

III Crystal symmetry

3-3 Point group and space group

A. Point group

1. Symbols of the 32 three dimensional point groups

General symbol	Triclinic	Monoclinic 1 st setting	Tetragonal	Trigonal	Hexagonal	Cubic
X	1	2	4	3	6	23
\bar{X} even		$\bar{2} \equiv m$	$\bar{4}$		$\bar{6}$	
X + centre Include \bar{X} odd order	$\bar{1}$	2/m	4/m	$\bar{3}$	6/m	$m3 \equiv 2/m \bar{3}$
	Monoclinic 2 nd setting	Orthorhombic				
X2	$2 \equiv 12$	222	422	32	622	432
Xm	$m \equiv 1m$	mm2	4mm	3m	6mm	
$\bar{X}2$ or $\bar{X}m$ even			$\bar{4}2m$		$\bar{6}m2$	$\bar{4}3m$
X2 + centre Xm + centre Include $\bar{X}m$ odd order	2/m	mmm \equiv 2/m 2/m 2/m	4/mmm \equiv 4/m 2/m 2/m	$\bar{3}m$ \equiv $\bar{3}$ 2/m	6/mmm \equiv 6/m 2/m 2/m	$m3m \equiv 4/m \bar{3} 2/m$

Rotation axis X

Rotation-Inversion axis \bar{X}

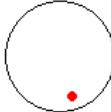
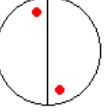
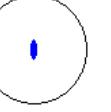
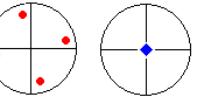
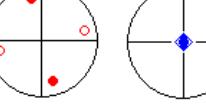
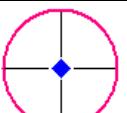
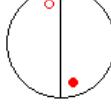
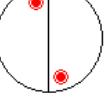
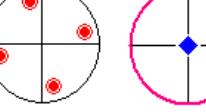
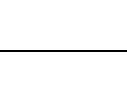
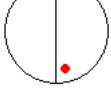
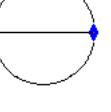
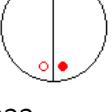
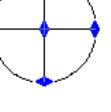
Rotation axis with mirror plane normal to it X/m

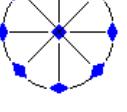
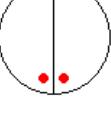
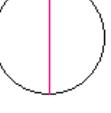
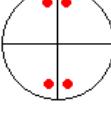
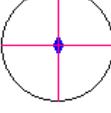
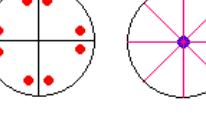
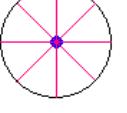
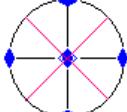
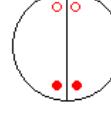
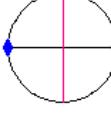
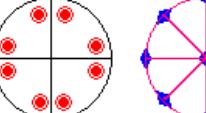
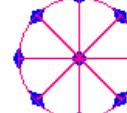
Rotation axis with diad axis (axes) normal to it $X2$

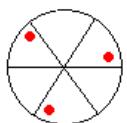
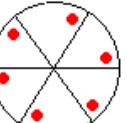
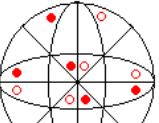
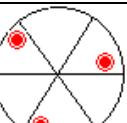
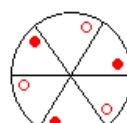
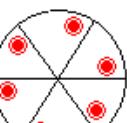
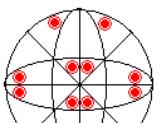
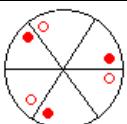
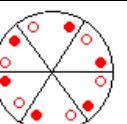
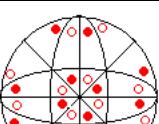
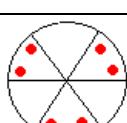
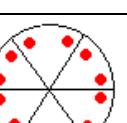
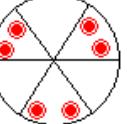
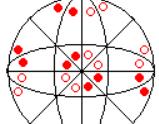
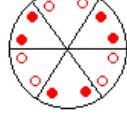
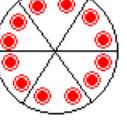
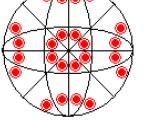
Rotation axis with mirror plane (planes) parallel to it Xm

Rotation-inversion axis with diad axis (axes) normal to it $\bar{X}2$

Rotation-inversion axis with mirror plane (planes) parallel to it $\bar{X}m$

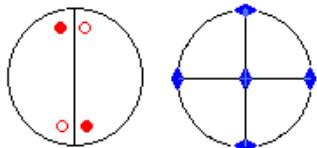



























Rotation axis with mirror plane (planes) normal to it and mirror plane (planes) parallel to it X/mm


















2. Order of positions in the symbols of the three dimensional point groups as applied to lattices

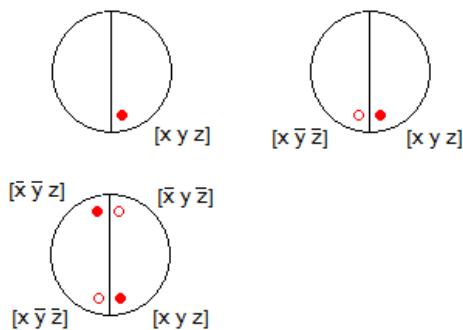
System and point group	Position in point group symbol			Stereographic representation
	Primary	Secondary	Tertiary	
Triclinic 1, $\bar{1}$	Only one symbol which denotes all directions in the crystal.			
Monoclinic 2, m, 2/m	The symbol gives the nature of the unique diad axis (rotation and/or inversion). 1 st setting: z-axis unique 2 nd setting: y-axis unique			
Orthorhombic 222, mm2, mmm	Diad (rotation and/or inversion) along x-axis	Diad (rotation and/or inversion) along y-axis	Diad (rotation and/or inversion) along z-axis	
Tetragonal 4, $\bar{4}$, 4/m, 422, 4mm, $\bar{4}2m$, 4/mmm	Tetrad (rotation and/or inversion) along z-axis	Diad (rotation and/or inversion) along x- and y-axes	Diad (rotation and/or inversion) along [110] and [1 $\bar{1}$ 0] axis	
Trigonal and Hexagonal 3, $\bar{3}$, 32, 3m, $\bar{3}m$, 6, $\bar{6}$, 6/m, 622, 6mm, $\bar{6}m2$, 6/mmm	Triad or hexad (rotation and/or inversion) along z-axis	Diad (rotation and/or inversion) along x-, y- and u-axes	Diad (rotation and/or inversion) normal to x-, y-, u-axes in the plane (0001)	
Cubic 23, m3, 432, $\bar{4}3m$, m3m	Diads or tetrad (rotation and/or inversion) along <100> axes	Triads (rotation and/or inversion) along <111> axes	Diads (rotation and/or inversion) along <110> axes	

The 32 three dimensional point groups

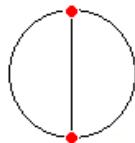

Stereograms of **poles of equivalent directions** and **symmetry elements** of the 32 point groups (z-axis is normal to the paper in all drawings)

General Symbol	Triclinic	Monoclinic (1 st setting)	Tetragonal
X		1 2	4
\bar{X} even		$m \equiv \bar{2}$	$\bar{4}$
$X +$ centre \bar{X} odd		2/m	4/m
	Monoclinic (2nd setting)		Orthorhombic
X2	2	222	422
Xm	m	mm2	4mm
$\bar{X}2$ or $\bar{X}m$ even			$\bar{4}2m$
X2 + centre Xm + centre $\bar{X}m$ odd	$Mmm = 2/m 2/m 2/m$		$4/mmm = 4/m 2/m 2/m$

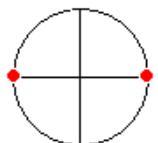
	Trigonal	Hexagonal	Cubic
X	 3	 6	 23
\bar{X} even		 $\bar{6}$	
X + centre \bar{X} odd	 $\bar{3}$	 6/m	 $m3 = 2/m \bar{3}$
X2	 32	 622	 432
Xm	 3m	 6mm	
$\bar{X}2$ or $\bar{X}m$ even		 $\bar{6} m2$	 $\bar{4}3m$
X2 + centre Xm +centre $\bar{X}m$ odd	 $\bar{3}m = \bar{3} 2/m$	 $6/mmm = 6/m 2/m 2/m$	 $m3m = 4/m \bar{3} 2/m$


Examples of point group operation

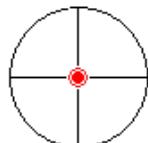
#1 Point group 222


(1) At a general position $[x \ y \ z]$, the symmetry is 1

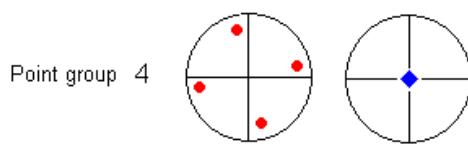
Multiplicity = 4


(2) At a special position $[100]$, the symmetry is 2.

Multiplicity = 2

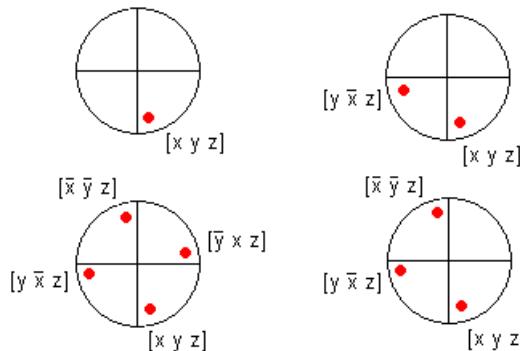

At a special position $[010]$, the symmetry is 2.

Multiplicity = 2

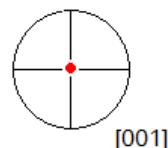


At a special position $[001]$, the symmetry is 2.

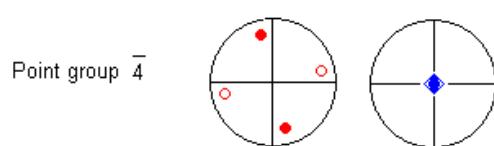
Multiplicity = 2



#2 Point group 4

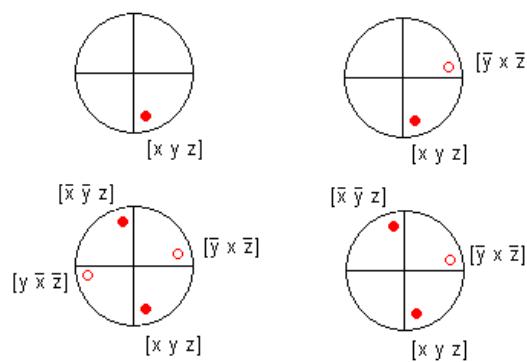

(1) At a general position $[x y z]$, the symmetry is 1

Multiplicity = 4



(2) At a special position $[001]$, the symmetry is 4.

Multiplicity = 1



#3 Point group $\bar{4}$


(1) At a general position $[x y z]$, the symmetry is 1

Multiplicity = 4

(2) At a special position [001], the symmetry is $\bar{4}$.

Multiplicity = 1

3. Transformation of vector components

Original vector is $\vec{P} = [p_1, p_2, p_3] = [x, y, z]$

i.e.

$$\vec{P} = x\hat{x} + y\hat{y} + z\hat{z}$$

When symmetry operation transform the original axes(\hat{x} , \hat{y} , \hat{z}) to the new axes (\hat{x}' , \hat{y}' , \hat{z}')

New vector after transformation of axes becomes $\vec{P}' = [p'_1, p'_2, p'_3] = [u, v, w]$

i.e.

$$\vec{P}' = u\hat{x}' + v\hat{y}' + w\hat{z}'$$

The angular relations between the axes may be specified by drawing up a table of direction cosines.

		Old axes		
		\hat{x}	\hat{y}	\hat{z}
New axes	\hat{x}'	$a_{11} = \cos x \hat{x}$	$a_{12} = \cos x \hat{y}$	$a_{13} = \cos x \hat{z}$
	\hat{y}'	$a_{21} = \cos y \hat{x}$	$a_{22} = \cos y \hat{y}$	$a_{23} = \cos y \hat{z}$
	\hat{z}'	$a_{31} = \cos z \hat{x}$	$a_{32} = \cos z \hat{y}$	$a_{33} = \cos z \hat{z}$

Then

$$u = x * \cos x \hat{x} + y * \cos x \hat{y} + z * \cos x \hat{z}$$

i.e.

$$p'_1 = a_{11} * p_1 + a_{12} * p_2 + a_{13} * p_3$$

In a dummy notation

$$p'_1 = a_{1j} * p_j$$

Similarly

$$p'_2 = a_{2j} * p_j$$

$$p'_3 = a_{3j} * p_j$$

i.e.

$$p'_i = a_{ij} * p_j$$

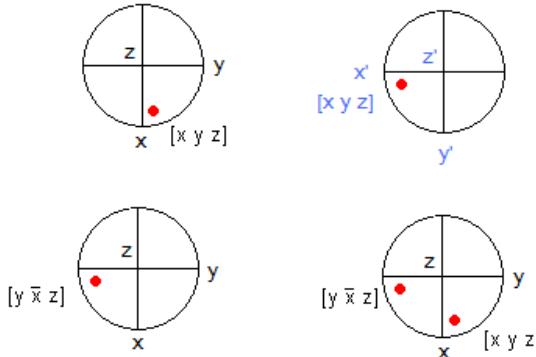
Moreover, by repeating the argument for the reverse transformation and we have

$$x = u * \cos \hat{x} + v * \cos \hat{y} + w * \cos \hat{z}$$

$$p_1 = a_{j1} * p'_j$$

Similarly,

$$p_2 = a_{j2} * p'_j$$


$$p_3 = a_{j3} * p'_j$$

i.e. "old" in terms of "new"

$$p_i = a_{ji} * p'_j$$

For example:

#1 Point group 4

The direction cosines for the first operation is

		Old axes		
		\hat{x}	\hat{y}	\hat{z}
New axes	$\hat{x}' = -\hat{y}$	$a_{11} = 0$	$a_{12} = -1$	$a_{13} = 0$
	$\hat{y}' = \hat{x}$	$a_{21} = 1$	$a_{22} = 0$	$a_{23} = 0$
	$\hat{z}' = \hat{z}$	$a_{31} = 0$	$a_{32} = 0$	$a_{33} = 1$

After symmetry operation, the new position is $[x \ y \ z]$ in new axes

We can express it in old axes by

$$p_i = a_{ji} * p'_j = p'_j * a_{ji}$$

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} y \\ \bar{x} \\ z \end{bmatrix}$$

Therefore, the new position is $[y \ \bar{x} \ z]$ in old axes.

B. Space group

1. List of the 230 crystallographic 3D space groups

(Adapted from Wikipedia, the free encyclopedia)

Class	#	Crystal systems and space groups											
		triclinic system											
1	1	P1											
$\bar{1}$	2	$\bar{P}\bar{1}$											
		monoclinic system											
2	3-5	P2	P2 ₁	C2									
m	6-9	Pm	Pc	Cm	Cc								
2/m	10-1 5	P2/m	P2 ₁ /m	C2/m	P2/c	P2 ₁ /c	C2/c						
		orthorhombic system											
222	16-2 4	P222	P222 ₁	P2 ₁ 2 ₁ 2P2 ₁ 2 ₁ 2	C222 ₁	C222	F222	I222					
mm2	25-4 6	Pmm2	Pmc2 ₁	Pcc2	Pma2	Pca2 ₁	Pnc2	Pmn2 ₁	Pba2				
		Pn2 ₁	Pnn2	Cmm2	Cmc2 ₁	Ccc2	Amm2	Aem2	Ama2				
		Aea2	Fmm2	Fdd2	Imm2	Iba2	Ima2						
mmm	47-7 4	Pmmm	Pnnn	Pccm	Pban	Pmma	Pnna	Pmna	Pcca				
		Pbam	Pccn	Pbcm	Pnnm	Pmmn	Pbcn	Pbca	Pnma				
		Cmcm	Cmce	Cmmr	Cccm	Cmme	Ccce	Fmmr	Fddd				
		Immm	Ibam	Ibca	Imma								
		tetragonal system											
4	75-8 0	P4	P4 ₁	P4 ₂	P4 ₃	I4	I4 ₁						
$\bar{4}$	81-8 2	$\bar{P}\bar{4}$	$\bar{I}\bar{4}$										
$\bar{4}/m$	83-8 8	P4/m	P4 ₂ /m	P4/n	P4 ₂ /n	I4/m	I4 ₁ /a						
422	89-9 8	P422	P42 ₁ 2	P4 ₁ 22	P4 ₁ 2 ₁ 2P4 ₂ 22	P4 ₂ 2 ₁ 2	P4 ₃ 22	P4 ₃ 2 ₁ 2					
4mm	99-1 10	P4mm	P4bm	P4 ₂ cm	P4 ₂ nm	P4cc	P4nc	P4 ₂ mc	P4 ₂ bc				
		I4mm	I4cm	I4 ₁ md	I4 ₁ cd								
$\bar{4}2m$	111-	$\bar{P}\bar{4}2m$	$\bar{P}\bar{4}2c$	$\bar{P}\bar{4}2_1m$	$\bar{P}\bar{4}2_1c$	$\bar{P}\bar{4}m2$	$\bar{P}\bar{4}c2$	$\bar{P}\bar{4}b2$	$\bar{P}\bar{4}n2$				

	122	I $\bar{4}$ m2	I $\bar{4}$ c2	I $\bar{4}$ 2m	I $\bar{4}$ 2d		
4/mn	123- 142	P4/mn	P4/mn	P4/nb	P4/nm	P4/mn	P4/nm
		P4 ₂ /m	P4 ₂ /m	P4 ₂ /nb	P4 ₂ /nm	P4 ₂ /nm	P4 ₂ /n
		I4/mm	I4/mcm	I4 ₁ /nm	I4 ₁ /ac		
		rhombohedral (trigonal) system					
3	143- 146	P3	P3 ₁	P3 ₂	R3		
$\bar{3}$	147- 148	P $\bar{3}$	R $\bar{3}$				
32	149- 155	P312	P321	P3 ₁ 12	P3 ₁ 21	P3 ₂ 12	P3 ₂ 21
3m	156- 161	P3m1	P31m	P3c1	P31c	R3m	R3c
$\bar{3}$ m	162- 167	P $\bar{3}$ 1m	P $\bar{3}$ 1c	P $\bar{3}$ m1	P $\bar{3}$ c1	R $\bar{3}$ m	R $\bar{3}$ c
		hexagonal system					
6	168- 173	P6	P6 ₁	P6 ₅	P6 ₂	P6 ₄	P6 ₃
$\bar{6}$	174	P $\bar{6}$					
6/m	175- 176	P6/m	P6 ₃ /m				
622	177- 182	P622	P6 ₁ 22	P6 ₅ 22	P6 ₂ 22	P6 ₄ 22	P6 ₃ 22
6mm	183- 186	P6mm	P6cc	P6 ₃ cm	P6 ₃ mc		
$\bar{6}$ m2	187- 190	P $\bar{6}$ m2	P $\bar{6}$ c2	P $\bar{6}$ 2m	P $\bar{6}$ 2c		
6/mn	191- 194	P6/mn	P6/mc	P6 ₃ /m	P6 ₃ /m		
		cubic system					
23	195- 199	P23	F23	I23	P2 ₁ 3	I2 ₁ 3	
$m\bar{3}$	200- 206	Pm $\bar{3}$	Pn $\bar{3}$	Fm $\bar{3}$	Fd $\bar{3}$	I $\bar{3}$	Pa $\bar{3}$
432	207- 214	P432	P4 ₂ 32	F432	F4 ₁ 32	I432	P4 ₃ 32
$\bar{4}$ 3m	215- 220	P $\bar{4}$ 3m	F $\bar{4}$ 3m	I $\bar{4}$ 3m	P $\bar{4}$ 3n	F $\bar{4}$ 3c	I $\bar{4}$ 3d
m $\bar{3}$ m	221- 230	Pm $\bar{3}$ m	Pn $\bar{3}$ n	Pm $\bar{3}$ n	Pn $\bar{3}$ m	Fm $\bar{3}$ m	Fm $\bar{3}$ c
		Im $\bar{3}$ m	Ia $\bar{3}$ d			Fd $\bar{3}$ m	Fd $\bar{3}$ c

Symmetry elements in space group

- (1) Point group
- (2) Translation symmetry + point group

Translational symmetry operations

A Symbol of symmetry planes

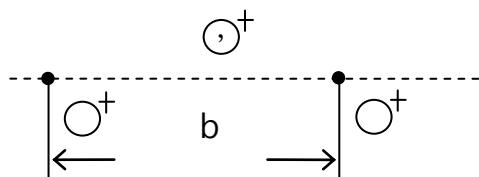
Symbol	Symmetry plane	Graphic symbol		Nature of glide translation
		Normal to plane of projection	Parallel to plane of projection	
m	Reflection plane (mirror)	—	—	None
a, b	Axial glide plane	---	—	$a/2$ along [100] or $2/b$ along [010]; or along $\langle 100 \rangle$
		—	
c		—	—	$c/2$ along z-axis; or $(a+b+c)/2$ along [111] on rhombohedral axes
n	Diagonal glide plane	—	—	$(a+b)/2$ or $(b+c)/2$ or $(c+a)/2$; Or $(a+b+c)/2$ (tetragonal and cubic)
d	“Diamond” glide plane	—	—	$(a \pm b)/4$ or $(b \pm c)/4$ or $(c \pm a)/4$; Or $(a \pm b \pm c)/4$ (tetragonal and cubic) See Note #1

Note #1: In the “diamond” glide plane the glide translation is half of the resultant of the two possible axial glide translations. The arrow in the first diagram show the direction of the horizontal component if the translation when the z-component is positive. In the second diagram the arrow shows the actual direction of the glide translation; there is always another diamond-glide reflection plane parallel to the first with a height difference of $1/4$ and the arrow pointing along the other diagonal of the cell face.

Glide planes

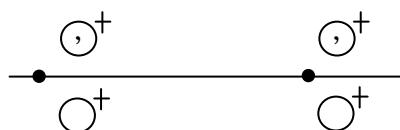
---- translation plus reflection across the glide plane

* **axial glide plane (glide plane along axis)**

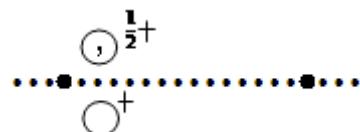

---- translation by half lattice repeat plus reflection

---- three types of axial glide plane

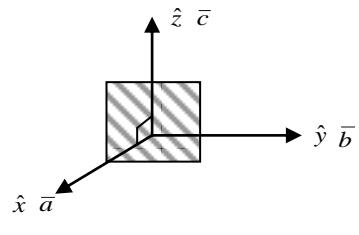
i. a glide, b glide, c glide (a, b, c)


$\frac{1}{2}$ along line in plane \equiv ($\frac{1}{2}$ along line parallel to projection plane)

e.g. b glide

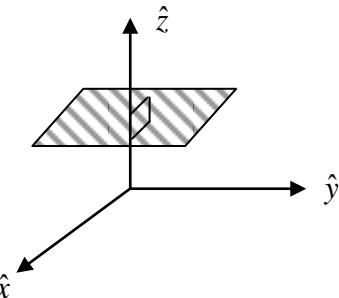

--- graphic symbol for the axial glide plane along y axis

c.f. mirror (m)

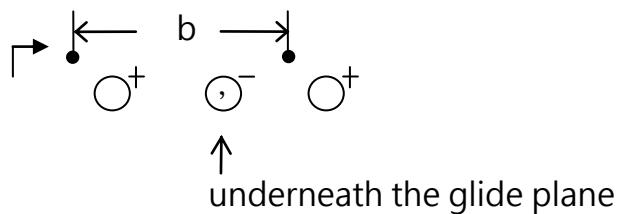


— graphic symbol for mirror

*If the axial glide plane is $\frac{1}{2}$ normal to projection plane, the graphic symbol change to



c glide



glide plane $\perp \hat{z}$ axis

* If b glide plane is $\perp \hat{z}$ axis,

glide plane symbol Γ

* c glide $\frac{c}{2}$ along z axis

or

$\frac{a+b+c}{2}$ along [111] on rhombohedral axis

ii. Diagonal glide (n)

$\frac{a+b}{2}$, $\frac{b+c}{2}$, $\frac{a+c}{2}$ or $\frac{a+b+c}{2}$ (tetragonal, cubic system)

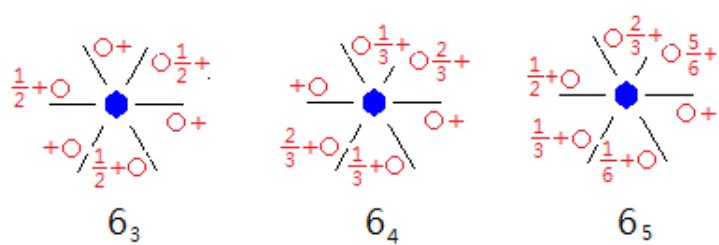
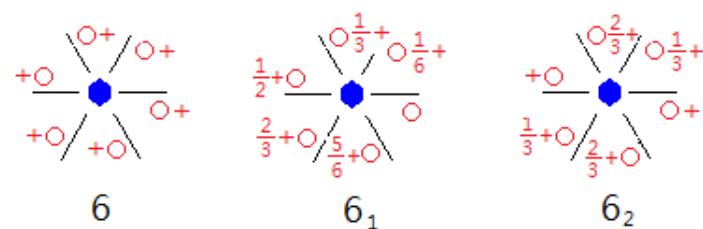
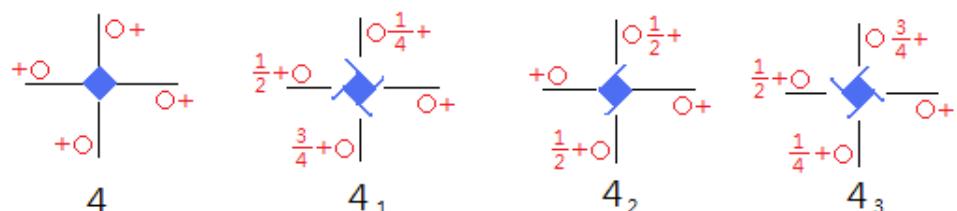
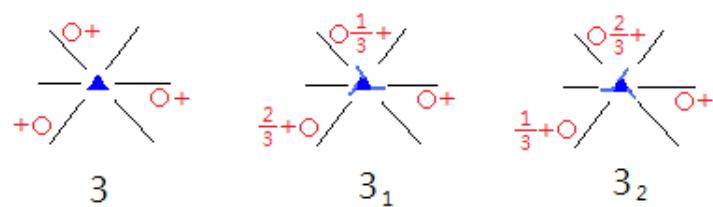
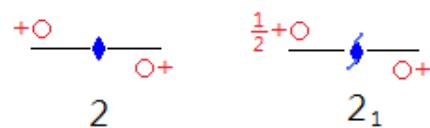
If glide plane is perpendicular to the drawing plane (xy plane), the graphic symbol is

If glide plane is parallel to the drawing plane, the graphic symbol is

iii. Diamond glide (d)

$\frac{a+b}{4}$ or $\frac{a+b+c}{4}$ (tetragonal, cubic system)

B Symbols of symmetry axes






symbol	Symmetry axis	Graphic symbol	Nature of right-handed screw translation along the axis	symbol	Symmetry axis	Graphic symbol	Nature of right-handed screw translation along the axis
1	Rotation monad	none	none	4	Rotation tetrad		none
$\bar{1}$	Inversion monad		none	4_1	Screw tetrads		$c/4$
2	Rotation diad		none	4_2			$2c/4$
				4_3			$3c/4$
				$\bar{4}$			none
2_1	Screw diad		c/2 either a/2 or c/2	6	Rotation hexad		none
				6_1	Screw hexads		$c/6$
				6_2			$2c/6$
3	Roation triad		none	6_3			$3c/6$
3_1	Screw triad		c/3	6_4			$4c/6$
3_2			2c/3	6_5			$5c/6$
$\bar{3}$	Inversion triad		none	$\bar{6}$	Inversion hexad		none

i All possible screw operations

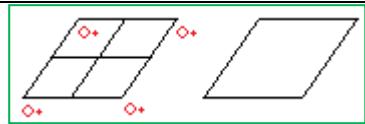
*screw axis --- translation τ plus rotation

screw R_n along c axis

= counterclockwise rotation $(360/R)^\circ$ + translation $(n/R)\bar{c}$

Space group: 230

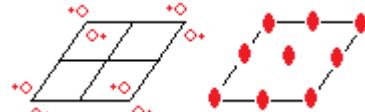
(1) Symmorphic space group is defined as a space group that may be specified entirely by symmetry operation acting at a common point (the operations need not involve τ) as well as the unit cell translation


* 73 symmorphic space groups

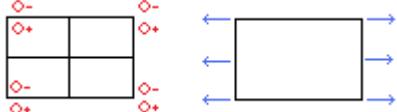
Crystal system	Bravais lattice	Space group
Triclinic	p	P1, P $\bar{1}$
Monoclinic	P B or A	P2, Pm, P2/m B2, Bm B2/m (1 st setting)
Orthorhombic	P C, A or B I F	P222, Pmm2, Pmmm C222, Cmm2, Amm2*, Cmmm I222, Imm2, Immm F222, Fmm2, Fmmm
Tetragonal	P I	P4, P $\bar{4}$, P4/m, P4mm P $\bar{4}$ 2m, P $\bar{4}$ m2*, P4/mmm I4, I $\bar{4}$, I4/m, I422, I4mm I $\bar{4}$ 2m, I $\bar{4}$ m2*, I4/mmm
Cubic	P I F	P23, Pm3, P432, P $\bar{4}$ 3m, Pm3m I23, Im3, I432, I $\bar{4}$ 3m, Im3m F23, Fm3, F432, F $\bar{4}$ 3m, Fm3m
Trigonal	P	P3, P $\bar{3}$, P312, P321*, P3m1 P31m*, P $\bar{3}$ 1m, P $\bar{3}$ m1*
(Rhombohedral)	R	R3, R $\bar{3}$, R32, R3m, R $\bar{3}$ m
Hexagonal	P	P6, P $\bar{6}$, P6/m, P622, P6mm P $\bar{6}$ m2, P $\bar{6}$ 2m*, P6/mmm

(2) Nonsymmorphic space group is defined as a space group involving at least a translation τ

Examples


Space group P1

P1 C_1^1		No. 1	P1	1 Triclinic
			Origin on 1	
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
1	a	1	x, y, z	No conditions


Space group $P\bar{1}$

$P\bar{1}$ C_i^1		No. 2	$P\bar{1}$	$\bar{1}$ Triclinic
				Origin on $\bar{1}$
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	
2	i	1	$x, y, z ; \bar{x}, \bar{y}, \bar{z}$	General: No conditions
1	h	$\bar{1}$	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	Special: No conditions
1	g	$\bar{1}$	$0, \frac{1}{2}, \frac{1}{2}$	
1	f	$\bar{1}$	$\frac{1}{2}, 0, \frac{1}{2}$	
1	e	$\bar{1}$	$\frac{1}{2}, \frac{1}{2}, 0$	
1	d	$\bar{1}$	$\frac{1}{2}, 0, 0$	
1	c	$\bar{1}$	$0, \frac{1}{2}, 0$	
1	b	$\bar{1}$	$0, 0, \frac{1}{2}$	
1	a	$\bar{1}$	$0, 0, 0$	

Space group P112

P112 C_2^1		No. 3	P112 	2 Monoclinic
Ist setting		Origin on 2; unique axis c		
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
2	e	1	$x, y, z; \bar{x}, \bar{y}, z$	General: $\begin{cases} hkl \\ hk0 \\ 00l \end{cases}$ No conditions
1	d	2	$\frac{1}{2}, \frac{1}{2}, z$	Special: No conditions
1	c	2	$\frac{1}{2}, 0, z$	
1	b	2	$0, \frac{1}{2}, z$	
1	a	2	$0, 0, z$	

Space group P121

P121 C_2^1		No. 3	P121	2 Monoclinic
Origin on 2; unique axis b				2 nd setting
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
2	e	1	$x, y, z; \bar{x}, y, \bar{z}$	General: $\left\{ \begin{matrix} hkl \\ h0l \\ 0k0 \end{matrix} \right\}$ No conditions
1	d	2	$\frac{1}{2}, y, \frac{1}{2}$	Special: No conditions
1	c	2	$\frac{1}{2}, y, 0$	
1	b	2	$0, y, \frac{1}{2}$	
1	a	2	$0, y, 0$	

Space group P112₁

P2 ₁ C ₂ ²		No. 4	P112 ₁	2 Monoclinic
Ist setting		Origin on 2 ₁ ; unique axis c		
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
2	a	1	$x, y, z; \bar{x}, \bar{y}, \frac{1}{2} + z$	General: hkl: No conditions hk0: No conditions 00l: l=2n

Explanation:

#1 Consider the diffraction condition from plane (h k 0)

Two atoms at $x, y, z; \bar{x}, \bar{y}, \frac{1}{2} + z$

The diffraction amplitude F can be expressed as

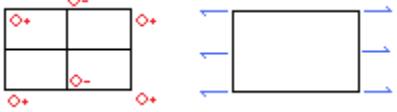
$$\begin{aligned}
 F &= \sum_i f_i * e^{-2\pi i [h k l] * [x y z]} \\
 &= \sum_i f_i * e^{-2\pi i [h k 0] * [x y z]} \\
 &= f_i * e^{-2\pi i [h k 0] * [x y z]} + f_i * e^{-2\pi i [h k 0] * [\bar{x} \bar{y} 1/2 + z]} \\
 &= f_i * e^{-2\pi i (hx+ky)} + f_i * e^{-2\pi i (-hx-ky)} \\
 &= f_i * (e^{-2\pi i (hx+ky)} + e^{2\pi i (hx+ky)}) \\
 &= f_i * (2 \cos(2\pi i (hx + ky))) \\
 &= 2f_i
 \end{aligned}$$

Therefore, no conditions can limit the (h, k, 0) diffraction.

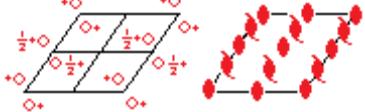
#2 For the planes (00l)

Two atoms at x, y, z ; $\bar{x}, \bar{y}, \frac{1}{2}+z$

The diffraction amplitude F can be expressed as


$$\begin{aligned}
 F &= \sum_i f_i * e^{-2\pi i [h k l] * [x_i y_i z_i]} \\
 &= \sum_i f_i * e^{-2\pi i [0 0 l] * [x_i y_i z_i]} \\
 &= f_i * e^{-2\pi i [0 0 l] * [x y z]} + f_i * e^{-2\pi i [0 0 l] * [\bar{x} \bar{y} 1/2 + z]} \\
 &= f_i * e^{-2\pi i l z} + f_i * e^{-2\pi i \left(\frac{1}{2} + l z\right)} \\
 &= f_i * e^{-2\pi i l z} * (1 + e^{-\pi i l}) \\
 &= f_i * (1 + e^{-\pi i l})
 \end{aligned}$$

If $l=2n$, then $F=2f_i$


If $l=2n+1$, then $F=0$

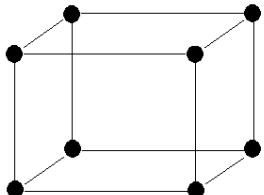
Therefore, the condition $l=2n$ limit the $(0, 0, l)$ diffraction.

Space group $P12_{11}$

$P2_1$ C_2^2		No. 4	$P12_{11}$ 	2 Monoclinic
Origin on 2_1 ; unique axis b			2^{nd} setting	
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
2	a	1	$x, y, z; \bar{x}, \frac{1}{2}+y, \bar{z}$	General: hkl: No conditions h0l: No conditions 0k0: $k=2n$

Space group B112

B2 C_2^3		No. 5	B112	2 Monoclinic
1st setting		Origin on 2; unique axis c		
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
4	c	1	$x, y, z; \bar{x}, \bar{y}, z$	General: $hkl: h+l=2n$ $hk0: h=2n$ $00l: l=2n$
2	b	2	$0, \frac{1}{2}, z$	Special: as above only
2	a	2	$0, 0, z$	

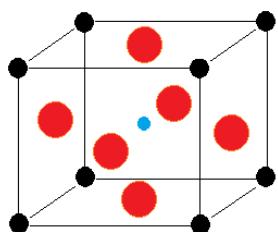

Space group P 4/m $\bar{3}$ 2/m

Pm3m 0_1^h		No. 221	P 4/m $\bar{3}$ 2/m	m3m Cubic
Ist setting			Origin at centre; m3m	
Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions	Condition limiting possible reflections
48	n	1	$x, y, z; z, x, y; y, z, x; x, z, y; y, x, z; z, y, x;$ $x, \bar{y}, z; z, \bar{x}, y; y, \bar{z}, x; x, \bar{z}, \bar{y}; y, \bar{x}, \bar{z}; z, \bar{y}, \bar{x};$ $\bar{x}, y, \bar{z}; \bar{z}, x, \bar{y}; \bar{y}, z, x\bar{x}; \bar{x}, z, \bar{y}; \bar{y}, x, \bar{z}; \bar{z}, y, \bar{x};$ $\bar{x}, \bar{y}, z; \bar{z}, \bar{x}, y; \bar{y}, \bar{z}, x; \bar{x}, \bar{z}, \bar{y}; \bar{y}, \bar{x}, z; \bar{z}, \bar{y}, x;$ $\bar{x}, \bar{y}, \bar{z}; \bar{z}, \bar{x}, \bar{y}; \bar{y}, \bar{z}, \bar{x}; \bar{x}, \bar{z}, \bar{y}; \bar{y}, \bar{x}, \bar{z}; \bar{z}, \bar{y}, \bar{x};$ $\bar{x}, y, z; \bar{z}, x, y; \bar{y}, z, x; \bar{x}, z, y; \bar{y}, x, z; \bar{z}, y, x;$ $x, \bar{y}, z; z, \bar{x}, y; y, \bar{z}, x; x, \bar{z}, y; y, \bar{x}, z; z, \bar{y}, x;$ $x, y, \bar{z}; z, x, \bar{y}; y, z, \bar{x}; x, z, \bar{y}; y, x, \bar{z}; z, y, \bar{x};$	General: $\begin{cases} (hkl) \\ (h\bar{h}l) \\ (0kl) \end{cases}$ No conditions
24	m	M	$x, x, z; z, x, x; x, z, x; \bar{x}, \bar{x}, \bar{z}, \bar{x}; \bar{x}, \bar{x}, \bar{x}; \bar{x}, \bar{z}, \bar{x};$ $x, \bar{x}, \bar{z}; z, \bar{x}, \bar{x}; x, \bar{z}, \bar{x}; \bar{x}, x, z; \bar{z}, x, x; \bar{x}, z, x;$ $\bar{x}, x, \bar{z}; \bar{z}, \bar{x}, \bar{x}; \bar{x}, z, \bar{x}; x, \bar{x}, z; z, \bar{x}, x; x, \bar{z}, x;$ $\bar{x}, \bar{x}, z; \bar{z}, \bar{x}, \bar{x}; \bar{x}, \bar{z}, \bar{x}; x, x, \bar{z}; z, \bar{x}, \bar{x}; \bar{x}, z, \bar{x};$	Special: No conditions
24	l	M	$\frac{1}{2}y, z; z, \frac{1}{2}y; y, z, \frac{1}{2}; y, z, \frac{1}{2}; z, y; y, \frac{1}{2}z; z, y, \frac{1}{2};$ $\frac{1}{2}\bar{y}, \bar{z}; \bar{z}, \frac{1}{2}\bar{y}; \bar{y}, \bar{z}, \frac{1}{2}; \bar{y}, \bar{z}, \frac{1}{2}; \bar{z}, \bar{y}; \frac{1}{2}\bar{y}, \frac{1}{2}; \bar{z}, \bar{z}, \bar{y}, \frac{1}{2};$ $\frac{1}{2}y, \bar{z}; \bar{z}, \frac{1}{2}, y; y, \bar{z}, \frac{1}{2}; \bar{z}, y; y, \frac{1}{2}, \bar{z}; \bar{z}, \bar{y}, \frac{1}{2};$ $\frac{1}{2}\bar{y}, z; z, \frac{1}{2}, \bar{y}; \bar{y}, z, \frac{1}{2}; \frac{1}{2}z, \bar{y}; \bar{y}, \frac{1}{2}, z; z, \bar{y}, \frac{1}{2};$	
24	k	M	$0, y, z; z, 0, y; y, z, 0; 0, z, y; y, 0, z; z, y, 0;$ $0, \bar{y}, \bar{z}; \bar{z}, 0, \bar{y}; \bar{y}, \bar{z}, 0; 0, \bar{z}, \bar{y}; 0, \bar{y}, 0, \bar{z}; \bar{z}, \bar{y}, 0;$ $0, y, \bar{z}; \bar{z}, 0, y; y, \bar{z}, 0; 0, \bar{z}, y; y, 0, \bar{z}; \bar{z}, y, 0;$ $0, \bar{y}, z; z, 0, \bar{y}; \bar{y}, z, 0; 0, z, \bar{y}; \bar{y}, 0, z; z, \bar{y}, 0;$	
12	j	mm	$\frac{1}{2}, x, x; x, \frac{1}{2}, x; x, x, \frac{1}{2}; \frac{1}{2}, x, x; \bar{x}, \frac{1}{2}, x; x, \bar{x}, \frac{1}{2};$ $\frac{1}{2}, \bar{x}, \bar{x}; \bar{x}, \frac{1}{2}, \bar{x}; \bar{x}, \bar{x}, \frac{1}{2}; \bar{x}, x; x, \frac{1}{2}, \bar{x}; \bar{x}, x, \frac{1}{2};$	
12	i	mm	$0, x, x; x, 0, x; x, x, 0; 0, x, \bar{x}, \bar{x}, 0, x; x, \bar{x}, 0;$ $0, \bar{x}, \bar{x}; \bar{x}, 0, \bar{x}; \bar{x}, \bar{x}, 0; 0, \bar{x}, x; x, 0, \bar{x}, \bar{x}, 0;$	
12	h	mm	$x, \frac{1}{2}0; 0, x, \frac{1}{2}; 0, x, x, 0, \frac{1}{2}; \frac{1}{2}x, 0; 0, \frac{1}{2}x;$ $\bar{x}, \frac{1}{2}0; 0, \bar{x}, \frac{1}{2}; 0, \bar{x}, \bar{x}, 0, \frac{1}{2}; \bar{x}, 0; 0, \frac{1}{2}\bar{x}$	
8	g	3m	$x, x, x; x, \bar{x}, \bar{x}; \bar{x}, x, \bar{x}; \bar{x}, \bar{x}, x;$ $\bar{x}, \bar{x}, \bar{x}; \bar{x}, x, x; x, \bar{x}, x; x, x, \bar{x}$	
6	f	4mm	$x, \frac{1}{2}, \frac{1}{2}; \frac{1}{2}, x, \frac{1}{2}; \frac{1}{2}, \frac{1}{2}; x;$ $\bar{x}, \frac{1}{2}, \frac{1}{2}; \frac{1}{2}, \bar{x}, \frac{1}{2}; \frac{1}{2}, \frac{1}{2}; \bar{x}$	
6	e	4mm	$x, 0, 0; 0, x, 0; 0, 0, x;$ $\bar{x}, 0, 0; 0, \bar{x}, 0; 0, 0, \bar{x}$	
3	d	4/mmm	$\frac{1}{2}, 0, 0; 0, \frac{1}{2}, 0; 0, 0, \frac{1}{2}$	
3	c	4/mmm	$0, \frac{1}{2}, \frac{1}{2}; \frac{1}{2}, 0, \frac{1}{2}; \frac{1}{2}, \frac{1}{2}, 0$	
1	b	m3m	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$	
1	a	m3m	0, 0, 0	

The usage of space group for crystal structure identification


Space group P 4/m $\bar{3}$ 2/m

#1 Simple cubic


Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions
1	A	m3m	0, 0, 0

#2 CsCl structure

atoms	Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions
Cl	1	a	m3m	0, 0, 0
Cs	1	b	m3m	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$

#3 BaTiO₃ structure

atoms	Number of positions	Wyckoff notation	Point symmetry	Coordinates of equivalent positions
Ba	1	a	m3m	0, 0, 0
Ti	1	b	m3m	$\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$
O	3	c	4/mmm	$0, \frac{1}{2}, \frac{1}{2}$ $\frac{1}{2}, 0, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{2}, 0$