CH3 Wave Properties of Particles
.De Broglie waves
A moving body behaves in certain ways as though it has a wave
nature.
* for photon
P=hy/c=h/A
Photon wavelength— A =h/P......... (3.1
De Broglie Suggested (3.1) is general one that applies to
material particles as well as to photons.
— De Broglie wavelength

A =h/P =h/mv




Example 3.1

Find the de Brogli wavelengths of

(a) 46-g golf ball with av =30 m/s

(b) e’ with a v=10"m/s

(1) v’<c —> m=m,

2. = h/mv =6.63x10**Js/(0.046kg)(30m/s)=4.8x10**m
wavelength is very small

2. = h/mv =6.63x10*Js/(9.1x10%kg)(10'm/s)=7.3x10'm
=0.73A

the radius of H atom = 5.3x10*m=0.53 A

wave character of moving e’ is the key to understand atomic

structure behavior



3.2 Waves of probability
Water wave — (varing quantity) height of water surface
Light wave — E& H fields
How about matter waves
— Wave function ¥
The value of wave function associated with a moving body at
the particular point x,y,z attimetis related to the likehood
of finding the body there at the time.
*W has no direct physical significance
0 < probability < 1
but the amplitude of wave am be positive or negative
— no negative probability
—— |¢|" :squae of the absolute value of wave function
—> probability density
** The probability of experimentally finding the body described
by the wave functionWat the point x ,y, z attimetis
proportional to |¢|° there at t.
wave function Wthat described a particle is spread out is spall,

but it does not mean that the particle itself is spread out.



3.3  Describing a wave

de Broglie wave velocity v,

Vp =y A(A=h/mv)

hv =mc—> v =mc’/h

De Broglie phase velocity v,= v A =(mc’/h)(h/mv)=c*/v (v =
particle velocity)

Because V<C

— de Broglie waves always travel faster than light !!

— Phase velocity, group velocity.
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Figure 3.1 (a) The appearance of a wave in a stretched string at a certain time. (b) How the displact
ment of a point on the string varies with time.



At x=0, y=Acos(2~vt) for time=t
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Figure 3.2 Wave propagation.

X=Vpt, t=x/v,

y=AC0S2 zv(t-x/v,)

S A )
Wave group

the amplltUde for y(X,t) = y(o,t_xlvp) Figure 3.3 A wave group.
y= ACOSZﬂ(Vt—://—X) Vo= v A
—> Y =ACO0S2 z(vt—x/ 1)

angular freguency @=27 v wave number k=27 /A =w/v

— y = Acos(wt—kx)
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Figure 3.4 Beats are produced by the superposition of two waves with different frequencies.
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The amplitude of de Broglie waves— probability
De Broglie wave can not be represented by y=Acos(wt-kx)

. wave representation of a moving body—> wave packet

wave group
. An example is a beat. (two sound waves of the same amplitude

but slightly different frequencies)

original 440, 442 Hz— hear fluctuating sound of 441 Hz with

2 beats/s

“ Electron gun

l Incident
beam

Electron

detector
\

Scattered
beam

Figure 3.5 The Davisson-Germer
experiment.

a wave group: superposition of individual waves of different A

which interference with one another

— variation in amplitude—> define the group shape



(1) If the velocities of the waves are the same—> the velocity
of wave group is common phase velocity
(1)If the phase velocity varies with A
— an effect called dispertion
— individual waves do not proceed together
— wave group has a velocity different from the phase
velocities
— the case of de Broglie wave
® group velocity
y1 = Acos[( @t —ks)]
Yo = ACOS[(w + A @)t — (k+ AK)x]
— Yy =y,1+Y, =2AC051/2[(2 w + A @)t —Qk+ Ak)x]cos1/2( A wt-
Akx)
because A w<< @ — 20+A® ~» 2®
Ak <<k —2k+Ak ~ 2k
—> Y =2Acos(@t —kx)cos[(A @ /2)t — (Ak/2)x]
A wave of angular frequency @ & wave number k that has
superimposed upon 1t a modulation of angular frequency 1/2 A @

& of wave number 1/2 Ak



Modulation produce wave group

o 2nv

Vo= o= % =vA phase velocity

ve=Aw/Ak=dw/dk group velocity

for de Broglie waves

_2mvmc®  2amc?
V c

o2 _2mv_ 2y (because A =h/mv)

) h /1_\,%2

do
* both @ &k are functions of body’s v ve=dw/dk = dkA"
dv

(because h v =mc?)

w =271V

do  2zmyv

w7 e dk __ 2mm,
L B
— vy =V (de Broglie group velocity)
De Broglie wave group associated with a moving body travels
with the same velocity as the body.
De Broglie phase velocity v, =w/k=c?Iv
vy > velocity of the body v > ¢

("." 1t 1s not the motion of the body)



Ex 3.3:
An ¢' has a de Broglie wavelength of 2pm=2x10""m.Find its kinetic
energy & the phase & group velocity of its de Broglie waves.
(@) E =E+kE —> kE =E — Es=1/E;” + p¢® - E,
pc = he/ A = (4.136x10°ev.s)(3x10°'m/s)/(2x10™) =
6.2x10°ev=620kv
the rest energy of €' 1s Ee=511kv
— kE=1/(511) + (620} —511=292 kev

(b) €' velocity
E-—B  — y_¢i- E%z = 0.771c

L Vvp=cv=13c , vy=v=0.771c




3.5 particle diffraction—— e'-beam diffraction

— confirm de Broglie waves
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Figure 3.6 Results of the Davisson-Germer experiment.

The method of plotting is such that the intensity at any angle is

propotional to the distance of the curve at the angle from the

point of scattering.

54-eV electrons
N

\ Single crystal
gle cry.
of nickel
&

Figure 3.7 The diffraction of tl
de Broglie waves by the target
responsible for the results of D
visson and Germer.

N A=2dsin @—> A =2dsin @ =0.165nm A =h/mv=0.166nm
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Figure 3.8 Because the wave-
lengths of the fast electrons in an
electron microscope are shorter
than those of the light waves in
an optical microscope, the elec-
tron microscope can produce
sharp images at higher magnifica-
tions. The electron beam in an
electron microscope is focused by
magnetic fields.
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Figure 3.9 A particle confined to
a box of width L.
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3.6 particle in a box

a prticle trapped 1n a box = a standing wave.

. 2
2"'3

W must be zero at the walls
il —— 1, =2L/n n=123......

De Broglie wavelength of trapped particles.

bl

R

Figure 3.10 Wave functions of a
particle trapped in a box L wide.

KE=1/2(mv’)=(mv)’/2m=h’/( A “2m)
" A.=2L/n  KE+v=E. the energy forthe
particle in a box
E=n’h?/8mL? n=128........
Each permitted energy is called an energy

level.(n=quantum number)

| This can be applied to any particle confined

Figure 3.11 Energy levels of an|
electron confined to a bo
0.1 nm wide.

to a certain region of space.

—>  For example
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1. Atraped particle cannot have an arbitrary energy, as a free
particle can .
Confinement leads to restriction on its wave function that alloy
the particle to have certain energies.
2. A trapped particle cannot have zero energy.
"." de Broglie wavelength A =h/mv Ifv=0 — A=
— 1t can not be a trapped particle.
3. h=6.63x10""Js very small

. only if m & L are very small, or we are not aware of energy

quantization 1n our own experience.

Ex 3.4
An e' 18 in a box 0.1nm across, which 1s the order of magnitude of
atomic distance, find 1ts permitted energy.
m=9.1x10"%kg & L=0.1nm=10"m
=n"(6.63x107)/8x(9.1x10°)(10"")’=6x10""n"J=38n’ev
When n=1 — 38ev
n=2 —> 152v see fig 3.11

n=3 —> 342 ev
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Ex 3.5

A long marble 1s 1n a box 10 cm across, find its permitted energies
E.=5.5x10"n7]  n=1 E=5.5x10"T — v=3.3x10"" m/s
Which can not be experimentally distinguished from a stationary
marble.

1)

For a reasonable speed 1/3 m/s —> n=10

Energy levels are very close — quantum effects are imperceptible

® Uncertainty principle

- * wave group narrower —— particles
»T,\'I«
Ax . .
A Gacnall position precise.
Ap large
@ However, Aof waves in a narrow packet is
A . . . . .
—",,"_, not well defined S A=h/mv .. P is not
—— Ax —— .
Ax large Precise
Ap small

) * A wide wave group— clearly defined A

Figure 3.12 (@) A narrow de

Broglie wave group. The position

of the particle can be precisely 141 1 1
determined, but the wavelengtk)l but pOSltlon 1S not certain
(and hence the particle’s momen-

tum) cannot be established be-

cause there are not enough waves

o measure accurately. (b) A wide

wave group. Now the wavelength

can be precisely determined but

not the position of the particle.
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uncertainty principle:

[t 1s 1mpossible to know both the exact position & exact momentum

of an object at the same time.

Figure 3.13 An isolated wave group is the result of superposing an infinite number of waves with
different wavelengths. The narrower the wave group, the greater the range of wavelengths involved. A
narrow de Broglie wave group thus means a well-defined position (Ax smaller) but a poorly defined
wavelength and a large uncertainty Ap in the momentum of the particle the group represents. A wide
wave group means a more precise momentum but a less precise position.

An infinite # of wave trains with different frequencies wave

numbers and amplitude 1s required for an 1solated group of arbitrary

shape.

p(x) =

g(k)coskxdk  Fourier integral

O ey 8

g(k): amplitude of the waves varying with k , furrier transform

of ¢ (X)

vy ¥ v vy

4 A

#)x W’x X }——A—‘X
b4 8 b4 b4

A 4

A SRR e [A
L k > k —> k

(a) (b) (© (d)

Figure 3.14 The wave [unctions and Fourier transforms for (a) a pulse, (b) a wave group, (c) an
wave train, and (d) a gaussian distribution. A brief disturbance needs a broader range of frequencies to
describe it than a disturbance of greater duration. The Fourier transform of a gaussian function is also
a gaussian function.
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* wave numbers needed to represent-aave group extend from
k=0 to k=co, but for a group which length Ax is finite —>
waves which amplitudes g(k) are appreciable have wave number
that lie within a finite interval Ak the shorter the group,

the broader the range of wave numbers needed.

igure 3.15 A gaussian distribution. The probability of finding a value of x is given by the gaussian
_'fu-. J(x). The mean value of x is xo, and the total width of the curve at half its maximum value is
7, where ois the standard deviation of the distribution. The total probability of finding a value of
within a standard deviation of xo is equal 1o the shaded area and is 68.3 percent.

H - _(x_xo)z
*Gaussian function: f(x)= 12 R
oN<ZTT

Standard deviation o= /%i(xi—xo)2 (square-root-mean)

Width of a gaussian curve at half its max is 2.35 o

X+

0

pxoio- = J. f (X)dX =0.683

Xo—O

16



® Min AxAk occur for Gaussian function

Take Ax, Ak as standard deviation of ¢ (X)& g(x) —Ax Ak=1/2
. in general AxAk> 1/2

k=27 /A =27 Ph— P=hk/27 — AP=hAkL27
“AxAk 2 172 Ak > 12Ax

— AxAp > Wirm (. AxhAkR27) > hir)

—» AXAp > g [n=h/2 7]

Ex 3.6

A measurement establishes the position of a proton with an
accuracy of * 1.00x10™'m. Find the uncertainty in the proton’s
position 1.00s later. Assume v<<c

Sol: At time t=0, uncertainty in position A X,= 1.00x10™m

—» The uncertainty in P at this time > f

2AX,
VCAP=m AV —— Av=AP/mo >
2m AX,
Ax=tAv > —™ =315x10'm (. Ax a 1/Ax)

2m_AX

0 (]

*the more we know at t=0, the less we know at t=t *
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Viewer

Incident
photon Reflected

photon

Original
momentum .
of electron Final
momentum
of electron

Figure 3.16 An electron cannot be observed without changing its momentum.

look at €' light of wavelength A ——>  P=h/A ——> when one

of three photons bounces off the e’ — €' momentum 1s changed.

The exact P cannot be predicted, but AP~h/ A (the order of

magnitude as P) Ax~ A

ie 1f we use shorter A — increase accuracy of position

— higher photon momentum disturb e' motion more

— accuracy of the momentum measurement deceasing

—> AXAP= h (consist with AXAP=#n/2)

(1) If the energy 1s in the form of em waves, the limited time
available restricts the accuracy with which we can determine the
frequency v .

(2) Assume the min uncertainty in the number of waves we count in

da wave group 1S one wave.
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"."Frequency of wave = # of wave/time interval = A v = 1/At
“VE=hA v—> AE= h/At or AEAt= h
more precise calculation ——> AEAt=#/2
ex 3.9
An “excited” atom gives up its excess energy by emitting a photon
of characteristic frequency. The average period that elapses between
the excitation of an atom & the time it radiates is 1.0x10”s. find the
uncertainty in the frequency of the photon.

AE= /2 At=5.3x107"]

A v =AFE/ = 8x10°Hz
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