III Crystal symmetry

3-3 Point group and space group

A. Point group

1. Symbols of the 32 three dimensional point groups

General symbol	Triclinic	Monoclinic $1^{\text {st }}$ setting	Tetragonal	Trigonal	Hexagonal	Cubic
X	1	2	4	3	6	23
${ }^{\text {even }}$		$\overline{2} \equiv \mathrm{~m}$	$\overline{4}$		$\bar{\sigma}$	
X + centre Include \bar{X} odd order	$\overline{1}$	2/m	4/m	$\overline{3}$	6/m	$\begin{aligned} & \mathrm{m} 3 \\ & \equiv \\ & \overline{2} / \mathrm{m} \overline{3} \end{aligned}$
	Monoclinci $2^{\text {nd }}$ setting	Orthorhombic				
X2	$2 \equiv 12$	222	422	32	622	432
Xm	$\mathrm{m} \equiv 1 \mathrm{~m}$	mm2	4 mm	3 m	6 mm	
$\overline{\mathrm{x}} 2$ or $\overline{\mathrm{X}} \mathrm{m}$ even			$\overline{4} 2 \mathrm{~m}$		$\overline{6} \mathrm{~m} 2$	$\overline{4} 3 \mathrm{~m}$
X2 + centre Xm + centre Include X̄m odd order	2/m	$\begin{aligned} & \mathrm{mmm} \\ & \equiv \\ & 2 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} \end{aligned}$	$\begin{aligned} & \text { 4/mmm } \\ & \equiv \\ & 4 / \mathrm{m} 2 / \mathrm{m} \\ & 2 / \mathrm{m} \end{aligned}$	$\begin{aligned} & \hline \overline{3} \mathrm{~m} \\ & \equiv \\ & \overline{3} 2 / \mathrm{m} \end{aligned}$	$\begin{aligned} & 6 / \mathrm{mmm} \\ & \equiv \\ & 6 / \mathrm{m} 2 / \mathrm{m} \\ & 2 / \mathrm{m} \end{aligned}$	$\begin{aligned} & \mathrm{m} 3 \mathrm{~m} \\ & \equiv \\ & \mathrm{E} / \mathrm{m} \overline{\mathrm{~B}} \mathrm{2} / \mathrm{m} \end{aligned}$

Rotation axis X
Rotation-Inversion axis $\overline{\mathrm{X}}$
Ratation axis with mirror plane normal to it X / m
Rotation axis with diad axis (axes) normal to it X2
Rotation axis with mirror plane (planes) parallel to it Xm
Rotation-inversion axis with diad axis (axes) normal to it $\overline{\mathrm{X}} 2$
Rotation-inversion axis with mirror plane (planes) parallel to it $\overline{\mathrm{X}} \mathrm{m}$
Rotation axis with mirror plane (planes) normal to it and mirror plane (planes) parallel to it X / mm

MS2041 lecture notes for educational purpose only

2. Order of positions in the symbols of the three dimensional point groups as applied to lattices

System and point group	Position in point group symbol			Stereographic representation
	Primary	Secondary	Tertiary	
Triclinic 1, $\overline{1}$	Only one symbol which denotes all directions in the crystal.			
Monoclinic $2, \mathrm{~m}, 2 / \mathrm{m}$	The symbol gives the nature of the unique diad axis (rotation and/or inversion). $1^{\text {st }}$ setting: z-axis unique $2^{\text {nd }}$ setting: y-axis unique			$1^{\text {st }}$ setting
Orthorhombic 222, mm2, mmm	Diad (rotation and/or inversion) along x -axis	Diad (rotation and/or inversion) along y-axis	Diad (rotation and/or inversion) along z -axis	
Tetragonal 4, $\overline{4}, 4 / m, 422$, $4 \mathrm{~mm}, \overline{4} 2 \mathrm{~m}$, $4 / \mathrm{mmm}$	Tetrad (rotation and/or inversion) along z -axis	Diad (rotation and/or inversion) along x - and y-axes	Diad (rotation and/or inversion) along [110] and [110] axis	
Trigonal and Hexagonal $3, \overline{3}, 32,3 \mathrm{~m}$, $\overline{3} \mathrm{~m}, 6, \overline{6}, 6 / \mathrm{m}$, 622, 6mm, $\overline{6} \mathrm{~m} 2,6 / \mathrm{mmm}$	Triad or hexad (rotation and/or inversion) along z -axis	Diad (rotation and/or inversion) along $x-, y$ and u-axes	Diad (rotation and/or inversion) normal to x-, y-, u-axes in the plane (0001)	
Cubic 23, m3, $432, \overline{4} 3 \mathrm{~m}$, m3m	Diads or tetrad (rotation and/or inversion) along <100> axes	Triads (rotation and/or inversion) along <111> axes	Diads (rotation and/or inversion) along <110> axes	

MS2041 lecture notes for educational purpose only
The 32 three dimensional point groups
Stereograms of poles of equivalent directions and symmetry elements of the 32 point groups (z-axis is normal to the paper in all drawings)

| General |
| :--- | :--- | :--- | :--- | :--- |
| Symbol | Triclinic

MS2041 lecture notes for educational purpose only

	Trigonal	Hexagonal	Cubic
x	3	6	23
$\begin{array}{r} \overline{\mathrm{X}} \\ \text { even } \end{array}$			
X + centre $\overline{\mathrm{X}}$ odd	$\overline{3}$		$\mathrm{m} 3=2 / \mathrm{m} \overline{3}$
X2	32	622	432
Xm	3 m		
$\overline{\mathrm{X}} 2$ or X̄m even			$\overline{4} 3 \mathrm{~m}$
X2 + centre Xm +centre X m odd	$\overline{3} \mathrm{~m}=\overline{3} 2 / \mathrm{m}$		$\mathrm{m} 3 \mathrm{~m}=4 / \mathrm{m} \quad \overline{3} \quad 2 / \mathrm{m}$

MS2041 lecture notes for educational purpose only
Examples of point group operation
\#1 Point group 222

(1) At a general position $[x y z]$, the symmetry is 1 Multiplicity $=4$

(2) At a special position [100], the symmetry is 2 .

$$
\text { Multiplicity = } 2
$$

At a special position [010], the symmetry is 2 .
Multiplicity $=2$

At a special position [001], the symmetry is 2.
Multiplicity $=2$

MS2041 lecture notes for educational purpose only

\#2 Point group 4

Point group 4

(1) At a general position [xyz], the symmetry is 1 Multiplicity $=4$

[xyz]
$[y \bar{x} z]$
[xyz]
(2) At a special position [001], the symmetry is 4.

Multiplicity = 1

\#3 Point group $\overline{4}$

Point group $\overline{4}$

(1) At a general position $[x y z]$, the symmetry is 1

Multiplicity $=4$

[xyz]

[xyz]

[xyz]
[$\overline{\mathrm{X}} \overline{\mathrm{y}} \mathrm{z}$]

[xyz]
(2) At a special position [001], the symmetry is $\overline{4}$.

Multiplicity = 1

3. Transformation of vector components

Original vector is $\vec{P}=\left[p_{1}, p_{2}, p_{3}\right]=[x, y, z]$
i.e.

$$
\overrightarrow{\mathrm{P}}=\mathrm{x} \widehat{\mathrm{x}}+\mathrm{y} \widehat{\mathrm{y}}+\mathrm{z} \widehat{\mathrm{z}}
$$

When symmetry operation transform the original axes $(\hat{x}, \hat{y}, \widehat{z})$ to the new axes ($\widehat{x^{\prime}}, \widehat{y^{\prime}}, \widehat{z^{\prime}}$)
New vector after transformation of axes becomes $\overrightarrow{\mathrm{P}^{\prime}}=\left[\mathrm{p}_{1,}^{\prime} \mathrm{p}^{\prime}{ }_{2,} \mathrm{p}_{3}^{\prime}\right]=$ [u, v, w]
i.e.

$$
\overrightarrow{\mathrm{P}^{\prime}}=\widehat{u \mathrm{x}^{\prime}}+\hat{v y^{\prime}}+\mathrm{w} \widehat{\mathrm{z}^{\prime}}
$$

The angular relations between the axes may be specified by drawing up a table of direction cosines.

		Old axes		
$\widehat{\widehat{x}}$		\widehat{y}	\widehat{z}	
New	$\widehat{x^{\prime}}$	$a_{11}=\cos \widehat{x^{\prime} \hat{x}}$	$a_{12}=\cos \widehat{\widehat{\prime^{\prime}} \hat{y}}$	$a_{13}=\cos \widehat{\widehat{\prime} \hat{z}}$
	$\widehat{y^{\prime}}$	$a_{21}=\cos \widehat{y^{\prime} \hat{x}}$	$a_{22}=\operatorname{cosy} \widehat{y^{\prime} \hat{y}}$	$a_{23}=\operatorname{cosy^{\prime }\hat {z}}$
	$\widehat{z^{\prime}}$	$a_{31}=\cos \widehat{z^{\prime} \hat{x}}$	$a_{32}=\operatorname{cosz^{\prime }\hat {y}}$	$a_{33}=\operatorname{cosz^{\prime }\hat {z}}$

Then

$$
\mathrm{u}=\mathrm{x} * \cos \widehat{\mathrm{x}^{\prime} \hat{\mathrm{x}}}+\mathrm{y} * \cos \widehat{\widehat{x^{\prime} \hat{y}}}+\mathrm{z} * \cos \widehat{\widehat{x^{\prime}} \hat{\mathrm{z}}}
$$

i.e.

$$
\mathrm{p}_{1}^{\prime}=\mathrm{a}_{11} * \mathrm{p}_{1}+\mathrm{a}_{12} * \mathrm{p}_{2}+\mathrm{a}_{13} * \mathrm{p}_{3}
$$

In a dummy notation

$$
\mathrm{p}_{1}^{\prime}=\mathrm{a}_{1 \mathrm{j}} * \mathrm{p}_{\mathrm{j}}
$$

Similarly

$$
\begin{aligned}
& \mathrm{p}^{\prime}{ }_{2}=\mathrm{a}_{2 \mathrm{j}} * \mathrm{p}_{\mathrm{j}} \\
& \mathrm{p}^{\prime}{ }_{3}=\mathrm{a}_{3 \mathrm{j}} * \mathrm{p}_{\mathrm{j}}
\end{aligned}
$$

MS2041 lecture notes for educational purpose only
i.e.

$$
\mathrm{p}_{\mathrm{i}}^{\prime}=\mathrm{a}_{\mathrm{ij}} * \mathrm{p}_{\mathrm{j}}
$$

Moreover, by repeating the argument for the reverse transformation and we have

$$
\begin{gathered}
\mathrm{x}=\mathrm{u} * \cos \widehat{\mathrm{x}^{\prime} \hat{\mathrm{x}}}+\mathrm{v} * \cos \widehat{\mathrm{y}^{\prime} \hat{\mathrm{x}}}+\mathrm{w} * \cos \widehat{\mathrm{z}^{\prime} \hat{\mathrm{x}}} \\
\mathrm{p}_{1}=\mathrm{a}_{\mathrm{j} 1} * \mathrm{p}^{\prime}{ }_{\mathrm{j}}
\end{gathered}
$$

Similarly,

$$
\begin{aligned}
& \mathrm{p}_{2}=\mathrm{a}_{\mathrm{i} 2} * \mathrm{p}_{\mathrm{j}}^{\prime} \\
& \mathrm{p}_{3}=\mathrm{a}_{\mathrm{j} 3} * \mathrm{p}^{\prime}{ }_{\mathrm{j}}
\end{aligned}
$$

i.e. "old" in terms of "new"

$$
\mathrm{p}_{\mathrm{i}}=\mathrm{a}_{\mathrm{ji}} * \mathrm{p}_{\mathrm{j}}^{\prime}
$$

For example:
\#1 Point group 4

The direction cosines for the first operation is

		Old axes		
		\widehat{x}	\widehat{y}	\widehat{z}
New	$\widehat{x}=-\hat{y}$	$\mathrm{a}_{11}=0$	$\mathrm{a}_{12}=-1$	$\mathrm{a}_{13}=0$
	$\widehat{y^{\prime}}=\hat{\mathrm{x}}$	$\mathrm{a}_{21}=1$	$\mathrm{a}_{22}=0$	$\mathrm{a}_{23}=0$
	$\widehat{\mathrm{z}}=\widehat{\mathrm{z}}$	$\mathrm{a}_{31}=0$	$\mathrm{a}_{32}=0$	$\mathrm{a}_{33}=1$

After symmetry operation, the new position is $[x y z]$ in new axes We can express it in old axes by

$$
\begin{gathered}
\mathrm{p}_{\mathrm{i}}=\mathrm{a}_{\mathrm{ji}} * \mathrm{p}_{\mathrm{j}}^{\prime}=\mathrm{p}_{\mathrm{j}}^{\prime} * \mathrm{a}_{\mathrm{ji}} \\
{\left[\begin{array}{l}
\mathrm{p}_{1} \\
\mathrm{p}_{2} \\
\mathrm{p}_{3}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{x} \\
\mathrm{y} \\
\mathrm{z}
\end{array}\right]\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{l}
\mathrm{y} \\
\overline{\mathrm{x}} \\
\mathrm{z}
\end{array}\right]}
\end{gathered}
$$

Therefore, the new position is $[y \bar{x} z]$ in old axes.

MS2041 lecture notes for educational purpose only

B. Space group

1. The 230 crystallographic 3D space groups

You may find a list of the 230 space groups from Wikipedia, the free encyclopedia.

Symmetry elements in space group

(1) Point group
(2) Translation symmetry + point group

Translational symmetry operations

A Symbol of symmetry planes

Symbol	Symmetry plane	Graphic symbol		Nature of glide translation
		Normal to plane of projection	Parallel to plane of projection	
m	Reflection plane (mirror)	—	7 -	None
a, b	Axial glide plane	---------	767	a/2 along [100] or 2/b along [010]; or along <100>
c		None	c/2 along z-axis; or $(a+b+c) / 2$ along [111] on rhombohedral axes
n	Diagonal glide plane	---------	${ }^{1}$	$\begin{aligned} & (a+b) / 2 \text { or }(b+c) / 2 \text { or } \\ & (c+a) / 2 ; \\ & \text { Or }(a+b+c) / 2 \\ & \text { (tetragonal and cubic) } \end{aligned}$
d	"Diamond" glide plane	- - -	77^{4}	$\begin{aligned} & (\mathrm{a} \pm \mathrm{b}) / 4 \text { or }(\mathrm{b} \pm \mathrm{c}) / 4 \text { or }(\mathrm{c} \\ & \pm \mathrm{a}) / 4 \\ & \text { Or }(\mathrm{a} \pm \mathrm{b} \pm \mathrm{c}) / 4 \\ & \text { (tetragonal and cubic) } \\ & \text { See Note \#1 } \end{aligned}$

MS2041 lecture notes for educational purpose only
Note \#1: In the "diamond" glide plane the glide translation is half of the resultant of the two possible axial glide translations. The arrow in the first diagram show the direction of the horizontal component if the translation when the z-component is positive. In the second diagram the arrow shows the actual direction of the glide translation; there is always another diamond-glide reflection plane parallel to the first with a height difference of $1 / 4$ and the arrow pointing along the other diagonal of the cell face.

Glide planes

---- translation plus reflection across the glide plane

* axial glide plane (glide plane along axis)
---- translation by half lattice repeat plus reflection
---- three types of axial glide plane
i. a glide, b glide, c glide (a, b, c)
$\frac{1}{2}$ along line in plane $\equiv\left(\frac{1}{2}\right.$ along line parallel to projection plane)
e.g. b glide

--- graphic symbol for the axial glide plane along y axis
c.f. \quad mirror (m)

- graphic symbol for mirror

MS2041 lecture notes for educational purpose only
*If the axial glide plane is $\frac{1}{2}$ normal to projection plane, the graphic symbol change to
($\frac{1}{2}$
\bigcirc^{+}

c glide
glide plane $\perp \hat{z}$ axis

MS2041 lecture notes for educational purpose only
＊If b glide plane is $\perp \hat{z}$ axis，

${ }^{*} \mathrm{c}$ glide $\frac{c}{2}$ along z axis
or

$$
\frac{a+b+c}{2} \text { along [111] on rhombohedral axis }
$$

ii．Diagonal glide（n）
$\frac{a+b}{2}, \frac{b+c}{2}, \frac{a+c}{2}$ or $\frac{a+b+c}{2}$（tetragonal，cubic system）
If glide plane is perpendicular to the drawing plane
（xy plane），the graphic symbol is

If glide plane is parallel to the drawing plane，the graphic symbol is

iii．Diamond glide（d）
$\frac{a+b}{4}$ or $\frac{a+b+c}{4}$（tetragonal，cubic system）
－ー・ザ・ー・ー・ー
ー・ーー・辛・ー・

MS2041 lecture notes for educational purpose only
B Symbols of symmetry axes

symbo I	Symmetr y axis	Graphi c symbol	Natur of right- handed screw translatio n along the axis	$\begin{aligned} & \text { symbo } \\ & \text { । } \end{aligned}$	Symmetr y axis	Graphi c symbol	Natur of righthanded screw translatio n along the axis
1	Rotation monad	none	none	4	Rotation tetrad	\rangle	none
$\overline{1}$	Inversion monad	-	none	41	Screw tetrads	λ	c/4
2	Rotation diad	Normal to paper	none	42			2c/4
				43			3c/4
		\longrightarrow Parallel to paper		$\overline{4}$	Inversion tetrad	-	none
21	Screw diad	6 Normal to paper	c/2 either a/2 or c/2	6	Rotation hexad	\bullet	none
				61	Screw hexads		c/6
		Parallel to paper		62			2c/6
3	Roation triad	-	none	63		6	3c/6
31	Screw triad	λ	c/3	64			4c/6
32		4	2c/3	65			5c/6
$\overline{3}$	Inversion triad	Δ	none	$\overline{6}$	Inversion hexad	θ	none

MS2041 lecture notes for educational purpose only
i All possible screw operations
*screw axis --- translation τ plus rotation

screw R_{n} along c axis

$=$ counterclockwise rotation $(360 / R)^{\circ}+$ translation (n/R) \bar{c}

3

4

63

6

4_{1}

61

64

62

32

3_{1}

65

MS2041 lecture notes for educational purpose only

Space group: 230
(1) Symmorphic space group is defined as a space group that may be specified entirely by symmetry operation acting at a common point (the operations need not involvet) as well as the unit cell translation

* 73 symmorphic space groups

Crystal system	Bravais lattice	Space group
Triclinic	P	$\mathrm{P} 1, \mathrm{P} \overline{1}$
Monoclinic	P	$\mathrm{P} 2, \mathrm{Pm}, \mathrm{P} 2 / \mathrm{m}$
	B or A	$\mathrm{B} 2, \mathrm{Bm} \mathrm{B} 2 / \mathrm{m} \quad\left(1^{\text {st }}\right.$ setting $)$

(2) Nonsymmorphic space group is defined as a space group involving at least a translationt

MS2041 lecture notes for educational purpose only

Examples

Space group P1

P1 C1		No.1	P1	1 Triclinic
				Origin on 1

MS2041 lecture notes for educational purpose only
Space group $\mathrm{P} \overline{1}$

$\begin{gathered} \hline \overline{1}{ }^{1} \\ C_{i}^{1} \end{gathered}$		No. 2	P $\overline{1}$	$\overline{1}$ Triclinic
			Origin on $\overline{1}$	
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
2	i	1	$x, y, z ; ~ \bar{x}, \bar{y}^{\prime}, \bar{z}$	General: No conditions
1	h	$\overline{1}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	Special: No conditions
1	g	$\overline{1}$	0, $\frac{1}{2}, \frac{1}{2}$	
1	f	$\overline{1}$	$\frac{1}{2}, 0, \frac{1}{2}$	
1	e	$\overline{1}$	$\frac{1}{2}, \frac{1}{2} \frac{1}{2}$	
1	d	$\overline{1}$	$\frac{1}{2^{\prime}} 0,0$	
1	c	$\overline{1}$	0, $\frac{1}{2^{\prime}} 0$	
1	b	$\overline{1}$	0, 0, $\frac{1}{2}$	
1	a	$\overline{1}$	0, 0, 0	

MS2041 lecture notes for educational purpose only
Space group P112

$\begin{gathered} \hline \mathrm{P} 112 \\ \mathrm{C}_{2}^{1} \end{gathered}$		No. 3	P112	2 Monoclinic
Ist setting			Origin on 2; unique axis c	
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
2	e	1	$x, y, z ; \bar{x}, \bar{y}, z$	General: $\left\{\begin{array}{c} \mathrm{hkl} \\ \mathrm{hk} 0 \\ 001 \end{array}\right\}$ No conditions
1	d	2	$\frac{1}{2}, \frac{1}{2}, z$	Special: No conditions
1	c	2	$\frac{1}{2^{\prime}} 0, \mathrm{z}$	
1	b	2	0, $\frac{1}{2^{\prime}} \mathrm{z}$	
1	a	2	0, 0, z	

MS2041 lecture notes for educational purpose only
Space group P121

MS2041 lecture notes for educational purpose only
Space group P112 ${ }_{1}$

$\begin{gathered} \mathrm{P} 2_{1} \\ \mathrm{C}_{2}^{2} \end{gathered}$		No. 4	P112 ${ }_{1}$	2 Monoclinic
Ist setting			Origin on 2_{1}; unique axis c	
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
2	a	1	$x, y, z ; \bar{x}, \bar{y}, \frac{1}{2}+z$	General: hkl: No conditions hk0: No conditions 001: $1=2 n$

Explanation:

\#1 Consider the diffraction condition from plane (h k 0)
Two atoms at $\mathrm{x}, \mathrm{y}, \mathrm{z} ; \overline{\mathrm{x}}, \overline{\mathrm{y}}, \frac{1}{2}+\mathrm{z}$
The diffraction amplitude F can be expressed as

$$
\begin{aligned}
& F=\sum_{i} f_{i} * e^{-2 \pi i[h k l] *[x y z]} \\
& =\sum_{i} f_{i} * e^{-2 \pi i[h k 0] *[x y z]} \\
& =f_{i} * e^{-2 \pi i[h k 0] *[x y z]}+f_{i} * e^{-2 \pi i[h k 0] *[\overline{[} \bar{y} 1 / 2+z]} \\
& =f_{i} * e^{-2 \pi i(h x+k y)}+f_{i} * e^{-2 \pi i(-h x-k y)} \\
& =f_{i} *\left(e^{-2 \pi i(h x+k y)}+e^{2 \pi i}(h x+k y)\right) \\
& =f_{i} *(2 \cos (2 \pi i(h x+k y))) \\
& =2 f_{i}
\end{aligned}
$$

Therefore, no conditions can limit the ($h, k, 0$) diffraction.

MS2041 lecture notes for educational purpose only
\#2 For the planes (00I)
Two atoms at $x, y, z ; \bar{x}, \bar{y}, \frac{1}{2}+z$
The diffraction amplitude F can be expressed as

$$
\begin{aligned}
& \mathrm{F}=\sum_{\mathrm{i}} \mathrm{f}_{\mathrm{i}} * \mathrm{e}^{-2 \pi \mathrm{i}[\mathrm{hkl} 1] *\left[\mathrm{x}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}}\right]} \\
& =\sum_{i} f_{i} * e^{-2 \pi i\left[\begin{array}{lll}
0 & 1]
\end{array}\right] *\left[x_{i} y_{i} z_{i}\right]} \\
& =f_{i} * e^{-2 \pi i\left[\begin{array}{lll}
0 & 0
\end{array}\right] *\left[\begin{array}{lll}
x y & y
\end{array}\right]}+f_{i} * e^{-2 \pi i\left[\begin{array}{lll}
0 & 0
\end{array}\right] *\left[\begin{array}{lll}
\bar{x} & \bar{y} & 1 / 2+z
\end{array}\right]} \\
& =f_{i} * e^{-2 \pi i l z}+f_{i} * e^{-2 \pi i\left(\frac{1}{2}+1 z\right)} \\
& =\mathrm{f}_{\mathrm{i}} * \mathrm{e}^{-2 \pi \mathrm{ilz}} *\left(1+\mathrm{e}^{-\pi \mathrm{ill}}\right) \\
& =\mathrm{f}_{\mathrm{i}} *\left(1+\mathrm{e}^{-\mathrm{ril}}\right)
\end{aligned}
$$

If $\mathrm{I}=2 \mathrm{n}$, then $\mathrm{F}=2 \mathrm{f}_{\mathrm{i}}$
If $\mathrm{I}=2 \mathrm{n}+1$, then $\mathrm{F}=0$
Therefore, the condition $\mathrm{I}=2 \mathrm{n}$ limit the $(0,0, \mathrm{I})$ diffraction.

MS2041 lecture notes for educational purpose only
Space group $\mathrm{P} 12_{1} 1$

MS2041 lecture notes for educational purpose only
Space group B112

$\begin{array}{\|r} \hline{ }^{\circ}{ }_{2}^{3} \\ \hline \end{array}$		No. 5	B112	2 Monoclinic
Ist setting			Origin on 2; unique axis c	
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
4	c	1	$x, y, z ; \bar{x}, \bar{y}, z$	General: hkl: $h+l=2 n$ hkO: h=2n 001: $1=2 n$
2	b	2	0, $\frac{1}{2^{\prime}} \mathrm{z}$	Special: as above only
2	a	2	0, 0, z	

MS2041 lecture notes for educational purpose only
Space group P 4/m $\overline{3}$ 2/m

$\begin{array}{r} \mathrm{Pm} 3 \mathrm{~m} \\ \mathrm{O}_{1}^{\mathrm{h}} \end{array}$		No. 221	P 4/m $\overline{3} 2 / \mathrm{m}$	m3m Cubic
Ist setting			Origin at centre; m3m	
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
48	n	1	$x, y, z ; z, x, y ; y, z, x ; x, z, y ; y, x, z ; z, y, x ;$ $x, \bar{y}, z ; z, \bar{x}, y ; y, \bar{z}, x ; x, \bar{z}, \bar{y} ; y, \bar{x}, \bar{z} ; z, \bar{y}, \bar{x} ;$ $\bar{x}, y, \bar{z} ; \bar{z}, x, y, \bar{y} ; \bar{y}, z, x \bar{x} ; \bar{x}, z, \bar{y} ; \bar{y}, x, \bar{z} ; \bar{z}, y, \bar{x} ;$ $\overline{\mathrm{x}}, \overline{\bar{y}}, \bar{z} ; \bar{z}, \overline{\mathrm{x}}, \overline{\mathrm{y}} ; \overline{\mathrm{y}}, \overline{\mathrm{z}}, \overline{\mathrm{x}} ; \overline{\mathrm{x}}, \overline{\mathrm{z}}_{y} \bar{y} ; \overline{\mathrm{y}}, \overline{\mathrm{x}}, \overline{\mathrm{z}} ; \overline{\mathrm{z}}, \overline{\mathrm{y}}, \overline{\mathrm{x}} ;$ $\overline{\mathrm{x}}, \mathrm{y}, z ; \overline{\mathrm{z}}, \mathrm{x}, \mathrm{y} ; \overline{\mathrm{y}}, \mathrm{z}, \mathrm{X} ; \overline{\mathrm{x}}, \mathrm{z}, \mathrm{y} ; \overline{\mathrm{y}}, \mathrm{x}, \mathrm{z} ; \overline{\mathrm{z}}, \mathrm{y}, \mathrm{x} ;$ $x, \bar{y}, z ; z, \bar{x}, y ; y, \bar{z}, x ; x, \bar{z}, y ; y, \bar{x}, z ; z, \bar{y}, x ;$ $x, y, \bar{z} ; z, x, \bar{y} ; y, z, \bar{x} ; x, z, \bar{y} ; y, x, \bar{z} ; z, y, \bar{x} ;$	General: $\left(\begin{array}{c} \mathrm{hkl} \\ \mathrm{hhl} \\ \text { Okl } \end{array}\right\} \text { No }$ conditions
24	m	M	 $\overline{\mathrm{x}}, \mathrm{x}, \overline{\mathrm{z}} ; \overline{\mathrm{z}}_{1}, \overline{\mathrm{x}}, \overline{\mathrm{x}} ; \overline{\mathrm{x}}_{1}, \mathrm{z}, \overline{\mathrm{x}} ; \mathrm{x}, \overline{\mathrm{x}}, \mathrm{z} ; \mathrm{z}, \overline{\mathrm{x}}, \mathrm{x} ; \mathrm{x}, \overline{\mathrm{z}}, \mathrm{x} ;$ $\overline{\mathrm{x}}, \overline{\mathrm{x}}, \mathrm{z}_{i} \bar{z}_{1}, \overline{\mathrm{x}}, \mathrm{x} ; \overline{\mathrm{x}}, \overline{\mathrm{z}}, \mathrm{x} ; \mathrm{x}_{1}, \mathrm{x}, \bar{z} ; z_{i}, \mathrm{x}, \overline{\mathrm{x}} ; \overline{\mathrm{x}}, \mathrm{z}, \overline{\mathrm{x}} ;$	Special: No conditions
24	I	M		
24	k	M	$\begin{aligned} & 0, y, z ; z, 0, y ; y, z, 0 ; 0, z, y ; y, 0, z ; z, y, 0 ; \\ & 0, \bar{y}, \bar{z} ; \bar{z}, 0, \bar{y} ; \bar{y}, \bar{z}, 0 ; 0, \bar{z}, \bar{y} ; 0, \bar{y}, 0, \bar{z} ; \bar{z}, \bar{y}, 0 ; \\ & 0, y, \bar{z} ; \bar{z}, \bar{z}, y ; y ; y, \bar{z}, 0 ; 0, \bar{z}, y ; y, 0, \bar{z} ; \bar{z}, y, y \\ & 0, \bar{y}, z ; z, 0, \bar{y} ; \bar{y}, z, 0 ; 0, z, \bar{y} ; \bar{y}, 0, z ; z, \bar{y}, 0 ; \end{aligned}$	
12	j	mm		
12	i	mm		
12	h	mm		
8	g	3 m	 	
6	f	4mm		
6	e	4 mm	$\begin{aligned} & \mathrm{x}, 0,0 ; 0,0,0,0 ; 0,0, x \\ & \overline{\mathrm{x}}, 0,0 ; 0, \bar{x}, \bar{x}, 0 ; 0,0, \bar{x} \end{aligned}$	
3	d	4/mmm	${ }_{\frac{1}{2}}^{1} 0,0 ; 0 ; 0, \frac{1}{2} 0 ; 0,0,0 \frac{1}{2}$	
3	c	4/mmm	$0 \cdot 1$	
1	b	m3m	$\frac{1}{x^{2} 2^{\prime} \frac{1}{2}}$	
1	a	m3m	0,0,0	

MS2041 lecture notes for educational purpose only
The usage of space group for crystal structure identification
Space group P 4/m $\overline{3}$ 2/m

\#1 Simple cubic

Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions
1	A	m 3 m	$0,0,0$

\#2 CsCl structure

atoms	Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions
Cl	1	a	m 3 m	$0,0,0$
Cs	1	b	m 3 m	$\frac{1}{2^{\prime}} \frac{1}{2^{\prime}} \frac{1}{2}$

\#3 BaTiO_{3} structure

atoms	Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions
Ba	1	a	m 3 m	$0,0,0$
Ti	1	b	m 3 m	$\frac{1}{2^{\prime}} \frac{1}{2^{\prime}} \frac{1}{2}$
O	3	c	$4 / \mathrm{mmm}$	$0, \frac{1}{2^{\prime}} \frac{1}{2^{\prime}}$ $\frac{1}{2^{\prime}} 0, \frac{1}{2^{\prime}}$ $\frac{1}{2^{\prime}} \frac{1}{2^{\prime}} 0$

