+\left(-\frac{1}{8}\right)\left(\frac{2 y \sin \theta}{R}\right)^{2}+\ldots \\
& r=R-y \cdot \sin \theta+\frac{y^{2} \cos ^{2} \theta}{2 R}+\ldots \ldots \\
& r \cong R-y \cdot \sin \theta
\end{aligned}
$$

MS2041 lecture notes for educational purposes only

Therefore

$$
\widetilde{E}=\frac{\tilde{\xi}_{\mathrm{L}}}{\mathrm{R}} \int_{-\frac{\mathrm{D}}{2}}^{\frac{\mathrm{D}}{2}} \mathrm{e}^{i(\kappa r-\omega \mathrm{t})} \mathrm{dy}=\frac{\tilde{\xi}_{\mathrm{L}}}{\mathrm{R}} \int_{-\frac{\mathrm{D}}{2}}^{\frac{\mathrm{D}}{2}} \mathrm{e}^{i(\kappa(\mathrm{R}-\mathrm{y} \sin \theta)-\omega \mathrm{t})} \mathrm{dy}
$$

if $R \gg y$ (Fraunhofer approximation) $\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \int_{-\frac{\mathrm{D}}{2}}^{\frac{\mathrm{D}}{2}} \mathrm{e}^{-i(\kappa y \sin \theta)} \mathrm{dy}$ $\widetilde{\mathrm{E}}=\left.\frac{\tilde{\xi}_{\mathrm{L}}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\mathrm{e}^{-i(\kappa y \sin \theta)}}{-i \kappa \sin \theta}\right|_{-\frac{\mathrm{D}}{2}} ^{\frac{\mathrm{D}}{2}}$ $\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{-2 i \sin \left(\frac{\kappa \mathrm{D} \sin \theta}{2}\right)}{-i \kappa \sin \theta}$ $\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}} \mathrm{D}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \left(\frac{\kappa \mathrm{D} \sin \theta}{2}\right)}{\frac{\kappa \mathrm{D} \sin \theta}{2}}$

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}} \mathrm{D}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t}) \frac{\sin \gamma}{\gamma}, \text { where } \gamma=\frac{\kappa \mathrm{D} \sin \theta}{2}}
$$

Intensity is proportional to $\widetilde{\mathrm{E}} \widetilde{E}^{*}$

$$
\begin{gathered}
\mathrm{I}=\mathrm{K} \widetilde{\mathrm{E}}^{*} \\
\mathrm{I}=\mathrm{K}\left[\frac{\tilde{\xi}_{\mathrm{L}} \mathrm{D}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \gamma}{\gamma}\right]\left[\frac{\tilde{\xi}_{\mathrm{L}} \mathrm{D}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \gamma}{\gamma}\right]^{*} \\
\mathrm{I}=\mathrm{K}\left(\frac{\xi_{\mathrm{L}} \mathrm{D}}{\mathrm{R}}\right)^{2}\left(\frac{\sin \gamma}{\gamma}\right)^{2} \\
\text {, where } \gamma=\frac{\kappa \mathrm{D} \sin \theta}{2} \text { and }\left(\frac{\xi_{\mathrm{L}} \mathrm{D}}{\mathrm{R}}\right)^{2}=\tilde{\xi}_{\mathrm{L}} \tilde{\xi}_{\mathrm{L}}^{*}\left(\frac{\mathrm{D}}{\mathrm{R}}\right)^{2}
\end{gathered}
$$

$$
\text { When } \theta=0, \frac{\sin \gamma}{\gamma}=\frac{\sin (0)}{0}=1
$$

$$
\begin{gathered}
\mathrm{I}(\theta=0)=\mathrm{K}\left(\frac{\xi_{\mathrm{L}} \mathrm{D}}{\mathrm{R}}\right)^{2} \\
\mathrm{I}(\theta)=\mathrm{K}\left(\frac{\xi_{\mathrm{L}} \mathrm{D}}{\mathrm{R}}\right)^{2}\left(\frac{\sin \gamma}{\gamma}\right)^{2}=\mathrm{I}(\theta=0)\left(\frac{\sin \gamma}{\gamma}\right)^{2} \\
\frac{\mathrm{I}(\theta)}{\mathrm{I}(\theta=0)}=\left(\frac{\sin \gamma}{\gamma}\right)^{2}
\end{gathered}
$$

Discussion

$$
\gamma=\frac{\kappa D \sin \theta}{2}=\frac{2 \pi}{\lambda} \frac{D \sin \theta}{2}=\frac{\pi D \sin \theta}{\lambda}
$$

(a) when $D \gg \lambda$

$$
\begin{aligned}
& \gamma \rightarrow \infty \\
& \frac{\sin \gamma}{\gamma} \rightarrow 0 \\
& \mathrm{I}(\theta=0)=\mathrm{K}\left(\frac{\xi_{\mathrm{L}} \mathrm{D}}{\mathrm{R}}\right)^{2} \\
& \mathrm{I}(\theta \neq 0)=0
\end{aligned}
$$

Therefore, the phase of the line source is equivalent to that of a point source located at the center of the line.

The coherent line source can be envisioned as a single point emitter radiating predominantly in the forward $\theta=0$ direction ;

In other words, its emission resembles a circular wave in xz plane
(b) when $\lambda \gg D$

$$
\begin{gathered}
\gamma \rightarrow 0 \\
\frac{\sin \gamma}{\gamma} \rightarrow 1 \\
\mathrm{I}(\theta=0)=\mathrm{K}\left(\frac{\xi_{\mathrm{L}} \mathrm{D}}{\mathrm{R}}\right)^{2} \\
\mathrm{I}(\theta \neq 0)=\mathrm{K}\left(\frac{\xi_{\mathrm{L}} \mathrm{D}}{\mathrm{R}}\right)^{2}=\mathrm{I}(\theta=0)
\end{gathered}
$$

the line source resembles a point source emitting spherical waves.
(2) consider diffraction from a single slit

The problem is reduced to that of finding the $\widetilde{E}(r, t)$ field in the xz plane from an infinite number of point sources extending across the width of the slit along the z axis.

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \int_{-\frac{\mathrm{b}}{2}}^{\frac{\mathrm{b}}{\mathrm{z}}} \mathrm{e}^{i(\mathrm{kr}-\omega \mathrm{t})} \mathrm{dz}
$$

where $\tilde{\xi}_{\mathrm{L}}^{\prime}$ is the source strength per unite length.

When r is expanded as a function of $z, r=r(z) \cong R-z \sin \theta$, where θ is measured from the x axis in the xz plane

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \int_{-\frac{\mathrm{b}}{2}}^{\frac{\mathrm{b}}{2}} \mathrm{e}^{i(\kappa r-\omega \mathrm{t})} \mathrm{dz}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \int_{-\frac{\mathrm{b}}{2}}^{\frac{\mathrm{b}}{2}} \mathrm{e}^{i(\kappa(\mathrm{R}-\mathrm{z} \sin \theta)-\omega \mathrm{t})} \mathrm{dz}
$$

if $\mathrm{R} \gg \mathrm{z}$ (Fraunhofer approximation)

$$
\begin{aligned}
\widetilde{\mathrm{E}} & =\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \int_{-\frac{\mathrm{b}}{2}}^{\frac{\mathrm{b}}{2}} \mathrm{e}^{-i(\kappa z \sin \theta)} \mathrm{dz} \\
\widetilde{\mathrm{E}} & =\left.\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{kR}-\omega \mathrm{t})} \frac{\mathrm{e}^{-i(\kappa z \sin \theta)}}{-i \kappa \sin \theta}\right|_{-\frac{\mathrm{b}}{2}} ^{\frac{\mathrm{b}}{2}}
\end{aligned}
$$

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{-2 i \sin \left(\frac{\kappa \mathrm{~s} \sin \theta}{2}\right)}{-i \kappa \sin \theta}
$$

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \left(\frac{\mathrm{kb} \sin \theta}{2}\right)}{\frac{\mathrm{kb} \sin \theta}{2}}
$$

$$
\widetilde{E}=\frac{\tilde{\xi}_{L}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \text {, where } \beta=\frac{\kappa b \sin \theta}{2}
$$

Intensity is proportional to $\widetilde{\mathrm{E}} \widetilde{\mathrm{E}}^{*}$

$$
\mathrm{I}=\mathrm{K}^{\prime} \widetilde{\mathrm{E}} \widetilde{E}^{*}
$$

$$
\mathrm{I}=\mathrm{K}^{\prime}\left[\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta}\right]\left[\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta}\right]^{*}
$$

$$
I=K^{\prime}\left(\frac{\xi_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}}\right)^{2}\left(\frac{\sin \beta}{\beta}\right)^{2}
$$

, where $\beta=\frac{\kappa b \sin \theta}{2}$ and $\left(\frac{\xi_{L}^{\prime}}{R}\right)^{2}=\tilde{\xi}_{L}^{\prime} \tilde{\xi}_{L}^{*}\left(\frac{b}{R}\right)^{2}$

MS2041 lecture notes for educational purposes only
When $\theta=0, \frac{\sin \beta}{\beta}=\frac{\sin (0)}{0}=1$

$$
\begin{gathered}
\mathrm{I}(\theta=0)=\mathrm{K}^{\prime}\left(\frac{\xi_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}}\right)^{2} \\
\mathrm{I}(\theta)=\mathrm{K}^{\prime}\left(\frac{\xi_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}}\right)^{2}\left(\frac{\sin \beta}{\beta}\right)^{2}=\mathrm{I}(\theta=0)\left(\frac{\sin \beta}{\beta}\right)^{2} \\
\frac{\mathrm{I}(\theta)}{\mathrm{I}(\theta=0)}=\left(\frac{\sin \beta}{\beta}\right)^{2}
\end{gathered}
$$

, where

$$
\beta=\frac{\kappa b \sin \theta}{2}=\frac{2 \pi b \sin \theta}{\lambda} \frac{\pi b \sin \theta}{2}
$$

The Fraunhofer diffraction pattern from a single slit

$$
\beta:=-5 \pi,-4.99 \pi . .5 \pi
$$

$$
\mathrm{f}(\beta):=\left(\frac{\sin (\beta)}{\beta}\right)^{2}
$$

$$
g(\beta):=\left(\frac{\sin (\beta)}{\beta}\right)
$$

The intensity pattern is consistent with the diffraction pattern from a single slit in Fig. 10.20 in Optics" Eugene Hecht, $2^{\text {nd }}$ edition.

Discussion

first minimum occurs at $\beta=\pi$

$$
\beta=\frac{\pi b \sin \theta}{\lambda}
$$

So,

$$
\frac{\sin \theta}{\lambda}=\frac{1}{b}
$$

second minimum occurs at $\beta=2 \pi$

$$
\beta=\frac{\pi b \sin \theta}{\lambda}
$$

So,

$$
\frac{\sin \theta}{\lambda}=\frac{2}{b}
$$

Similarly, the n minimum occurs at

$$
\frac{\sin \theta}{\lambda}=\frac{n}{b}
$$

Moreover,
the peak width of $\mathrm{I}(\theta)$ within first minimum broadens when b shrinks.

MS2041 lecture notes for educational purposes only
(3) diffraction from many slits

The result from a single slit

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \int_{-\frac{\mathrm{b}}{2}}^{\frac{\mathrm{b}}{2}} \mathrm{e}^{i(\kappa r-\omega \mathrm{t})} \mathrm{dz}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \int_{-\frac{\mathrm{b}}{2}}^{\frac{\mathrm{b}}{2}} \mathrm{e}^{i(\kappa(\mathrm{R}-\mathrm{z} \sin \theta)-\omega \mathrm{t})} \mathrm{dz}
$$

if $\mathrm{R} \gg \mathrm{z}$ (Fraunhofer approximation)

$$
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \int_{-\frac{\mathrm{b}}{2}}^{\frac{\mathrm{b}}{2}} \mathrm{e}^{-i(\mathrm{kz} \sin \theta)} \mathrm{dz}
$$

MS2041 lecture notes for educational purposes only

$$
\begin{aligned}
& \qquad \begin{aligned}
& \widetilde{\mathrm{E}}= \frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \left(\frac{\kappa b \sin \theta}{2}\right)}{\frac{\kappa b \sin \theta}{2}} \\
& \widetilde{\mathrm{E}}=\frac{\widetilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t}) \frac{\sin \beta}{\beta}} \\
& \text { Where } \beta=\frac{\kappa b \sin \theta}{2}
\end{aligned}
\end{aligned}
$$

Based on the superposition principle, the total field strength from N slits is

$$
\begin{aligned}
& \widetilde{E}=\frac{\tilde{\xi}_{L}^{\prime}}{R} \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{i(\kappa r-\omega t)} d z+\frac{\tilde{\xi}_{L}^{\prime}}{R} \int_{a-\frac{b}{2}}^{a+\frac{b}{2}} e^{i(\kappa r-\omega t)} d z+\frac{\tilde{\xi}_{L}^{\prime}}{R} \int_{2 a-\frac{b}{2}}^{2 a+\frac{b}{2}} e^{i(\kappa r-\omega t)} d z \\
& +\cdots+\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \int^{(\mathrm{N}-1) \mathrm{a}+\frac{\mathrm{b}}{2}} \mathrm{e}^{i(\kappa r-\omega \mathrm{t})} \mathrm{dz} \\
& (N-1) a-\frac{b}{2} \\
& \widetilde{E}=\frac{\tilde{\xi}_{L}^{\prime}}{R} \int_{-\frac{b}{2}}^{\frac{b}{2}} e^{i(\kappa(R-z \sin \theta)-\omega t)} d z++\frac{\tilde{\xi}_{L}^{\prime}}{R} \int_{a-\frac{b}{2}}^{a+\frac{b}{2}} e^{i(\kappa(R-z \sin \theta)-\omega t)} d z \\
& +\frac{\tilde{\xi}_{L}^{\prime}}{R} \int_{2 a-\frac{b}{2}}^{2 a+\frac{b}{2}} e^{i(\kappa(R-z \sin \theta)-\omega t)} d z+\cdot \cdot \\
& (N-1) a+\frac{b}{2} \\
& \cdot+\frac{\tilde{\xi}_{\mathrm{L}}^{\prime}}{\mathrm{R}} \int \mathrm{e}^{i(\kappa(\mathrm{R}-\mathrm{z} \sin \theta)-\omega \mathrm{t})} \mathrm{dz} \\
& \text { (} \mathrm{N}-1 \text {) } \mathrm{a}-\frac{\mathrm{b}}{2} \\
& \widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta}\left[1+\mathrm{e}^{i(-\kappa а \sin \theta)}+\mathrm{e}^{i(-2 \kappa а \sin \theta)}+\cdot \cdot\right. \\
& \left.\cdot+\mathrm{e}^{i(-\kappa(\mathrm{N}-1) \mathrm{a} \sin \theta)}\right] \\
& \widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta}\left[1+\mathrm{e}^{i\left(2 \alpha^{\prime}\right)}+\mathrm{e}^{i\left(4 \alpha^{\prime}\right)}+\cdots+\mathrm{e}^{i\left(2(\mathrm{~N}-1) \alpha^{\prime}\right)}\right] \\
& \text {, where } \alpha^{\prime}=-\frac{\kappa \operatorname{san} \theta}{2}
\end{aligned}
$$

MS2041 lecture notes for educational purposes only

$$
\begin{aligned}
& \widetilde{E}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \sum_{\mathrm{j}=0}^{\mathrm{N}-1} \mathrm{e}^{i\left(2 \mathrm{j} \alpha^{\prime}\right)} \\
& \widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \sum_{\mathrm{j}=0}^{\mathrm{N}-1}\left(\mathrm{e}^{i 2 \alpha^{\prime}}\right)^{\mathrm{j}} \\
& \widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \sum_{\mathrm{j}=0}^{\mathrm{N}-1}\left(\mathrm{e}^{i 2 \alpha^{\prime}}\right)^{\mathrm{j}}
\end{aligned}
$$

Here we use the mathematical equation

$$
\begin{gathered}
1+\mathrm{e}^{i \delta}+\left(\mathrm{e}^{i \delta}\right)^{2}+\left(\mathrm{e}^{i \delta}\right)^{3}+\cdots+\left(\mathrm{e}^{i \delta}\right)^{\mathrm{N}-1}=\frac{\mathrm{e}^{i \mathrm{~N} \delta}-1}{\mathrm{e}^{i \delta}-1} \\
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \frac{\mathrm{e}^{i 2 \alpha^{\prime} \mathrm{N}}-1}{\mathrm{e}^{i 2 \alpha^{\prime}}-1} \\
\widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{KR}-\omega \mathrm{t})} \frac{\sin \beta}{\beta}\left(\frac{\mathrm{e}^{i \alpha^{\prime} \mathrm{N}}}{\mathrm{e}^{i \alpha^{\prime}}}\right)\left(\frac{\mathrm{e}^{i \alpha^{\prime} \mathrm{N}}-\mathrm{e}^{-i \alpha^{\prime} \mathrm{N}}}{\mathrm{e}^{i \alpha^{\prime}}-\mathrm{e}^{-i \alpha^{\prime}}}\right)
\end{gathered}
$$

$$
\begin{aligned}
& \widetilde{\mathrm{E}} \\
&=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{R}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \mathrm{e}^{i \alpha^{\prime}(\mathrm{N}-1)}\left(\frac{\left(\cos \left(\alpha^{\prime} \mathrm{N}\right)+i \sin \left(\alpha^{\prime} \mathrm{N}\right)\right)-\left(\cos \left(-\alpha^{\prime} \mathrm{N}\right)+i \sin \left(-\alpha^{\prime} \mathrm{N}\right)\right)}{\left(\cos \left(\alpha^{\prime}\right)+i \sin \left(\alpha^{\prime}\right)\right)-\left(\cos \left(-\alpha^{\prime}\right)+i \sin \left(-\alpha^{\prime}\right)\right)}\right) \\
& \widetilde{\mathrm{E}}=\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{KR}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \mathrm{e}^{i \alpha^{\prime}(\mathrm{N}-1)}\left(\frac{2 i \sin \left(\alpha^{\prime} \mathrm{N}\right)}{2 i \sin \left(\alpha^{\prime}\right)}\right) \\
& \widetilde{\mathrm{E}}=\frac{\widetilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{KR}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \mathrm{e}^{-i \alpha(\mathrm{~N}-1)}\left(\frac{\sin (-\alpha \mathrm{N})}{\sin (-\alpha)}\right)
\end{aligned}
$$

Set $\alpha=-\alpha^{\prime}=\frac{\kappa a \sin \theta}{2}$

$$
\begin{aligned}
\widetilde{\mathrm{E}} & =\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \mathrm{e}^{i(\kappa \mathrm{KR}-\omega \mathrm{t})} \frac{\sin \beta}{\beta} \mathrm{e}^{-i \alpha(\mathrm{~N}-1)}\left(\frac{\sin (\mathrm{N} \alpha)}{\sin \alpha}\right) \\
\widetilde{\mathrm{E}} & =\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \frac{\sin \beta}{\beta}\left(\frac{\sin (\mathrm{~N} \alpha)}{\sin \alpha}\right) \mathrm{e}^{i[\kappa \mathrm{k}-\omega \mathrm{t}-(\mathrm{N}-1) \alpha]}
\end{aligned}
$$

Intensity is proportional to $\widetilde{\mathrm{E}} \widetilde{E}^{*}$

$$
\mathrm{I}=\mathrm{K} \widetilde{\mathrm{E}} \widetilde{\mathrm{E}}^{*}
$$

MS2041 lecture notes for educational purposes only
I
$=\mathrm{K}\left[\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \frac{\sin \beta}{\beta}\left(\frac{\sin (\mathrm{N} \alpha)}{\sin \alpha}\right) \mathrm{e}^{i[\kappa \mathrm{R}-\omega \mathrm{t}-(\mathrm{N}-1) \alpha]}\right]\left[\frac{\tilde{\xi}_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}} \frac{\sin \beta}{\beta}\left(\frac{\sin (\mathrm{N} \alpha)}{\sin \alpha}\right) \mathrm{e}^{i[\kappa \mathrm{R}-\omega \mathrm{t}-(\mathrm{N}-1) \alpha]}\right]^{*}$

$$
I=K\left(\frac{\xi_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}}\right)^{2}\left(\frac{\sin \beta}{\beta}\right)^{2}\left(\frac{\sin (\mathrm{~N} \alpha)}{\sin \alpha}\right)^{2}
$$

, where
$\alpha=\frac{\kappa \sin \theta}{2}, \beta=\frac{\kappa b \sin \theta}{2}$ and $\left(\frac{\xi_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}}\right)^{2}=\tilde{\xi}_{\mathrm{L}}^{\prime} \tilde{\xi}_{\mathrm{L}}^{\prime *}\left(\frac{\mathrm{~b}}{\mathrm{R}}\right)^{2}$

When $\theta=0, \alpha=\beta=0$, then

$$
\begin{aligned}
& \frac{\sin \beta}{\beta}=\frac{\sin (\mathrm{N} \alpha)}{\sin \alpha}=\frac{\sin (0)}{0}= 1 \\
& \mathrm{I}(\theta=0)=\mathrm{K}\left(\frac{\xi_{\mathrm{L}}^{\prime} \mathrm{b}}{\mathrm{R}}\right)^{2} \\
& \mathrm{I}(\theta)= \mathrm{I}(\theta=0)\left(\frac{\sin \beta}{\beta}\right)^{2}\left(\frac{\sin (\mathrm{~N} \alpha)}{\sin \alpha}\right)^{2} \\
& \frac{\mathrm{I}(\theta)}{\mathrm{I}(\theta=0)}=\left(\frac{\sin \beta}{\beta}\right)^{2}\left(\frac{\sin (\mathrm{~N} \alpha)}{\sin \alpha}\right)^{2}
\end{aligned}
$$

, where

$$
\begin{aligned}
& \alpha=\frac{\kappa a \sin \theta}{2}=\frac{\pi a \sin \theta}{\lambda} \\
& \beta=\frac{\kappa b \sin \theta}{2}=\frac{\pi b \sin \theta}{\lambda}
\end{aligned}
$$

Remarks :
(1)For the multiple slit pattern $a>b$
(2)For the diffraction in a crystal atomic spacing $=\mathrm{a}$ atomic size $=b$

$$
a \gg b
$$

MS2041 lecture notes for educational purposes only

Discussion

$$
\begin{aligned}
\frac{\mathrm{I}(\theta)}{\mathrm{I}(\theta=0)} & =\left(\frac{\sin \beta}{\beta}\right)^{2}\left(\frac{\sin (\mathrm{~N} \alpha)}{\sin \alpha}\right)^{2} \\
\alpha & =\frac{\pi \mathrm{a} \sin \theta}{\lambda} \\
\beta & =\frac{\pi \mathrm{b} \sin \theta}{\lambda}
\end{aligned}
$$

$\left(\frac{\sin \beta}{\beta}\right)^{2}$ is a function with its first minimum at $\beta=\pi$

$$
\frac{\sin \theta}{\lambda}=\frac{1}{b}
$$

The second minimum occurs at $\beta=2 \pi$

$$
\frac{\sin \theta}{\lambda}=\frac{2}{b}
$$

The functoin $(\sin \beta / \beta)^{2}$

$$
\beta:=-5 \pi,-4.99 \pi . .5 \pi
$$

$$
\mathrm{f}(\beta):=\left(\frac{\sin (\beta)}{\beta}\right)^{2}
$$

MS2041 lecture notes for educational purposes only
$\left(\frac{\sin \beta}{\beta}\right)^{2}$ is modulated by $\left(\frac{\sin (\mathrm{N} \alpha)}{\sin \alpha}\right)^{2}$ that is a periodic function with its periodic maximum at $\alpha=n \pi$

$$
\frac{\sin \theta}{\lambda}=\frac{n}{a}
$$

where n is an integer.

This may explain the diffraction patterns from multiple slits (Fig. 10.20) in "Optics" Eugene Hecht, $2^{\text {nd }}$ edition.

MS2041 lecture notes for educational purposes only The plots of $\left(\frac{\sin (\mathrm{N} \alpha)}{\sin \alpha}\right)^{2}$ are shown below.

$$
\begin{aligned}
& \alpha:=-4 \pi,-3.99 \pi . .4 \pi \\
& g(\alpha, N):=\left(\frac{\sin (N \cdot \alpha)}{\sin (\alpha)}\right)^{2}
\end{aligned}
$$

$\underline{\underline{g}(\alpha, 2)}$

MS2041 lecture notes for educational purposes only

MS2041 lecture notes for educational purposes only

MS2041 lecture notes for educational purposes only
The plots of $\left(\frac{\sin \beta}{\beta}\right)^{2}$ modulated by $\left(\frac{\sin (\mathrm{N} \alpha)}{\sin \alpha}\right)^{2}$ are shown below.
The Fraunhofer diffraction from N slits
The slit spacing a is Mtimes the slit width b

$$
\alpha:=-8 \pi,-7.99 \pi . .8 \pi
$$

$$
\mathrm{f}(\alpha, \mathrm{~N}, \mathrm{M}):=\left(\frac{\sin \left(\frac{\alpha}{\mathrm{M}}\right)}{\frac{\alpha}{\mathrm{M}}}\right)^{2} \mathrm{~N}^{2} \quad \mathrm{~g}(\alpha, \mathrm{~N}, \mathrm{M}):=\left[\left(\frac{\sin \left(\frac{\alpha}{\mathrm{M}}\right)}{\frac{\alpha}{\mathrm{M}}}\right)^{2}\right]\left(\frac{\sin (\mathrm{N} \cdot \alpha)}{\sin (\alpha)}\right)^{2}
$$

MS2041 lecture notes for educational purposes only

MS2041 lecture notes for educational purposes only
Note that a is the spacing between adjacent slit, which is equivalent to a one-dimensional periodic structure

The periodic maximum occurs at $\frac{\sin \theta}{\lambda}=\frac{n}{a}$.

Remarks:
(1) There exists a one-dimensional periodic structure in the space of $\frac{\sin \theta}{\lambda}$
We will illustrate that the $\frac{\sin \theta}{\lambda}$ space is the momentum κ space in the next chapters.
(2) $\frac{\sin \theta}{\lambda}=\frac{n}{a}$ is similar to Bragg' s law

$$
\begin{gathered}
2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda \\
\frac{\sin \theta}{\lambda}=\frac{\mathrm{n}}{2 \mathrm{~d}}
\end{gathered}
$$

