MS2041 lecture Notes

VIII kinematical theory of diffraction

8-1. total scattering amplitude

Incident beam Outgoing beam

The path difference between beams scattered from the volume
element 7 apartis

~ L o~ N\2m - =y L
(k-r—k’-r)Tz (k—k')-7
The amplitude of the wave scattered from a volume element is
proportional to the local electron concentration n(7).

Total scattering amplitude F

F = j n(@e FH)7 gz = f n(@eF)7 gy

Define Ak = k' — k
Then

(i) When Ak = 276,

2T 2T

_ * _ 172 ot
[=FF" =V n@_Akné_ATc
2 27

(i) When Ak # 217G,

F =anée—i(AE—zn5)-FdV
G

For an infinite crystal
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F = 2-1. née—i(Ak—ZﬂG)'T‘dV = Znéf e—l(Ak—ZTl,'G)"r'dV
¢ G ©

= Z n56(AE — 2715)

ey

G
F =0,if Ak # 216

Therefore, diffraction occurs at Ak = 271G,
The total scattering amplitude F

F = jn(?)e‘iAE'FdV

= J n(i#)e 2meTqy = N j n(F)e 2m6Tqy = NS,

Unit cell

, where S is called the structure factor.

For a unit cell, total electron concentration at 7 due to all atoms in
the unit cell

@]
n() = ) (7 - )

=1
S
S f n(#)e ™67 qy = f Z (7 —7)e2mCTay
7

Unit cell
S

Sz = Z j n (77 _ 77],)e—2ni5-(F—Fj)e—2ni5-FjdV
J
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S
_ —2miG 7
J

fj — Jnj(?_?})e—ZniG_)'(f—?j)dV

, where f; is so called form factor.

The scattering amplitude is then expressed as

S
F=NS; = Nz e 2mCTf,
7

8-2. form factor calculation

The meaning of form factor is equivalent to the total charge of an
atom, which can be obtained by a direct calculation.

With the integral extended over the electron concentration
associated with a single atom, set the origin at the atom

fj — jnj(?—ﬁ)e_znié'(F_?f)dV _ jnj(F)e—Zniﬁ-FdV
T 2T

szJJj n;(r)e=mCT 05O gr (rd@) (r sin 0dd)
r 6 ¢

r

T 2T
]‘szfj n;(r)e=2m6T cosOy2 gin OdrdHdd
8 ¢

, where we use G -7 = Grcos @ and assume n;(¥) = n;(r) .

T
fi = 2nj n;(r)r2dr f e ~2MiGT c0s 6 gin g p

r 0=0
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1

fi= an n; (rridr fe‘znicrcosed(cos 9)

r “1
—2miGr __ e21'riGr
fi = 27Tf n; (r)ridr Eyrn
r
sin(2mGr)
=4 . 2dy —m8M8M =
nf n;(r)rdr > Cr

r

[f total electron concentration were concentrated at r=0,

fi = 47Tj n;(Mridr =7
r
, Where Z is the total number of electron in an atom.

Infact, f; dependson %.

For example, the form factor of Cu is
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8-3. structure factor calculation

S S
SG—> = z e_zniG_)'ij}, — z e—2ni(hc_l’*+k5*+l€*)-(ujc‘i+vj5+wj6)f}
J

J

S
_ —2mi(huj+kvj+lw
S@ — Z e 2mi(huj+kvj+ w])fj
J
For example :
(a) one atom in a unit cell at [000]

N

S = Z e—2ni(h5i*+k5*+lc**)-(uj€i+vj5+wj5)f}_

J
Ss = e—Zni(h&*+k5*+18*)-(0c7+05+08)f =f

(b) base-centered cell : two atoms at [000] and [ ]

N

S = z e—2ni(h5i*+k5*+lE*)-(uj&+va+wj5)]c]_

J
— — . —% % % 1, 1> -
.= f [e—2m‘(h&*+kb*+z€*)-(oa+0b+05) + e—Zm(ha +kb +lc )'(§a+§b+05)]

55 =f[€0 _l_e—Zm + +0 ] f 1 +e—m(h+k)]

Hence,
S¢ = 2f ifh and k unmixed.
Sz = 0 ifh and k mixed ( one even; one odd).
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The meaning of the reflection condition (reflection rule)

Suppose that we have a square lattice

(@) Primitive unit cell : one atom at [00]
e & 0 0 o

®
@
o 0 0
@
S
Sz = Z e—2ni(h&*+kb*)-(uja’+vjb)fj
j — —
Sg = e—2ni(hc'i*+kb*)-(06i+0b)f =f

(b) Unitcell : two atoms at [00] [%O]

‘e d

0] 130

e & o
e & o
S

Sz = Z o~ 2mi(h@" +kB*)-(u;d+v;b) f

[ ~2mi(nd@' +kB*)-(0a+0B) . ,~2mi(hd"+kb V(5 a+0b)]

Se = f[e +e ~2mi(y ] fI1 + e ™)
Hence,

Se = 2f ifhiseven.
Se =0 ifhisodd.

The reflection conditions for the case (b) are
Sg = 2f ifhis even.
Sg =0 ifhis odd.



MS2041 lecture Notes

e © e ©
e ¢ o 06 0 [01]
QQI:IQ ¢ ®
® 0 L
100] @ ®
e ® ¢ 0 0 ® ® ® ®
o000 000
® ¢ & & 0 [01]
N X
OQI:::I ..I:I
¢ Lo L N L NN
® ® o & O [00] [10] [20]
o0

The reflection conditions remove the lattice points [odd, 0] in the
reciprocal lattice.

Therefore, the meaning of the reflection rule is to remove the
additional lattice points due to the selection of unit cell.

After the substraction, the reciprocal lattice structures derived from
both cases (primitive unit cell and unit cell) become the same.
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(c¢) body centered cell : two atoms at [000] and [111]

S
— —2mi(h@* +kb*+1¢*)-(ujd+vb+w;C
S5 = el Y (uyaroBewe) £
J 1, 1- 1
S; = f[e—Zm'(hd’*+k5*+l€*)-(0c‘i+05+05) + —zm(ha*+kE*+16*)-(§a’+75+§6)]
Sé — f [eo + e-ZTL’l 2 2 2 ] f[]. + e—TL’L(h+k+l)]

Hence,

Seg=2f if h+k+1 iseven.
Seg=0if h+k+1 isodd.

(d) face-centered cubic cell :

four atoms at [000], [230], [305],[035]

N

S = z e—2ni(h5i*+k5*+lE*)-(uj&+va+wj5)]c]_

J
s

— —2mi(hu;+kv;+lw;
5= S ertnitnossin
j
S@ =f[eo+e an( )+e Zm( )+e Zm(z 2)]
= f[l + g~ mi(h+k) 4 p-mi(h+D) 4 e—m'(k+1)]
Hence,

Sg = 4f ifh, kand | are unmixed.
Sg = 0 ifh,kandare mixed.

(e) close-packed hexagonal cell

Two atoms are at [000] and [Ell]

S

— —2mi(hui+kvi+lw;
55 = Z e (huj+kv; J)f].

y)
S@ = f [eo +e 27—”(23h+l3f+é>] = f [1 + e—2ni(#+%>]
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|55|2 = f2 [1 + e‘z’”'(%*%*%)] [1 + ez’“'(%%%)]

2 _ f2 [1 + e%ﬂ(%"‘%"‘%) n e_zni(?+§+§) N 1]

:f2{2+2c08[2ﬂ<%+5+£>]}

3 2
2 ,  Zr2h+k 1

|Sé| = 4f“ cos ( 3 +§)TL'
2
2h+k L |55|
3m Odd 0
3m Even 4f2
3m+1 |0dd 3f>
3m+1 |Even f?

(f) ZnS has four Zinc and four sulfur atoms per unit cell

In: Eiﬂ+ face centering translation
S: [000] + face centering translation

S

S = z e—2m’(h€i*+k5*+lE*)-(uj&+vjE+ij)]c]_

J
s

— =2mi(hui+kvi+ilw;
55 = Z e ( J J J)f]

J
5¢ = fs[l + e A 4 pmmilhtD 4 e—ni(k+l)]
k1
+ Fon[1 + e7TOHO 4 ommiGhrD) e—ni(k+l)]e—2m(z+z+z)
h k1L
Sz = [1 4 e M+ 4 g=milhtD) | p-milk+D)] (fs 4 one_Z”‘(Z+Z+Z))
“Lih+k+l
Sy (o + e 09810)
Y

: 1T,
|55|2 = |Sfcc|2 [fs + one_Zl(h+k+l)] [fs + oneilUH-kH)]
T
|S¢ ‘= |SfCC|2 [fs2 + fon” + 2fifon COSE(h +k + l)]

Hence,
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1S5]° = 16(£;% + fzu?) ifh-+k+1is odd.
1S5 = 16(f, — fzn)? ifh-+k+1is an odd multiple of 2.
|ch|2 = 16(f; + fz,)? if h+k+lis an even multiple of 2
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Shape effect

8-4.

For a finite crystal; assuming rectangular volume

f ngei(tk-2nd)7 gy
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4
1510 I I I

g(a,100)

5000~ —

Considering the intensity

sin Ma)2 (sin N[?)2 (Sin Ly)2

I=FF*=nan»*( , _ ,
76 \ sina sin B siny

1st min occurs at sinMa =0, sin NS = 0,and sinLy =0
iie. Ma =m, sinNf =m,and sinly =«

Substituting
a= %B d, B =

e
o]

b, yle-B,and D = Ak — 212G
2

We can obtain

S N 21
(Ak—ZnG)-&zﬁ
S oy - 2T
(A1\<—2n(;)-b=W
(8F — 2n6) - =2
or
Ak L\ L1
<%‘G>'“:M
Ak L\ - 1
(x-¢)5=%
Ak L) L1
(e-¢) o1

Therefore, for a finite crystal, the diffracted intensity is finite based
on the condition below.
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Example #1: for a very thin sample

AL 100,00\
e

—> 100m

Ewald sphere construction

G
,where S =— , §' == and G*= reciprocal lattice translation

vector

When G* # S’ — §, diffraction occurs due to “shape effect”.



